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Introduction.

The theory of Abelian differentials of the first kind on abstract
open Riemann surfaces was first developped in 1940 by R. Nevan-
linna [13]. This theory was established for parabolic Riemann
surfaces by considering the complete orthogonal system o f such
differentials, and was completed by Virtanen [23] in 1950 for
general Riemann surfaces. On the other hand, in  view of period
relations Ahlfors [1], Virtanen [22] treated this theory for parabolic
Riemann surfaces, where Riemann's bilinear relation plays a funda-
mental role. For the case of hyperelliptic surfaces of infinite
genus this relation was investigated in detail by Hornich [6], P. J.
Myrberg [12] and recently Pfluger [17].

In the present paper also the problem on the periods of Abelian
integrals on an abstract open Riemann surface will be treated."
Ahlfors [1] proved the existence of an exhaustion and corresponding
canonical homology basis of REO„ (class o f parabolic Riemann
surfaces) such that for any two harmonic differentials du„ du2
with finite Dirichlet integrals the mixed Dirichlet integral D,(u,,
u„) is equal to

D ,(u„u 2 ) =1im E Odu,idm *—  du,*J dui)
I
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where d u , and du ,*  are the modified quantities of du, resp. du,*
(conjugate harmonic differential of d u j  which depend on the ex-
haustion.

To obtain the corresponding formula which is expressed by

1 )  The principal results in this paper have been announced and partly proved
in  my notes [8], [9J.
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the periods of du, and du,* I have to impose further some condi-
tions, that is, for certain restricted class 0 ' of 0 „, Riemann's first
and second (bilinear) relations with an infinite number o f their
periods will be obtained (§ 2, 3).

In connexion with 0' we shall consider another subclass 0"
of 0 '. These classes are defined by the extremal length. In § 1
we shall study their properties, above all, those concern with the
problem of limit (at ideal boundary) o f bounded harmonic func-
tions.

Finally I shall extend Riemann's second relation to the ultimate
form when du, (or du,*) has only a finite number of non vanish-
ing periods, that is, it will be established for Riemann surfaces R
of class OH D  (on  which no harmonic function with finite Dirichlet
integral exists). On the other hand, it will be also obtained when
du, and du,* have only a  finite number of non vanishing A-
periods, if we impose some conditions on the structure of REO
(§ 3).

§  1 .  Two classes of Riemann surfaces.

1. Extrental length. To define the subclasses o f class 0„
we shall start with preliminaries on  the extremal length on
Riemann surfaces (cf. Ahlfors, Beurling [3], Hersch [5], Ohtsuka
[16 ]). Now let R  be an arbitrary Riemann surface and G be a
domain on R .  We consider a system of curves 3c ( 0  :  empty
set) on G each curve of which consists of a finite or a countable
number o f  curves on  G .  Let ( P )  be the set of non-negative
covariants p defined on G, i.e. p (z) IdzI is non-negative invariant
metric under the transformations of local parameter z  at p ,  such
that

L (p , ;c ) = in f p (2) dZi
r E ( r )  _ c

A(p)=S 1 2dxdy, z=x+iy

are not simultaneously 0 o r  co•')  T h en  the extremal length with

2) is the lower integral, is the upper integral in Darboux's sense.
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respect to ; c  is defined by

(1. 2) c  = sup  L  (P' c  ) 2 0 .
( P ) A (p )

We take 2( , ) = 0  i f  ( P )  is empty.
Next we consider another class (Q ) of non-negative covariants p
such that, for any curve eE;Ck

(1. 3) fl)(z) dzI _ 1.

Then another simple definition of the extremal length is

(1. 4) 1 —inf A(1) .
2

(0  C (Q)

We say that p  is admissible fo r ;c when (1 . 3 ) is satisfied. If
there is no admissible covariant, i.e. (Q)--- 3, ii(g) =  0.

PROPOSITION 1.

(1. 5) ,i(p) = , i(Q) 0 •

In the following therefore we denote this common value by 2; c}
Proof. First we suppose (P )  S .
(I) The case where L (p , c ) < co for all p€ (P)
(i) When there exists at least one pE (P) such that 0K L(p, c })

< cc, we choose a constant k  such that L(11 , c ;) =1 , fl E (Q) .
Then it follows easily

(1. 6) 0 2( , ) c ; =sup 1/A (p') 2(Q ) c

Now in general (Q) =P, u P. u P„ where P, p1; 1 L  (h , c  } )  < CO
P 2 =  P 2  ; L (p„ c )  C °  A (PO <  C °  and L(p3, c )  =A  (p 3 )

co c (P) ,P2 c  (P) , but since P = Ø in the present case, we
have conversely

(1. 7) A >  sup L  ( I) ;  >  su p  1 =  sup 1 —  ) ( 0  c .
P( Pi A (p) A  (p )  p P , u P  A  (p)

(ii) I f  L ( 40, 3c;) = 0  fo r  all pE ( P ) ,  then (Q) = 0  or for any
PE (Q) (P) = A  ( p )  cc, hence 11(p) C  = 2 ( ( c■  = 0  by definition.

(II) The case where there exists at least one p,,E (P) for which
LCoo, 3c0= C° •

Then A(P0) <C° and 2( ,.) c}  = co. Since the covariants pu =h /n
(n = 1, 2 , . . )  are admissible for (Q),
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0 < À ( Q ) ; c =inf A(p) lim A(p 0 )/n2 =O.
pE(Q)

Therefore À(,.);c; =2. („ c  = co.

N ow  if (P )  =0 , then Au l k . = 0  and for any non-negative
covariant p  L (p ,c1 )a n d  A (p ) are simultaneously z e ro  o r  co.
Hence it is proved that À.( , ) ;c  —2( 9 ) ;c1 =0, q.e.d.

We shall use the following properties of the extremal length.
PROPOSITION 2. (i) I f  c 1 C  c2  , then A;

(ii) A c1 u 3c2 ; +A c2 - 1

(iii) I f  1c,; c G, c G, c  c Go c G and G, n G2 =0, then

c,A L1 =  cd - 1  H-)J

(iv) If  every curve c€3c} contains at least one C1 E3C 1 } and one
c2 E c2 w h e re  ;c3 c G, cG, c 4  c G2 c G  and G, n G2 =0, then

A;cd

2. In the following we take G = R  without loss of generality.
Let B be a union of a finite number of disjoint ring domains B,
on R  each of which has boundaries a i  and j9 which consist of a
finite number of disjoint analytic Jordan closed curves respectively.
Let 10  be the set of closed curves c on B such that c = c , ,  c, is
homologous to a i , i.e. N o w  let ; c* ; be a subset o f ;
which consist of analytic Jordan closed curves. Suppose re ; and
veil denote the corresponding sets for the union of curves in B,
which connect a , to /3i . By Prop. 2 (i) À;c A; c* A ; " .é 2; -e* ,
but we have

PROPOSITION 3.

1 1  
(1. 8 ) ,uc;=À;c*; = D g( w ) - -  »z '( —

where D„((o) stands for the Dirichlet integral over B of the harmonic
m easure w (in B )  w ith  rest. to  P, i.e. (0=(,) 1 in  B„ (,), is harmonic
measure of B . w ith resp. to Pi .

Proof. Let L A b e  the level curve 0)=2, A1  except a
finite number o f À fo r  which L A contain the points where grad
(0=0. Obviously L,E;c* c Suppose f) is admissible for ;
Since S2=co - F ito*  is considered as a uniformizer at B with a finite
number of suitable slits 1': w*=const.,
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1 pdw*, 0 _< 1.
_ L A

Since cho*= dw* D B (w) , by using Schwarz's inequality andL) ,
integrating we have

1 D ,1 (w) ,0 2chodw*
l f

Therefore

9) D n (w) - 1 -i n f ,e2chodo)* inf A(0) =2 c*
P

11

On the other hand,

(1. 10) p(p(C))
{DV (0) I (1,Q/d: I P (C) B', B' =B— P
0 , p(c) R —B'

is admissible for >c D  c* ;. Hence we have conversely

(1. 11)

We can prove analogously that DR (w)=-2c;=.2c 1"; - 1 .
3. In the following we say that K  is a compact domain with

analytic boundaries when K  is a compact domain and its boundary
a.K. consists of a finite number of disjoint analytic Jordan closed
curves. Now we consider the system o f curves C c R — Ro (R0
is the image of a parameter disc), such that CE C ; consists of a
finite number of disjoint analytic Jordan closed curves which is
homologous to aRo , i.e. C--3R0 . L e t  V ;  be a system o f analytic
curves in R — R0 each o f which extends from a R , to the ideal
boundary Zy' of R .  This means as follows. The ideal boundary

of R  is the set of ideal boundary elements a  which is defined
as follows (Stoilow [21]) : L e t  , Q ,J  be a sequence of domains on
R  such that

(1) The relative boundary C„ o f P „ consists of an analytic
Jordan closed curve on R.

(2) 9, D  2 ,2  D  •  •  •  j Q ,,j •  •  •  ,

(3) n
n= 1

Then we say Si,, defines an ideal boundary element a .  We find
that 2,, are non-compact by (3) and C„ divides R  into two disjoint

3 )  The barred letter stands for the closure of set.
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parts 12„ and R -1 4  (we shall frequently write such a  curve or
cycle as (mod a') i.e. when it is the boundary of an infinite
2-dimensional chain). Two such sequences P n a n d  9 „ ' are call-
ed equivalent each other if for given i, j there exist k, 1 such that

D f l kP i  D 12/.

We understand that two equivalent sequences determine the same
boundary element. Next we say that a  sequence of points 1P.
or curves ) r j  on R  tend to  a  (or ra) resp. to a according as all
P„ or r„ except a finite number of points or curves belong to every
fd„,, (or R „,) resp. to R „ ,  and that a curve I ' extends to a'
if there exists a sequence of points 1P„ on I ' tending to a.

PROPOSITION 4  (Ohtsuka [16])
lrand) if  and only if

di3C— lirn2iC ' =ow
R  is of  parabolic type (Nul-

is equal to z ero, w here 1C ''; i s  the  subset of  C  ly in g  in s id e  of
G„=1?„—R0 , here 112„# is  th e  usual exhaustion o f  R , and is
the set of  analytic curves in  G„ connecting aR0 to  aR„.

Proof. Since C 4  C  C" ÷ I  C  C  , by Prop. 2 (i), 3 we have

(1. 12) lim);C4=limd„.=-d21C
It +  e. 7 L Y 0 ,

where d„-=DG. ( 0 0  and w„ is the harmonic measure of G „. Hence
if d=0, d=21C = 0 .  I f  d> 0, since t o „  converge uniformly to a
non-constant harmonic function 0) on every compact set in R—k„,
hence we have for any CEIC

dw* -= lirnl dw„* d„ =- d .
77 i 0 7

Therefore the covariant

p(P (c))=

where l '  denotes a countable number o f suitable slits (0*—const.
through the points where 9'=0, is admissible with respect to 3C3
and

jç
0

pdxdy=d - 'Sjdwd(0*54 - 1

i i h—rec,

r0
- isQ / d ci, p (C ) R— Ro — 9=w+i(o*
, p(c)ER„+r
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therefore together with (1. 12) we obtain

(1. 13) d=23C#=lim23Cni.

We can also prove easily that AJ -' d '  O n the other hand,
according to R. Nevanlinna's theorem [13], R  is of parabolic type
if and only if  d=0, q.e.d.

4. Now we shall consider a subset ly o f  C  which contains
an infinite number of curves E  C  tending to Z5'. L et ;y *  be the
complementary set of r  w ith  respect t o  C  Since

2 %C V. '  - - 2?"*

we have
PROPOSITION 5. R  is  of parabolic type if  and only if at least

231 =0  or idr*----0 holds.
PROPOSITION 6. Let KD R, be a compact domain with analytic

boundaries. Let 1x€2-,2-r1K=sbri, and be the com-
plementary set of w ith respect to In  order that 2;y; =0
it is necessary and  sufficient that ,I;7-„ =0.

Proof. Since  O 2 r i t  i s  s u f f i c i e n t .  T h e r e f o r e  i t  i s
enough to prove > 0, since ).; y } +2;71; - 1. L et K,
be a compact domain with analytic boundaries containing K  com-
pletely and  K 0 —R0 = K 0 *. Let 0)(p) be the harmonic measure of
K0*. Put

(1. 14) 0 < max()) , Pm)* =d> 0 .
v E a K

asl b

The covariant

-

{

d' Id!) / d:1 , cr=1/min(d, 2(1 — m )), P(C) €K0*_['
P(P(C))=

0 ,  p (c) R — Ko *
where 12=w+ i0)* and P  denotes slits (c f . (1. 10)), is admissible
for because

J =d ' d(o*1=-d' if  yt c K0*.
Plc121=-- d IdQ 1.̀*

C r;'
—r*

Idtol >rd '2 (1— m )>1, if y'1̀c K0*.
T*K nKo*

rtriko*

4 )  In  the following we shall use also such a notation.
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Therefore we have

20,-L 1 <f ç p -dx  dy  = d < co , q.e.d.

PROPOSITION 7. Suppose that 50, an d  so, a re  any  tw o non-
negative covariants sequare integrable over R — K  (K  is a  compact
dom ain w ith analy tic boundaries). If  A ;71=0, then there exists a
sequence of  curves E y (y„ n K =0 ) tending to the ideal boundary
a, o f  R  such that

JO 42  21dzI --> 0 for n œ.

Proof. Now we assume that for any rA-E

• (1. 15) 9921dzI_>_72>0.
TK —

Since o,so, and 02 >_ 0, we have S. v ild z I " o r  j . 0 2 10 .  Let

= VW, ; - / , . €  rid (i = 1, 2), then -fic = ? - 1 U  n r 2

-  K

hence A# r , Since A;Ix = 0  (Prop. 6), it follows
that A r x i  = 0  or A7- 1,2 =0 , e.g. A r A

1 = O .  Then the covariant 0 =
so,/ 17 for p ER— K and =0 for pf ic is admissible for #;-,1 ; and

;.> rA ! 02dxdy=1/4 50,2 dxdy<co

which isis absurd. That is, for any given i> 0 there exists a curve
r , E ind such that the inverse inequality of (1. 15) holds. Therefore
we can prove this proposition at once, q .e .d .

COROLLARY I f  RE 0 ,  and  d f  is  a n  A belian differential on
R  with f inite Dirichlet integral taken over R— K. Then for any cycle
C-, 0  (mod a), cc R— K

df-=0 .

Proof. Since R E 0 „, AIC =0 (Prop. 4), hence by Prop. 7
there exists a sequence of curves C„e  C  tending to ,;1' such that

Idfl (n co). S ince C  is homologous to a cycle C„' on C„
c„
with bounded K )  coefficients and df  has no pole on R— K
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=  df  I K J IdJI —.0, q.e.d.
c„

5. Now we shall consider two subsets I r 3, 3 L3 E  o f  C
(I) # : 3 is the set of such that in the decom-

position of I ' into components, i.e. r =  r ,  r , n  r i =  (i j ) , each
curve V, divides R  into two disjoint parts.

(II) # L3 This is the system of curves o f # r 3  depending on
an exhaustion E= R „3 such that r 3. That is, L3 f r-,=
u L.  w h ere  L„3 is the set of curves o f  P 3 contained in annuli

n=1

including
First of all we note I' 3 and #1,3,, contain an infinite number

of curves tending to (cf. Sario [la], p. 466).
DEFINITION • W e shall denote by  0 '  o r  0 "  the classes of

R iem ann surfaces for w hich 2# P 3 =0 resp. 23 L3 E =0  for certain
exhaustion E.

Since ILI FC 3 I '  c 3C3 and C  #  =0  is equivalent to R E OG1
we have O" c 0 ' c „. In the following of this paragraph we study
on the properties of classes 0 ' and 0".

6. T he single-valued harm onic function outside o f  a  compact
set. Let K  b e  a compact domain on  RE O „ with analytic
boundaries and u  be a single-valued harmonic function defined on
R— K," and bounded to one side (e.g. bounded or positive harmonic
function). Then it holds for instance the following properties.

PROPOSITION 8. (a ) If  u is bounded, then the maximum and
minimum principle hold.

(a') Maximum principle also holds even if  lim m ax u (p)/2 r"
n—>oo PeOR.

= 0 .  T hat is, if  u  is unbounded, then max lu(P) I >7), # r"(2> 0)
pE OR„

(Kusunoki [7]).
(b )  u  is bounded if  and  only i f  u  has a f inite Dirichlet inte-

gral. M oreover then  'd u * =0 (R. Nevanlinna [131 [14]).
4K

(b') u  is bounded if  and  only i f  du* =O.
air

5) By annulus including 1€ { F }  we mean the union of doubly connected ring
domains each o f which includes a component o f 1.

6) This is not necessarily connected, but we mean hereby R —  K  a component
of it.



10 Y ukio Kusunoki

IIere we prove only the sufficient condition of (b '). We
assume e.g. u> — M . Let v„ be a  harmonic function such that
v„ = u  on 3K  and = — M  on aR„. Then a suitable subsequence,
say ; v„ tend to a bounded harmonic function y  which is equal
to u on aK. Suppose u is unbounded, then U=u— y= lim (u— 0

n-> co

is non-constant and =0 on a K  Since idy*=0 by (b), we have
arc

d U * =  (au ov)d s= 0 . It follows U*=const. on  ax , because
5X
3tu 3, 4 c  on alf. Now since the curve aK is analytic, the function
U -F iU * is also analytic on ax- by the principle of reflection, there-
fore U const. =0 which is absurd, q . e .d .

Now the problem o f limits (at ideal boundary) o f bounded
harmonic function is more complicated. Let f  be a real or complex
valued continuous function defined on R— K and S ef  be the set of
limit values at a E i.e. Sœf ;  l i m  f ( po =p, p„-, a  ,  then for
any two equivalent sequences fl„ and 12„/ determining a

(1. 16) n f(9,z) n f  (/),,,i ) •
i . = ,

This is a closed set. Now if f  is a bounded analytic function, it
has always the limit, i.e. for any a EZ5 Sa f  consists of a single
point. (Heins [4], A . M ori [10 ]). But in case of a bounded
harmonic function there exists an example of Riemann surface
E OG  o f infinite genus for which it does not have a limit (Heins
[4 ] ) .  For this problem we have the following

THEOREM 1. Suppose R E 0 '  an d  u  (p ) b e  a  single-valued
bounded harm onic function o n  R —  K  T hen u (p ) has always a
lim it w hen p tends to any ideal boundary element a.

Proof. Since R E 0' c 0,, by Prop. 8 (b) u has a finite Dirichlet
integral over R —  K  Therefore by Prop. 7 there exists a sequence
of curves P0 E  P  n=1, 2, ••• tending to Fa such that

(1. 17) w' I dzl= idw 0  for n--› co,
} - ' 71

where w-=u -1-iu* in R — K, =0 unless u is defined. Now let ; 2„
be a determining sequence of a. Since r„--ax tends to Zs', there
exists a number m, such that 2„ i (=9 ,) U -17 0, then there exists
also a number n, such that P„„n „ 2 -0 ,  since Q,,— . let
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f'„;1•-•-• 0 (mod ,a) be a  component of P, which divides a, from
C'„. W e write by 21 ' the non-compact domain which is bounded
by the relative boundary P,, and contains the domain B y
the same way we determine the s2' such that S2„..D  D 4 3 . And
so on. Thus we h ave  a  sequence of domains w h i c h  i s
equivalent to 312„. Because for given i ,  j  there exist p, q  such
that 14 D D 12,1, 12,1 D 2n j ,, f2,. Therefore by (1. 16) S„"= n

n=I

u (Q ,!) .  Now by Prop. 8  ( a )  u (p ) attains to sup u (p )  and
P cR — IC

inf u(p) at the relative boundary a x . If S„' contains two different
p e R — IC

values a  and b, then a, bEu(Sd„') for all n and

la—b1_< max u(p) —min u(p)
pE L„ pE L„

where L „ =  r :  denotes the relative boundary of ,Q„'. Since L„--, -0
(mod ,a) and consists of a single component, it follows

max u(p) — min u(p) Idul ,
pc L„ pE L„

L„

hence 0< a kiwi for all n , which contradicts with (1. 17),

q.e.d.
7. Now we shall prove a  sufficient condition for which R

should belong to class 0 "  therefore to 0'. Let n =1 , 2, • •• be
a  sequence of annuli which a re  disjoint each other and include
the curves L„ of a n d  l e t  3 e„ be the set of curves of 3[1
lying in Da , then we have by Prop. 3

(1. 18) c„ = 27/log p„
where p „ denotes th e  Sario-Pfluger's rin g  modul of D„. Since
D,,nD„-- 0(n m ) by Prop. 2 (iii) we have

2 ) U 1c,, j - 1 = E 21 C,,j - 1

n=1 72 .1

and by Prop. 2 (i)

2j - 1_,1114,_<21u3c„3  3 for any N.

Hence

(1. 19) 1 >_ log H p„.
2). r- 2 i r - „=,



12 Y ukio Kusunoki

Therefore we have
THEOREM 2.— L e t  D ,„  n=1, 2, ••• be a  sequence o f  annuli

which are disjoint each other an d  include the curves of and
let be the Sario-Pfiuger's modul of D . I f

CO

II p„— co
n =1

then R E 0" C 0'.
C O R O L L A R Y  (Heins [4]). L e t R  b e  a  parabolic Riemann

surface w hich has only  one ideal boundary  elem ent a. Let D  b e
a  sequence of  doubly connected domains with analytic Jordan bounda-
ries w hich are disjoint each other and D„ separate D„_, f ro m  a .  If
the product of  modul of  D„ diverges, then every single-valued bounded
harmonic function on  an  end  (i.e. R — K ) has a  lim it at a.

8 .  Let R E 0 , be of finite genus. Then we can take a compact
domain K  so large that each component B. o f R— K is o f planar
character (schlichtartig). Therefore we can construct the (Evans)
potential U, on B, such that U,(p)-->co for pErk and U=0
on aK , dU*= 27, where U= U, in B ,. Let

air
<2,< .......

be all values of U for which U—)., contain the points where grad
U=0, then each component of D„:

D„-=4; )„_,<U(P) </i,J

is a doubly connected ring domain (cf. Ahlfors [1], p. 16), more-
over e.g. the level curve L :  U = 2„' <j.„) belong to
because each B, is of planar character. Since p„ =exp. (),—).„_,),
it follows itp„—›co (N--co), 7) therefore by Theorem 2 we have

E C 0% i.e. 0 ( ,= 0 " = 0 ' .  But if R  is of infinite genus, there
exists a Riemann surface which belongs to 0 ,,  but not 0' (cf.
sec. 6).

THEOREM 3. I f  R  is of  f inite genus, then 0,,.= 0 ' = 0 " . If
R  is  of  infinite genus, we have 0"C 0 '  OG.

THEOREM 4. Let R, R ' be two Riemann surfaces, and K, K'
b e  compact dom ains w ith analy tic boundaries on  R , R '.  Suppose
that there ex ists a  o n e  to  one conform al transformation

7 )  Take AN+ 1= c 0  if the number of A's is finite N.
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between the  (not necessarily connected) complements R— K and R' —
K ' .  T hen R €0 ,  o r  0 "  if  and only if  R' €0 ,  o r  0 "  respectively.

This shows that 0 '  o r  0"-property of Riemann surface
depends only on its ideal boundary.

Proof. Under our assumption any curve I'„E. ; (, LE E L t, on
R— K are transformed to FE, E I "  resp. E L' on R'
Now if R E 0 ' (or 0 "), then À rid =0 (2; F = 0 ) (Prop. 6 ) .  Since
the extremal length is invariant under the conformal transforma-
tion, we have ).; (2)LE, E ,= 0 ) .  Therefore R' E 0 ' (or 0 ")
by Prop. 6, q.e.d.

§ 2. Riemann's first period relation

1. Canonical homology basis. Let R be an arbitrary Riemann
surface and I ,  f '  denotes respectively the cell-division of R  and
its dual subdivision. There exists a canonical homology basis Al,
B„ •••, A„, B„, ••• on R  where 44,, belong to I ,  B4  to X' and satisfy
the following condition ; (Ahlfors [1]).

(1) Any cycle C on R  is expressed as

C ^••11(Pn An +q,BJ (mod ,;1-) .
vt=-- 1

(2) The intersection numbers N  between them are charac-
terized by

N(A„„ 24„)=N(B„„ B„)  =0 . N (A ,„, B „)  = d,,"' (Kronecker).

Now let ;I?„ be an exhaustion of R .  Then there exists a canonical
homology basis satisfying moreover th e  following condition :
(Ahlfors [1]).

( 3 )  A„B„ •••, B k„ are the relative homology basis of R„
mod aR„, i.e. any cycle Cc R„ is expressed as

k„
C - ■. (p i A ,- F q ,B ,)  (mod aRn ).

We shall call such basis a  canonical homology basis o f A-type
with respect to ; R , .  For instance let S be a two sheeted Riemann
surface of hyperelliptic type whose branch points lie on the real
positive axis g  and accumulate only at 00. Then Fig. 1 shows a
canonical basis of st-type on S with respect to E = suchsiich that
&R” (e.g. izi = r„ ) pass through I„. Let ; L4 be the set of analytic



Jordan closed curves on z-plane which separate the circle I zi=r0

from co and meet once with g  at slits l„. Then it is easily seen
thatA {L} =0 implies 2 ILI E .= O. Now when 2# L  ,=0, the canonical
basis o f ?i-type is useful. (cf. Pfluger [17] and Th. 5, 6).

2. R iem ann's f irst period relation.  In this section we shall
always consider Abelian differentials each o f  which has finite
Dirichlet integral taken over R  except the neighbourhoods of a
finite number of singularities. Now let R E 0 ' ,  then there exists a
sequence of curves 1, E V tending toZ'5 such that they are disjoint
each other and for two Abelian differentials d f , d f ,

(2. 1) I d f i l fldf,1 0 , -3  co  (P rop . 7 ).
t,

If we choose A „ B „ •  , A ., B „ ,•••  as a canonical homology basis
of 2t-type with respect to this exhaustion R "# (aR 1' =1 ,), then we
can prove the following Riemann's relation. While, if R E 0", i.e.

D A .— u ; L „  for certain exhaustion E = R ,,(aR „=L ”),
n = 1

then under the canonical basis of 21-type w ith  respect to  E
Riemann's relation holds for any two differentials. Here we shall
prove for this case. The former case is proved analogously, rather
more simply.

Let A „ B „ • • • , A „, B „, • be the canonical basis o f ?i-type with
respect to E .  Now we consider two arbitrary Abelian differentials
d f ,  (1st or 2nd kind) and d f ,  which have a finite number of
singularities P ,  where they have locally the expansions

(Pfc +  +

df 2 = [—  qb

z7+1
 + +

can find a segue nce of
are disjoint each

a - ' )-Fa,-F2a2 z + •  id z
2

,2

bu± 2 b 2 z  +  •  •  • ]d z
2

curves 1, E  Ln„; tending to su ch

(2. 2)

Then we
that they other and relation (2. 1) holds. Let
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A „ B ,, •••, Ale» ,  B iz» (le be its relative basis on R n,, (mod
L n„), then we note that it is possible to replace A „ B , by A„', B,'
which are homologous to A „ B , respectively, moreover Al , B ,' (ti
=1, 2, • • , le )  are contained in the compact domain I?" bounded by
1, (E  Ln,, c  r ) . For instance in an annulus including La,, and
1, w e replace the parts of A „ B , lying outside of by its
homologous counterparts in Ry. Now we may assume that the
canonical basis are realized on the 1-dimensional elements and
A„

E a 2
2 =R 1' where a ; denotes i-dimensional element, moreover that

i= 1

are all analytic curves not containing any pole of d f , and df 2 .
We take R " so large that R " R „,„ where R ,„ contains all singu-
larities P of df, , and df 2 . Now consider the sum of line integrals

(2. 3) / = df2
0=1

0 a 2

where the branch of f ,  is defined as follows (cf. Ahlfors [1]), i.e.
for a chain (curve) L(Ip PO  connecting a fixed point bo ( PO  on
R„„ to a point b.7 (  4 P ,)  in a, 2 we define by

kv
(2 . 4 )  f , ( 1 )  =  elf ± EL — N (A ,', L )  d f ,+N (B ,', L )  jd f ,].,=1

13'

Thus defined value is independent of the choice of L , because the
difference of two such chains forms a cycle C  and the difference
of corresponding values of f ,  is equal to the period o f d f ,  along
the cycle Cd- — N(11, 1 , C)B ,' ±N  (B,', C )  A l ,  which vanishes
since d f , is of first or second kind and C--Y, [N(A ,', C)B / — N(B,',
C ) A 1  (mod 1„) (Cor. of Prop. 7). Now each a2

1- inside o f Ry
appears twice in these integrals (2. 3) and the corresponding dif-
ference of f ,  is equal to

[ -  N(A,' , 1) 3 ') d f ,± N ( B , ' ,  b ;)  d f r ]
.B;

where b l  is the dual element of a ) .  On the other hand

N (Al , bi) d f d f „ N (B „' , 1)1) . df 2 =  ) d f 2 .
di A :

Since A,' =A „, =B,(i=1, • • • , k„„) and d f ,  has no pole outside of
12„„,
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d f j =  df i , cif;  =i 1 , •••, k ,  j=1 ,  2,
A ; A i B; B i

hence we obtain
10' •

I= Y ,(id f , j d f 2  d f l ) + df2.i=1
A i B i A i B i 1 ,

Now 10 e  r #, i„= >2,1 , (mod r;ss-'), therefore df 2 =0 (Cor. of

Prop. 7). Hence for fixed points p,E1,"

1). fi df21 v ( P )  — f ( P m d f d  f Idf21 ,
„

therefore

l if1df21 fldf1llIdf21-- -) 0  for
1

iv
0

While, /=27ri E  (residues of f , d f 2 o n  RO), hence we have
THEOREM 5. Fo r each R iem ann surface R E O' there exists

an  exhaustion and corresponding canonical basis of  et-type such that
f o r two A belian dif ferentials d f ,  (1 s t o r 2 n d  k in d ) an d  d f ,  with
f inite Dirichlet integrals over R  except the neighbourhoods of  a finite
num ber o f  singularities P , w here they  hav e locally th e  expansions
(2.2), we have

ko

(2. 5) l im E ( id f , i d f 2 —
A i  B i A i  B i

'(Ena_0b.—a0b 0 —  nan b_,,)--=-  I,
p v. 4 = 1 a= 1

where ao  i s  the constant term  of J . ,  a t  P ,  def ined by  (2.4). We
hav e 1 =0  i f  both d f ,  an d  df 2 are  o f  f irst k ind. I f  RE 0 " , i . e.

) =0 , then f o r the  canonical basis o f  ;.)1-type w ith  respect to  E
(2 .5 ) holds alw ays f o r any  two such dif ferentials. 9  I f  R  i s  of

f inite genus, it is valid for any  canonical basis on R
R em ark . 10 ) On R E  0 , there exist Abelian differentials dw i

(1st kind), d t ;  (2nd kind, r with finite Dirichlet integrals

8 )  I f  necessary, we should remove A i ,  B i  a  little so as to avoid

co.
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except a  neighbourhood o f singularity q  where dt,' = (— r/z"'+
regular term) dz, such that çdt,' = 0 (V irtanen [22]).

A i A,
We write here A,, B1, as K 1, I f 2 , • • • . I f  we take in Theorem
5  e.g. df,=dw, df2 =dw,; df,=dt,'', df 2 =dw„, then

f f du; ,   crwp.(q)
( r -1 ) ! dq'

In connexion with elementary integrals on general surface (e.g.
Sario [19]) we have corresponding formulas. (cf. Schiffer-Spencer
[20] p. 74-76).

2°) R iem ann's relation (2. 5) holds also for certain restricted
class of Abelian differentials having an infinite number of periods and
singularities. For instance let U  b e  a sequence of disjoint compact
domains on R  and U= u U . W e consider a  class o f Abeliann=1
differentials which are o f first or second kind and have finite
Dirichlet integrals over R— U. N ow  if the extremal length vanishes
for subsets of o r  L E  ly in g  on R — U , then by modifying
Prop. 7  and its Cor. we can obtain the corresponding formula
(2. 5 )  for differentials of this class. Although it gives a relation
between an infinite number o f periods and singularities, there is
no gurantee for the convergency of the infinite series in (2. 5),
but it will converge for instance under further restriction such as
(3. 13).

§ 3. Riemann's second (bilinear) relation

1. By the same way as the proof of Theorem 5 we have
THEOREM 6. Fo r each R iem ann surface REO' there exists

an  exhaustion and corresponding canonical homology basis o f  7t-type
on R  such that f o r two A belian differentials dfi =du,+idv, (j=1, 2)
of the f irst k ind w ith f inite Dirichlet integrals we have

ley .

(3. 1) D „(u„ d u ,  dv,—  d u ,  dv,)
V i m  1=1

A i  B i B i A i

I f  RE 0", i.e. 23L =0, then f or the  canonical basis o f  9t-type with
respect to E  (3. 1) holds f o r any two such differentials.

2. For another extension of Riemann's second relation we

, p, v=1, 2, • • • .
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shall use the Ahlfors' theory of Schottky differentials under the
same notations as Ahlfors [2].

THEOREM 7. L et R  E Om , an d  A ,, B i, •••, A ., B „, •-• be an
arbitrary canonical homology basis on R  and let d f j =du,+idv i  ( j -
1, 2 ) be any two A belian dif ferentials o f  the  f irst k ind w ith f inite
Dirichlet integrals. I f  u ,  (or v ,)  has only  a  f inite num ber of  non-
vanishing periods, then we have

(3. 2)D R ( u , ,  u 2 ) = d u ,  dv ,—  du,ç dv ,)1=1
A i  B i B i

M oreover, this theorem does not hold for R  f
Proof. Since ( i=1 , 2) are harmonic differentials with

finite (Dirichlet) norm, for any cycle C--0 (mod ,a )

(3. 3) g  = 0  ( i=1 , 2).

Suppose e.g.

(3. 4) ..Q, id, = 0  , n  N +1 .
B n

Now let R  b e  an arbitrary exhaustion o f R .  We take R.° so
large that it contains completely the cycles A „ B „ •••, A N, B K . We
define the branch in 12„(n>n 0 )  of  u , as before (2. 4), i.e.

u,(1),) = Jdu. + [— N (A i ,  L )  du, + N  (B  L ) f  dud .
B i A i

Under (3. 3), (3. 4) we find that this value is independent of the
choice of L  connecting be  to  b .  b efo re . N o w  let 7 „ *

 E S0* (Ra)
be the Schottky harmonic differential on R ,, (n  n o )  with the same
periods as (92*)* -=  —  on R „, then — V, —  7„ *  becomes an exact
differentials, say dV„.

(3. 5) I2.,*= 7:„ — dV e *. -.7„= 0 on aR„.

(3. 6) DR„(U1, 142) —  W2 -
(2 *—  

J12I
 7  — .

By Schwarz's inequality

I /2'1211-(2,112R,j1dV,,*112R,,
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Since R E 0,,, we have

(3. 7) lid =H 9 2*112R„ - H7.112
R , 0  (n --> co) ,

therefore under the condition W i ll, < co
(3. 8) rj--9•0 (n—> co).

On the other hand, by Green's formula and integration by parts
we have

(3. 9) =  E  u, 7 . .

ad=

Now each a,' inside o f R „  appears twice in  these line integrals
and the corresponding difference of u, . is equal to

(3. 10) E [ — N(A„ 1);) f du, ± N (B„ dui] .
BiA i

Since R„ R„„ D A „  B (i= 1 , 2, •••, N ) ,  for i =1, •••, N

(3. 11) N(A„, .\ „= , E 7 „ 7 . .

al, A, al, Bi

Since 7”=0 on aRn. and 7„ converge uniformly to 92* =dv,, on every
compact set on R , we obtain the desired result (3. 2) by (3. 6) —
(3. 11) when n--+ co. Especially if we take f 1=f 2 =f , then

(3. 12) . D ,(u) = E ( d u  dv— id v ).
A i B, Bi A i

Now if this theorem holds for R 0 ,  then for any single-valued
harmonic function u with finite Dirichlet integral we have DR(u) =0
by (3. 12), i.e. u  const., therefore R E 0111), which is absurd, q.e.d.

Remark. This theorem includes the Virtanen's result for
R E 0 „ (Virtanen [22]). By Theorem 7 we can immediately extend
the Virtanen's theory on A-periods to Riemann surface E 0 :
The necessary and sufficient condition in order that there exists
an Abelian integral of the first kind with finite norm and having
the given A-periods. The existence of Abelian integral of the
second kind with finite norm (except the neighbourhood of singu-
larities) without any A-periods etc.

3. Let A„ B„ • • • , A„, B„, • • • be a canonical homology basis of
at-type with respect to  an exhaustion 1 R „

 1 o f  R. We denote
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;A  , ;1 3 ; 7 1 ) # (1 _< k„) the set of cycles which are homologous
to A, resp. B, and are contained in R . Then A ),V I ,  A g 4 ) ( 0g)

are monotone decreasing for fixed i.
THEOREM 8. L e t  REO H D  a n d  A „ B„ A n , B„, ••• be a

canonical homology basis of  ?1-type w ith respect to  a n  exhaustion
;R n # of R . If  f or any  n

k„ 
(3. 13) E A/2# An <M < co

1= 1

where k” denotes the genus of  R„, then ive have for any differentials
df„ df , w ith f inite normes

k„
DR(u„ = l i m  E  du, dv,

A , B 1 A i  B i

Hence i f  du, and  dv , hav e only a  f inite num ber of  non-vanishing
A -periods, (3. 2) holds.

Proof. Suppose A A?)  a n d  A#13;") }  >0, then by (1. 2) there
exist the cycles A i n, B i 4  in R„ which are homologous to A 1,  g
respectively and for given 0<  „  <  min( ,./), ;WV „11R  , A; gn'
11C1PR„)

Bi B 7 137
dud =If du,1 _< 1df d 5_ B,'" )

- FE .<  2 V). B " IIdJI,,(3. 14)

qdV .*1=11dV ,,*1<1
A7A i

-F8„< 2 V2 3 AP'
Where dw„= dV„, + V,,* in R„ and =0 in R — R„. These inequalities
still hold even if A A "' # (or 2;gn ) #) =0, because i f  1 dw.„1 =7,1 > 0,

A i

then So =lwa'1/72 is admissible for A N  and

i'. 11.1") F 1 <__Si. 992 dxdy=1/)21 .çlw„'1 2 dxdy< 00

9 )  The extrem al length w ith respect to  th e  se t o f cyc les  is analogously
defined by taking the line integral along the cycle. (c f. H ersch  [5 ]). O r, from the
beginning we consider the canonical basis of W-type such that A I ,  B1, are all
Jordan closed curves. (cf. R. Nevanlinna [15]).
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i.e. iC n ) > 0 which is absurd, hence f d V„* .fdtv„.-- 0, etc. N o w
A, Ai

by (3. 5) we have analogously

D 140 = du, j ' dv,— ,Ç du, dv2)
A i  B iB i  A i

k„
+E(idttijdV.* —i=1

A i  B i A i B i

Hence by (3. 13) , (3. 14) , (3. 7)
k„ k „  

IE klV„*1<411(1.01 lid V„*II E 'vii1,41 4 ) BP.' n( ,  co )
i= 1 • R' R n i= 1

Bi A i

and analogously
k„

IE S . 6117
„

*
rdlt,1 - - >0

i= 1
B i A i

Therefore we have the conclusion for n--› c o ,  q.e.d.
On such a Riemann surface every Abelian integral of the first

kind with finite norm is therefore determined except a constant
by its A-periods. (cf. Ahlfors [1 ], L. Myrberg [11]) .

Finally we note that the conditions in Theorems 6 and 8 are
both concerned with the extremal length with respect to the set
of cycles ; the one is the set of cycles dividing Riemann surface,
and the other the set of non dividing cycles.
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