MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXX, Mathematics No. 2, 1957.

Addition and corrections to my paper "A treatise on the 14-th problem of Hilbert"

By

Masayoshi NAGATA

(Received November 20, 1956)

Concerning the 14-th problem of Hilbert, Zariski [3] conjectured the following :

Conjecture of Zariski. Let D be a positive divisor on a normal projective variety V defined over a field k and let R[D] be the set of functions f on V defined over k such that (f) + nD > 0 for some natural number n. Then R[D] will be an affine ring over k.

He proved there that if the answer of this conjecture is affirmative, then the answer of the following problem is affirmative:

The generalized 14-th problem of Hilbert: Let v be a normal affine ring over a field k and let L' be a function field contained in the function field of v. Is then $v \cap L'$ an affine ring?

In the present paper, we shall show at first that the generalized 14-th problem of Hilbert is equivalent to the conjecture of Zariski and then we shall give some corrections to my paper [2].

\S 1. The proof of the equivalence.

Since Zariski [3] proved that the affirmative answer of the conjecture of Zariski implies the affirmative answer of the generalized 14-th problem of Hilbert, we have only to prove the converse. The writer proved in [2] that the generalized 14-th problem is equivalent to

Problem A. Let α be an ideal of a normal affine ring o over a field k. Is then the α -transform of o an affine ring?

Therefore we have only to prove that:

The affirmative answer of Problem A implies the affirmative answer of the conjecture of Zariski.

Now we shall use the notations as in the conjecture of Zariski. Let L be the field of quotients of R[D] and let \mathfrak{o} be a normal affine ring of L contained in R[D]. We denote by v in general spots which corresponds to k-prime divisors on V which are not components of D. Then obviously R[D] is the intersection of all of v's, hence $R[D] = \bigcap_{v} (L \cap v)$, which shows that R[D] is a Krull ring (see [2, p. 60]) and if q is a prime ideal of rank 1 in R[D], then there exists one v such that $R[D]_q = L \cap v$. Furthermore, since each $L \cap v$ is a spot (see [2, foot-note 3]), $R[D]_q$ is a spot. Let \mathfrak{Q} be the set of prime ideals q of rank 1 in R[D] such that $q \cap v$ is not of rank 1. Since $v(q \cap v)$ is dominated by one v, $q \in \mathfrak{Q}$ means that the spot $v(q \cap p)$ is an isolated fundamental spot with respect to V, hence Ω is a finite set. Since $R[D]_q$ is a spot, we can reduce easily to the case where \mathfrak{Q} is empty (see [2, Proposition A]). Thus we assume that \mathfrak{Q} is empty. Next, let \mathfrak{P} be the set of prime ideals p of rank 1 in o such that there exists no prime ideal q of rank 1 in R[D] which lies over p. Then $o_p(p \in \mathfrak{P})$ is dominated by none of v, which shows that v_{v} corresponds to only components of D, which shows that \mathfrak{P} is a finite set. Let \mathfrak{a} be the intersection of members of \mathfrak{P} . Then R[D] is the a-transform of o. Therefore the equivalence is proved.

\S 2. Corrections.

In [2, Theorem 4] we asserted that if D is a closed set of an affine model A of dimension 2 $(A \neq D)$, then A - D has an associated affine model. This is correct under the additional assumption that A is normal and in the non-normal case the assertion is not true as will be shown by an example in § 3. One error in the proof exists in l. 4, p. 67 of the paper.¹⁰ Namely, we stated that from $o_q = \hat{g}_{q'}$ it follows that $q'' = q\hat{g}_{m'}: q'\hat{g}_{m'}$ is a primary ideal belonging to $m'\hat{g}_{m'}$.²⁰ But we needed really the normality in that conclusion. In fact, the example which will be shown in § 3 shows the nonvalidity of this conclusion in the non-normal case. Since, even in the normal case, that conclusion may not be obvious, we shall give a detailed proof of that conclusion in § 4.

By this reason, in that Theorem 4, we must assume that A is normal. Under the assumption of normality, the proof of Theorem 4 is valid and there remains no difficulty (except the fact which we shall prove in § 4).

On the other hand, Proposition 5 (p. 69) should be asserted also under the additional assumption that o is a normal ring.

\S 3. An example.

Let x, y and z be indeterminates and let k be a field. Let f be an element of k[x, y, z] such that

(1) f is irreducible, and

(2) $f=y(z+yt)+x(u_1y^2+u_2yz+u_3z^2)$ with $t \in k[x, y]$ and $u_1, u_2, u_3 \in k[x, y, z]$.

Set v = k[x, y, z]/(f). Then x, y generate a prime ideal p of rank 1 in o; y, z generate a prime ideal q of rank 1 in o. v_q is not normal. Let \mathfrak{g} be the p-transform of v. We first consider \mathfrak{p}^{-1} . It is obviously generated by 1 and $z_1 = (z+yt)/x$. Therefore $\mathfrak{o}[\mathfrak{p}^{-1}]$ is generated by x, y, z_1 satisfying a relation similar to f stated in (2) as is easily seen. Thus \mathfrak{s} is obtained by successive adjunction of elements $z_1, z_2, \dots, z_n, \dots$ such that $z_i = (z_{i-1} + yt_{i-1})/x$ with $t_{i-1} \varepsilon k[x, y]$. Though we have already seen in essential that ε is not an affine ring, we shall see a little more. Since $xz_i = z_{i-1}$ $+yt_{i-1}$ $(z_0=z)$, we see that $z_{i-1} \in \mathfrak{ps}$. Thus x and y generate a maximal ideal m of \mathfrak{g} . Therefore if $\mathfrak{g}_{\mathfrak{m}}$ is Noetherian, $\mathfrak{g}_{\mathfrak{m}}$ must be a regular local ring. Let q' be the uniquely determined prime ideal of rank 1 in \mathfrak{s} such that $\mathfrak{s}_{\mathfrak{q}'} = \mathfrak{o}_{\mathfrak{q}}$. Since y, $z \mathfrak{E} \mathfrak{q}$ and $x \mathfrak{E} \mathfrak{q}$, $z_1 = (z + yt)/x$ must be in q'. By the same reason, we have $z_i \mathcal{E}q'$ for every *i*. Therefore q' is generated by $z_1, z_2, ..., z_n, ...$ Therefore q' is contained in m. Since $o_q = \hat{s}_{q'}$, we see that \hat{s}_m is not a normal ring and $\mathfrak{g}_{\mathfrak{m}}$ cannot be a regular local ring and $\mathfrak{g}_{\mathfrak{m}}$ cannot be a Noetherian ring. Now, if $q\mathfrak{s}_m : q'\mathfrak{s}_m$ is a primary ideal belonging to \mathfrak{m}_m , then the treatment in [2, p. 69] shows that q' is generated by a finite number of elements. But we see now easily that q' cannot be generated by any finite number of the z_i 's. Thus $\mathfrak{gm}:\mathfrak{gm}:\mathfrak{gm}$ is not a primary ideal belonging to \mathfrak{mgm} but is contained in q'\$m.

§4. A lemma on Krull ring.

In order to verify the statement in [2, p. 67, l. 4] in the normal case, it will be sufficient to prove the following lemma.³⁾

Lemma. Let q be a prime ideal of rank 1 in a Krull ring \mathfrak{s} . If a is an ideal contained in q such that $\mathfrak{as}_q = \mathfrak{qs}_q$, then $\mathfrak{a}:\mathfrak{q}$ is not contained in q.

Proof. Since \mathfrak{s} is a Krull ring, \mathfrak{s}_q is a discrete valuation ring. Therefore there exists an element $a \mathfrak{E} \mathfrak{a}$ such that $a \mathfrak{g}_q = \mathfrak{q} \mathfrak{g}_q$ (because

Masayoshi Nagata

 $\mathfrak{asq} = \mathfrak{qsq}$). Since \mathfrak{s} is a Krull ring, $a\mathfrak{s}$ is the intersection of a finite number of primary ideals and we see easily that $a\mathfrak{s}:\mathfrak{q}$ is not contained in \mathfrak{q} .

Mathematical Institute, Kyoto University

BIBLIOGRAPHY

- M. Nagata, On the derived normal rings of Noetherian integral domains, Memoirs Kyoto University, vol. 29, No. 3 (1955).
- [2] M. Nagata, A treatise on the 14-th problem of Hilbert, Memoirs Kyoto University, vol. 30, No. 1 (1956).
- [3] O. Zariski, Interprétations algébrico-géometriques du quatoziéme probléme de Hilbert, Bull. Sci. Math., vol. 78 (1954).

Notes

1) There is one more error concerning non-normal case in p. 67. Namely, we constructed the ring \mathfrak{F} ; then \mathfrak{F} may have a maximal ideal \mathfrak{m}^* of rank 1. This is the reason why proposition 5 should be asserted under an additional condition (see the end of this section).

2) There is a case where $q'' = \mathfrak{F}_{\mathfrak{m}'}$. In such a case, we have obviously $q\mathfrak{F}_{\mathfrak{m}'} = q'\mathfrak{F}_{\mathfrak{m}'}$ and $q'\mathfrak{F}_{\mathfrak{m}'}$ has a finite base. Therefore we disregarded such a simple case. 3) This lemma was used in the first step of the proof of [1, Theorem 3].