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In the study of algebraic curves in  a fixed . projective space
(or on a non-singular surface) the arithmetic genera and the effective
genera o f curves are taken as their most important numerical
characterizations.

In this paper we want to pick up some of their fundamental
properties and to discuss on them without any restriction on the
characteristic of the universal domain.

Throughout this paper we shall fix a projective N-space
(N> 2) and say briefly a curve in-stead of a positive 1-dimensional
P N -cycle without multiple components. A s  usual, fo r  a  given
curve in P N ,  we write down 1—p a  for the constant term of the
Hilbert characteristic function of the curve and we call the integer
Pa the arithmetic genus of the curve ;  for an irreducible curve the
effective genus means the arithmetic genus of a non-singular' )  curve
which is birationally equivalent to it, and in general for a reducible
curve it is defined by the sum of those of the absolutely irreducible
components of the curve. Part (I) will be devoted to preliminary
definitions and studies on intersection multiplicity and order of
singularity from the local view-point ;  the intersection multiplicity
defined in this paper is a  generalization of the usual one which
we shall need in Part (II) in order to state a generalized modular
property of the arithmetic genera of curves. Also in Part (II) we
shall prove a formula which expresses the difference of the
arithmetic and the effective genera of a  curve in terms of the
orders of singularity at singular points, which includes the classical
genus formula of a plane curve as a special case.

Finally in Part (III) ,  we shall study the order o f newly out-
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coming singularity by specialization o f  a  curve and show  an
application of the Principle o f  Degeneration, a  topological result
which was proved algebraically by O. Zariski, 2 2 ) t o  the effective
genera of degenerated curves of an irreducible curve.

As for the global investigations of the Chow-varieties of the
curves of an arbitrarily given degree in I  I  hope to discuss in
future.

(I)
When we speak of two rings, one containing the other, they

will be assumed to contain the same unity. Suppose that a  com-
mutative and Noetherian ring o contains a field k, we may consider
o  a s  a  vector space over the field k , whose dimension will be
denoted by dim, o  if  finite. Moreover, if the other ring o ' contain-
ing o is given, we write (o' : o) fo r the  fac to r space o f  o' by o
both being considered a s  vector spaces over k, whose dimension
will be denoted by dim k (o' : o) if finite.

Lemma 1 .  L et o be semi-local ring o f ran k  O . L et m,, m„,
•••, and m, be the m axim al ideals of  o. A ssum e that a f ield k is
contained in  o and that [On, : k] is finite f o r all i. Then we have

dim, o = ][o/ni: k]• length o m .

(Proof) When o is a  primary r ing  with the m axim al ideal n i,
let w1 (1 .S .i< g ) be elements of o which forms a linearly indepen-
dent base  of o/in over k  mod. ni an d  le t q0 = (0) c q, c • • • c qh = o
be a m axim al chain of strictly ascending ideals in  o so that

ai )  with an  element al . Then the gh elements wi a, form a
base of o over k. The general case follows from this, since o=
Olnl e 0 n12 @ • - @ O lut •

Lemma 2 .  L et o be a commutative Noetherian ring of  rank 1
which contains a f ield k. L et o' be a f inite o-module in the total
ring of  quotients o f  o .  I f  q is the conductor of  o' over o, then we
have

and  dim k (o' : o) -- --- dim k o7q — dim k o/q ,

provided that, f o r each maximal ideal ni of  o containing q, [o/nr:k]
is finite.
(P roo f) q o' o' q o' , hence every element of q o' is contained in the
conductor q. But the converse is obvious, and we have
Since o' is a  subring of the total ring of quotients of o and finite
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o-module, there exists an element f Eq which is not a zero-divisor
in  o . Therefore o'/q and o/q are both of rank 0, the equality and
the finiteness of each term  in the right hand side follows from the
above results and Lemma 1.

Lemma 3 .  In  Lemma 2, suppose that o is a local rin g .  Then
o' is a  semilocal ring and we have

dimk (o'*:0*) =ditnk (o' : o),

where o'* and  o* denote the completions of  o' and  o respectively.
(P roof) S ince  o ' is  f in ite  over o , o '*  is generated by  a  finite
number of elements of o' over 0*. Therefore we have go'*g_oo*,
hence go '*= -go*. But w e have  o*/q o*----o/q and o'*/qo'*-074,
and Lemma 3 follows directly from Lemma 2.

Lemma 4 .  Notations being as in  Lemma 3, let k' be an  over-
field of  k .  Consider the tensor Product o' k '  an d  oO k k'. Then
we have

dim/J o': o)---dimko,e(o'O k k': oOkk'),

and the conductor of over oO k k' is q 0 k le.
(P roof) W e have only to observe that the following sequence are
exact : 0 o  O l e  k'—>o' Ok f — > (0 '  0 )0 k  k'->0.

As for the conductor, it is obvious that q 0 k k' is contained in
the conductor and the converse is proved as follows : any element
f  of oO k k' can be written as f--=N - 7-,g u , with linearly independent
elements u,'s of k' over k. A n d  f  o '  o k k ' implies that f Jo' o
i. e., f, E q for each i ,  hence f  is  in the gO k le.

N ow  let C , and C, b e  tw o  cu rves in  P x  w hich  have no
common components. For an arbitrary common point P  of C, and
C2 , we want to define the intersection multiplicity of C, and C . at
P.

Let k be a field over which C,, C, and P  are rational. Let
R be the local ring of P'y a t P  over k. Denote by A , the ideal
of C, in R (i=1 , 2 ) .  Since C, and C, has no common components,
the ideal (A ,, AO R is a primary ideal belonging to the maximal
ideal of R.

Definition 1. W e shall define an d  denote by i(P , C ,-C ,) the
intersection multiplicity of  C, and 0 2 a t  P  as follows:

i(P , C i •C,) =length R/(41,, AOR
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R em ark . The above defined integer i(P, C, • CO depends only upon
the C,'s and P , that is, it is independent of k.2 )

Next we try to obtain another type of computation of the above
i (P ; C, • C2 ). Let C„ C2 , • • •, and C,.(r > 2 )  be curves in P ',  no two
of which have common components but pass through a point P.
Let k be a field over which all the C 's  and the point P  are ra-
tio na l. P u t Y C ,= C , which is a curve in P  by  the assumption.
Let o be the local ring of  C at P  over the field k.31 The total ring
of quotients s of u is the direct sum of the function fields of prime
rational components of the C 's  over k. H ence w e can find r
elements e, (15 i_ < r ) in s  such that :  1 )  e, +e,+•••+e,.=1, e,'=e,,
e, e;  = 0  if i j ,  2 )  the ideal of C, in o is the kernel of the homormo-
phism of o onto oc, for 1 r .  Put o'-=, e, o e 2 + • • • -I- o e, , which
is  a finite o-module in s.

Proposition 1 .  Notations being as  above, we have dimk (o' :o)
7-1

=  Y i(P ; (1 ',C,)•CO.
q=-2

(P roof) F irst consider the case w hen r = 2 .  D enote by n, the
ideal of C, in o ( i= 1 ,  2 ) .  W e have n1 o' =n 1 oe1 +n 1 oe,=n 1 oe„=n,0
(e,+e,)=n,o=n 1 .  Therefore we have dim ,(o ':o)=dim k (o7n i o':o/n i )

dim, (0 ei  + e,/n,o e, : o = dim, (o e,/ n, 0 e„) = dimk  (o / (n„ n„) =
length (o/ (n 1 , )12)0), where the last equality follows from Lemma 1.

When 3 ,  w e  have dim,(0' : o) = y i dinik(0( yei)
q= 21 = 1 ,fr7

o ( e )  +  o  =  ydim k (o(1",e,) +0e, : o ( e , ) )  .  From the proper-1=1 i=1
ty of the e,'s, w e can see that 0( e ,)  is isom orphic to the local

!

O

ring of a t P  over k and th a t dim,(o(
q--I

i (P ;  (11c,) .C„). These complete the proof.
Proposition 2 .  Assume that there exists a surface S in  P -y such

that S contains all Ci 's and that P  is a sim ple  poin t o f  S . Then
we have

dim, ( o' : o) -= i(P ; C 1 •C.1),

R em ark . The assumption that P  is simple on S  means that
the only one irreducible component So o f S passes through P  and
tha t P  is sinple on SO

4 ) . It will be observed in the following proof
that our i(P ;  C , C )  is  equa l to  the usual intersection multiplicity
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i(P; C i •C„ So )  with reference to the ambient variety SI. ' )

(P roof) B y virtue of proposition 1  w e  have only to prove that
q- 7 - I

i(P; (Y C ,)•C ,,)=Y i(P;C ,•C 0 ) .  We may assume that S„ is defined
over k. Let R  be the local ring of S , or S 0 ,  a t  P  over k. By
assumption R  is  a regular local ring of rank 2") and i t  i s  factori-
zable. 7) H e n c e  the ideal of C; in  R  is principal, i. e., generated by
an element vi  in R . S in c e  the C,'s have no common components

q- q
the ideal of 1;C ; in R  is ( R . Since any system of parameters

i= 1
q - 1

in a regular local ring is distinct," we have i(P; ( Y ,C,) •C„) =length
1-1q--1

R /  
I - 1

 v„ vOR=---e((11 v , , v„)R). Applying the associativity formula;=1 1.-.1
q--1 q - I

to this, we have e (( lI v )R ) = e((v ,, v g )R ), which is equal to
q-1y  length (R/ ( v, , v? ) R) =- (P ; C, • CO.
;-I

Remark. As is easily seen in the above proof, the distributive
law  of intersection multiplicity is verified so far as there exists
such a surface S  as in proposition 2. B ut in g en era l it is  not.
For example :  Let g „ g „ and g s  are the th ree  axes in affine 3-
space passing through the origin P .  Then w e have i(P; (g,+g,)
•g ,)=1 , which is a special case of the following assertion.

Proposition 3 .  Fo r two curves C , an d  C „ i(P; C 1 •C0)  =1  i f
and only if the tangent spaces of  Z arisk i o f C, and C . a t P  have
no common points other than P.
(P ro o f)  The tangent space of Zariskil") of a curve C  a t  a point
P  on it is defined as follows : By a projective transformation, we
can take the point P  as the origin of the affine N-space A  with
the hyperplane : 0  at infinity. The tangent space of Zariski
is  the linear variety in A . . ,  defined by all the linear forms which
are linear parts of the polynomials in k I X „ X , •••, X.v1 with X ;=
17 ,/17 ,,(1_< i_<N ) which vanish on the curve C . The proof of the
assertion follows directly from our definition 1.

For our convenience, we introduce the following notations :

1 ) By virtue of Proposition 1, we can see that the integer i ( P ;

7-.
( yG4).0 0 )  is independent of the order o f the suffices, we shall

q7 .1denote this brifly b y  i ( P ; A C , ) .  H ere if both  / C . ,  and C , not
q-i

contain P  then i(P; ( C1) . 00) = 0 .  2 )  W e shall denote by AC,
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the 0-dimensional PY-cycle 1 ]i(P ; A C )P , where P  runs over all1=0
the points of y,c,.

Now we proceed to study the order of singularity of a curve
C a t a point P.

Suppose that all the absolutely irreducible components Ci ( l <
i < r )  of C are defined and a ll the points on the derived normal
curves -C. -,  of C ,(1 5 i< r )  corresponding to P  are rational over a
common field k, w e say that C is totally rational at P  over k .  Let
o be the local ring of C a t P  over such a field k.

Definition 2.2 1 ) W e def ine and denote by 8(P: C ) the order of
singularity of C along P  as follows: 8(P:C )=d im k (5 : u), where 5
denotes the integral closure of o in its total ring of quotients.

By virtue of Lemma 2 dimk (5 : o) is finite and a(P : C ) is well
defined . W e sha ll see  tha t (P: C ) depends only upon C and P ,
j . e., it is independent o f k. It is suffic ient to  see that, for an
arbitrary overfield k' of k, 8'(P: C) defined as above is equal to
the above a(P: C ).  Since C and P  are rational over k , the local
ring o' of C a t P  over k' is isomorphic to the ring of quotients of
o O k k' with respect to  the maximal ideal in (g k k', where in is the
maximal ideal of o , over the isomorphism le' kO k k'. We shall
see that 5 Okk' is integrally closed. Let 1 =e,+e,+•••+e,. b e  the
decomposition of unity in the total ring of quotients s of o  each
et corresponding to C, as remarked before proposition 1. Then
each e, satisfies an equation e,'—(4=0 and is integral over o .  Hence
e, E and 5=5 e,+5 e2 + • • • +5 e,., w here each 5e, is isomorphic to the
integral closure of oe, and to  the semi-local ring of the C  a t  the
points Pi i 's corresponding to P .  By assumption :/5,j 's are rational
over k  and absolutely simple on C , hence 5e,e k k ' is integrally
c losed . T hus 5 ok k' c l ®kk' ED 5 e2 Okk' ED • • • €1)5 e, O k k ' integrally
closed.

This and the isomorphism (o O k k ' ) .  k/ imply the equality
(P C) =dimko k e((u5 O kk ') s : (oO k k')„,o k k,), w h e re  S  i s  the

complementary set oO k k'—  O k k'. But the conductor o f 5® k '
over oO k k ' is  q(g k k ' w ith  tha t q  of 5 over o , w hose only one
prime divisor is in Okk '  . Therefore, applying our Lemma 2, 8' (P:
C) = dimk k,  (5 :  o  k k') , which is equal to

dirnk (5: o), by Lemma 3, or a (P : C).
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Proposition 4 .  Notations being as above, we have a (P: C)
>28 (P: Ci) +i(P ; A

,•
C).i=1

(Proof) a (P : C) =dim k (ii o )  = d im k ( -6 o') + dim k (o' : o). w h e r e  o'
=o e, + o e,-F • • • +oe. I n  t h e  above terms, dimk(i5 : o') Edim,(15 e i  :•• •
oe,) and dimk (o' : o) — i(P; .1C,).

Next we shall study the process of revealing out the intrinsic
singularity of the so-called neighboring points along a singular point
of a  curve by means of quadratic transformations.

Let o be a  loca l r in g  o f ran k  1 a n d  le t  ni b e  the maximal
ideal of o. A n  element x of o is called a  superficial element of
degree s  if  th e  following conditions are satisfied : 1 )  x  ni', 2 )

xo=ni" for sufficiently large a.
Lemma 5. 1 1 ) A n  element x  o f  o  is  a  superficial element of

degree s  if and and only  if  a ) xis not a zero-divisor in o, b ) x€
and c) ottits /x1 is a f inite o-module.
(P ro o f)  If  x  i s  a  superficial element o f  degree s  a n d  if  x•y —0
for an element y co , then we have y E n ( le"  : xo) = n m"=. (0), i. e.,

a a

y=0, which says a). Therefore we shall assum e a) and b ) and
prove that 2 ) a n d  c )  a re  equivalent. S i n c e  o  is  o f  ra n k  1, a)
implies that there exists a n  in teger q  such  that niqc xo. Hence,
if s-Fa q ,  2) implies that xin"= al' :  The converse is also proved
using a ) .  Further that x in"= ins' hold for all sufficiently large a
is equivalent to that  d o  fo r  all sufficiently large b.
This can be rewrited as (n i/x)'=  (rnyx)"' for each h .  It is easily
to be seen that this is equivalent to c).

Lemma 6. 1 " W hen o  has two superficial elements x and y re-
spectively of degrees s  and t .  ( s > 1 ,  t . . 1 )  Then we have o[nlYx]

(P ro o f)  A s is observed in  the proof o f  Lemma 5, we have
in" for sufficiently large n .  Put 72 = sa + t ; w e have

in particular, x"itt`g_yina fo r  sufficiently large a.
This can be rewrited as int/yg_ ; from these for all sufficient-
ly  large a it follows that o [i /xj o The converse is  the
same as above.

Let P  be a point of a curve C  in  P x ;  w e assume that P  and
C  are  rational over a field k  We may assume that the coordinates
of P  is  (1 ; 0 ;  • • • ; 0). Let H=k[y„, y, • • •, y_,,1 be the homogeneous
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coordinate r in g  o f  C  over k, j .  e ., the  quotient ring of k [Y ]= k
Y„•••,YA  by  the homogeneous ideal of C  in it. T h e  curve

0 ',  whose homogeneous coordinate r in g  is  H 1 =--k[v v v vI P 'Ow 21 • ..1 YO
Y12 ' • • •, y, y v , • • •, y.,=], in a projective space P '+ ' " "  is called the

quadratic transform of C with center P .  A point of C' corresponds
to P if and only if  y 1

2 =- • • • =y,y.,.= • • • =y,-2 = 0  in  the  coordinates of
the point. A n d  th e  p o in ts  P/(1 - o f  C ' which correspond
to  P  are  associated in  a  one  to one way to the finite specializations
o f  th e  ra tio  (x, : x,: • :  x.,) over ( x „  x,, •••,x,)-2 --, ( 0 ,  0 ,  •  •  • ,  12)

where xi=y,/ ) ,,, (1 S i S N ) ;  these points P,' 's  are  called the first
neighboring points of C along P.

The following lemma will explain geometric meanings of super-
ficial element of o.

L em m a 7. A  f orm  F (X )  o f  degree s  in  X„ X„, •••, X . does
not vanish at every  f inite specializations o f  (x,: x,:•-• :x.,-) 1') ov er
(x)-----> (0 )  if  and only i f  F (x ) is a  superficial element o f  degree
s i n  o.
(Proof) L e t  M, (X ) ,  M2(X), • • •, M , ( X )  b e  t h e  monomials of
degree s in  X„ •••, Xv. Then F (X ) does not vanish at every finite
specialization o f  (x, : x„:•••:x. v ) o v e r  (x) —  ,• ( 0 )  i f  a n d  o n ly  if
a n d  only i f  M i (x )/F (x )'s  a re  integral over o  f o r  all O u r
assertion follows from Lemma 5.

R em ark . By means of the above Lem m a we can see that if
the points P/ 's  are  all rational over k  there exists a  superficial
element of some degree in  o. B ut even  if  tha t's  the  case there
may exist no superficial element of degree 1. W hen the field  k
contains infinitely many elements, there always exists a superficial
element of degree 1.

For the local ring  o  and a  superficial element x  of degree s,
i f  there  exists, the semi-local ring o '=  o [m Yx1 is called  the f irst
neighborhood ring of o. By virtue o f  Lemmas 7  &  6 , th is  o ' is
uniquely determined by o  and consists of all the functions induced
on C ' which are  defined at every point of P r s .  Thus the rings
o/ 's of quotients of o ' w ith respect to the maximal ideals in  it  are
the local rings of C ' a t the first neighboring points P .' 's along P.
If m oreover som e of the P ,' 's  is  s ingu la r w e  repea t th e  above
process on  C ', P ,' and  o ' and  obtain th e  first neighboring points
P, ; "  (neighborhood ring o , " )  of C ' along P.,' (of o l ')  ;  these points
Pd ", a r e  called the second neighboring points of C along P  (these
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rings o!' 's t h e  second neighborhood rings of o) ; and so o n . T h e
neighboring points, thus obtained by successive quadratic transfor-
mations beginning with the center P, are always of a finite number
which will be seen in  the  proof of the following Theorem.

Lemma 8. The tangent space of  Zasiski of  C at P is of  dimen-
sion 2  if  and  on ly  if  there  ex ists  a surface S  containing C  such
that P is a simple point on S.
(P roo f) Let k  be a  field over which C and P  are rational. The
local ring R of P '  at P over k  is regular local ring  of rank N.
Denote by M  the maximal ideal of R and by a the ideal of C  in
it ;  o =R /a is the local ring of C at  P and nt — M/s is the maximal
ideal of it. We have dim, m/m 2 =dim, M/M 9 —dimk (a , M 2 ) /M 2 -----
N—dim k ( a ,  M 2 )/111 2 . There fore dim m /m 2 K  2  if  and only if

M 2 ) /M 2 >N —  2 , the latter of which means that there exist
(N - 2 )  elements f „ f ,• • • ,  f r - 2  in  a  which can be extended to a
regular system of parameters of R .  Consider the surface S  which
is defined by f = f 2 =•••—fv_2-=0 locally at P .  Conversely such a
surface as mentioned in  this Lemma is always obtained as above.

Theorem 1. Let C  be a curve in P  and P  he a point of  C.
A ssume that there ex ists a  surface S ,  containing C , in  P N  such
that P is a simple pont o f  S .  Then we have a (P : C )=  r (r —1)/2,
where r  runs over all the multiplicities of the neighboring points of
C along P , inclusively of  P itself.
(P roo f) Let o be the local ring of C  at P over such a field k that
C  is totally rational along P  over k. The Theorem asserts the
following equality dim k ( : o)=Y :,m (o ')(m (o ')-1)/2  where 5 is the
integral closure of o  and o ' runs over all the local rings in neigh-
borhood r in g s  o f  o . We shall prove it by induction on dim k (i3: o).
When it is equal to 0 , P  is a simple point and nz (o) =1, and the
equality holds. By the assumption on S there exist two elements
z  and w  in  o  which generate the maximal ideal ni o f  o .  We may
assume that z  is a  superficial element of degree 1 o f  o .  Then o,
=o[w/z] is the  first neighborhood r in g  o f  0 . If  m ' be any of the
maximal ideals o f  o , then m ' contains z  a n d  w /z— a with some
a E k .  But the ideal (z , w /z— a)o, is m axim al in  o„ hence, equal
to u t ';  thus every local ring  of the  first neighborhood ring of o
contains two elements which generate the maximal ideal, or, the.
quadratic transform C ' of C  with center P satisfies the assumption
in  our Theorem at every point corresponding to P .  On the other
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hand we have dimk(ti : o) =dimk(L5 : o,) +dimk (o, : o) w h ile  d im (:
o,) = dimk (5* : o,*) = (5,* : o,,*) dimk : oi) , w here the
o r s  are the local rings in 0 1, o r  those of the C ' a t the points
corresponding to P , and the is the integral closure of o/. Thus,
by induction, we have only to prove that dimk(o, : 0) = m (o) (m (0)
— 1)/2. Since o' is  a finite o-module o* is canonically imbedded
in o,* and o 1*=o*[w/2]. Now take a subring r=k1z1 in o*. Since
ï  is  a regular local ring of rank 1 and does not contain any zero-
divisor of o* and of 0 1*, o* and IV' have linearly independent bases
as r-modules. Since we can write as 0*=r[w], and 0,*=):[w/z],
we can take such module-bases as o*= S"irwl  and o,*=

1=0
where s= [c)* : r] — : .  Using these expressins and the inde-
pendency of the base-elements with respect to  r , we can prove
that the s (s-1)/2 elements it,i =w l/z i(1 <j<i, 1 1) o f  0,*
forms a  linearly independent base of the factor space (o,* : 0*)
with respect to k. Therefore we have proved dimk (o, : o) =dimk
(o,* : 0*) =s(s-1)/2. On the other hand by the extension formula"'
rm ( z o * : =1_0* : rje(z .r) ; the left hand side is equal to e(zo*).---
e(zo)=-111 (o ) and the right hand side is equal to [0* : = s .  Thus
we have dimk (o' : o) = m (o)(m(o) —1)/2, and the proof is completed.

R em ark . The condition of the existence of such S  can not be
omitted. In  general, we have the inequality : a (P ; C) » ( r - 1)/2—1)/2
and the equality bolds if and only if there exists such a S as in the
Theorem 1. This can be proved by taking a module base of o
over r  consisting o f monomials w 1

1 w 1' • •wi, where w 1 ,  w2, • •-, wd
togethered with z form a minimal base of

(II)
W e w ant to  derive the genus formula and the generalized

modular property of the arithmetic genera of curves.
Let C be a curve in 11 - v which is rational over a field k .  Let

H =k [y o , y „ •••,y ,1 be the homogeneous coordinate ring of C over
k ,  that is, the quotients ring of that k[17

0 , Y„ •••, Y ]  b y  the
homogeneous ideal C  in it. The H ilbert characteristic function
X  (C, m) of C is a polynomial in m  which gives the number of
linearly independent forms of degree m  in the y,'s over k  for

-sufficiently large ni. The constant term of X (C; m )  is written as
1—p„(C), where p„(C ) is the so-called arithmetic genus of C .  It
is easily to be seen that X (C, m ), hence, p„(C), is independent of
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k  so far as C is rational over k .  In the following we shall assume
that k  is algebraically closed; for our purpose no loss of generality
comes from this assumption. Let î  be the integral closure of H
in its total ring of quotients. As is remarked before, we can take
tho decomposition of unity, say 1=e 1 +e 2 +•+e,,, in i  such that
the kernel of the homomorphism of H  to He,, is the ideal of one
of the absolutely irreducible components of C , say C,,, or He, is
isomorphic to the homogeneous coordinate ring of C  over k .  We
have u i= ie 1 + . . .  + e , ;  each île, is the integral closure of He, in
its field of quotients. W e shall denote by H,,, and H,,, the k-
modules of the homogeneous elements of degree m  in î l  and H
respectively; we have IL, =  (He,,),, + (He2 ),,, + . . .  + (He,,),,,. (Observe
that each e,, is homogeneous of degree O.) For sufficiently large
n i, d im  H,,, and dimk(île,,),,, are polynomials in m' 5 , which will be
denoted by (C, n i )  a n d  (C,, n i) respectively. We have (C, n i)
= 2 ( C ,  m ) .

Lemma 9. (C, m) —X(C, ni) is a constant in m .
(Proof) Since H  has a base as H-module consisting of a finite
number of homogeneous elements, there exists a homogeneous
element f  of H  which is not a zero-divisor in H  and is in the
conductor of H  over H .  Put d=degree of f .  Since JH,,,ÇHd+»,,
we have dimkH,,='dimkfH,»^dimkH,,,,,, which implies that X(C,
ni) ^,X(C, d+m) for sufficiently large n i . But obviously 2(C, in)
^X  (C , m ) for sufficiently large m .  These two inequalities shows
that 2(C, n i )  and X(C, m )  have the same degree and the same
coefficient in their terms of the highest degree. As is well known,
Z(C, n i )  is a polynomial of degree 1, and therefore  X(C, in)  -

X(C, i n )  must be a constant.
Lem m a 10. The constant  terni o f  X(C,, n i )  is  e q u al to  1—

Pa ( ) where C. is the derived non-singular curve of the C.
(Proof) î l e ,  is the integral closure of He, and has a base as He,,-
module consisting of a finite number of homogeneous elements.
Put d=the maximum of degrees of those elements. If we take a
system of generators, say z0, z 1, ,  ZM o f (He,),, as k-module, k [z]
=  k [zn , z ,,,  -  - ,  z ,] is integrally closed for we have k [z],,, =  (île,),,,» ,
for all m ^ 1  and integrally dependent upon H .  Therefore k[z]
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is the homogeneous coordinate ring of a curve which is biregularly
equivalent to -C- ;. Denote by X (C.;,  in) the polynomial in m  which
is equal to dimk  k[z]„, for sufficiently large m .  Then the constant
term of it is 1—pa (Ci ). But 2 (C1 , dm) =X (C7,,  m )  for all sufficient-
ly large m , and therefore X  (C„ m) has the same constant term

By the above Lemmas, we see that the constant X-  (C,
X (C , m )  is equal to E (1—p,.(e- ) ) —(1—pa(c)), or, to p a (C)—

1p • a (C,)+(r — 1).
In order to estimate the constant in terms of orders of singu-

larity locally at all the points of C , we need the following asser-
tions.

Let V  be an arbitrary variety (or, a  bunch of subvarieties)
in P x ,  the irreducible components o f which are defined over a
field k .  Denote by k [y ]=k [y o , y„ •••, y ] the homogeneous coordi-
nate ring of V , i. e., the quotient ring of k[17 ]=k [170, Y i, •••, YIN]
by the ideal o f V  in it.

Lemma 1 1 .  L et Fj ( Y )  ( 1 S j 5 t )  be forms of  the same degree
in  k [Y ] .  Then k [y ] is integrally dependent over k [F(y )] if  an d
on ly  if  th e  hy persurfaces: F(Y ) = 0  (1. j_<..t) i n  P v  have no
common points with the variety V.
(P roo f) The proof is completed in  a  usual m anner, and it is
omitted here.'"

Lemma 1 2 ' .  A ssume that the hy persurfaces: F(Y ) = 0  (1 5
j t )  have no common points w ith V. Denote by F l the integral
closure of  11=k [y ] in  its total ring quotients. L et z  be an  element
o f  -11„, such that F (y )gz EH f o r some q  an d  f o r all j.  Then z  is
in  H , provided that n i is not less than a fixed integer independent
of  z.
(P roo f) Put H' = {p i " ;  F ( y ) f e l l  f or some q , f or all j} . Since
-H is a finite H-module, hence, a finita k [F( y)]-module by Lemma
11, the H ' is also a finite k[F(y)]-module. Obviously H ' is graded
and has a base as k[F(y)]-module consisting o f a  finite number
of homogeneous elements, say w„ w 2 ,  • • •, wg . For each j ,  there
exists an integer q ( j )  such that F1 (y) 9

( '
)  W I E H  for all i. Take an

integer q  such that (F, (y ), F2(3), ••• Fi())))" k [F(3)].Q(F1(3)q" ) ,
F2(y)q (2) , ••., Ft( y)q") )  k [F ( y ) ].  Then we see that H,„,' (4, w,
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•• • +1-1,, wg ) _CH , or H.' =H„, for all integer m> dq + e, where d=
deg Fi  and e  max {deg w„} .

Now we return to our case. L e t  C, k, H , and H  be as be-
fore. Since k contains an infinitely many elements there exists a
linear form L (Y )  in  Yo , •••, YN with coefficients in k such that
the hyperplane : L(Y ) = 0 does not pass through any component
and any multiple point of C .  Put 5)=L (y) and A=k[y a /y, y1/ ,
•-•, y,v/A. For sufficiently large d, A7=kII-7,,/yd] is the integral
closure of A.

Let q be the conductor o f  -2.47 over A .  Since 21.- /q and A/q
finite k-modules, we can see that A/qr_-_'(ii„,ly- )/gn (ii„,/r) and
A/q (H„,/7)/gn (H„,/7) for sufficiently large m .  Thus we have

dim0 (24 : A) =dimk(2179) —dim,(A/q)

=dimk(iLlY") — dimk(11.17)+dim,(gnH/7)
—dimk(q ...... (*)

We want to prove that for sufficiently large m, qnfl„,17=gn
H„,157y"; it is sufficient to prove this that we see the following.

Lemma 1 3 . F or sufficiently large m , w e have Ank„,/y-  =
1 1 .1 r .

(P roo f) For a sufficiently large d, there exists a hypersurface ;
F(Y ) = 0 of degree d which passes through all the multiple points
of C but none of the common points o f C  and the hyperplane :
L(Y ) = 0 .  Then 37 ' and F (y ) satisfy the assumption in Lemma
12, and for sufficiently large m if z of Hm  satisfies the conditions :
Yaz E H and F(y) 0,z E H  for some integer q then z E H .  But F(Y )
= 0 contains all the multiple points of C and therefore k[11,,/F(y)]
is integrally closed, hence, coincides with kl_Hd /F( y )]. Th is  means
that for any element z  of H  there exists an integer q  such that
F(y)qz EH. Thus, for sufficiently large m, if zry" E A with z EH„,
then there exists an integer q such that y z EH„,„ and therefore
Z E H„„ j. e., Z/3f E H . / 7 .  The converse is obvious.

From this Lemma and the previous remark on the equality
( * ) ,  it follows that we have dim0 (21-  : A) =dim 0 (f1/y") —dim,
(H„,/r), for sufficiently large m .  Since the hyperplane ; L(Y ) =0
does not contain any of the irreducible components of C, y is not
a zero-divisor in H  and also in H .  Therefore we have dim,
(Hm /y") =dim,H„, and d im ,( ,,/ 5 r)= d im fm .
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Thus w e have obtained the following equality :

p a (C ) — p a ( ) ( r -1 ) A ) .

W e shall consider o n  th e  above dimk(ii : A ) .  The prime
divisors, say p„ p 2 , • •  ,  and p , ,  in A  of the conductor q are associated
to  the multiple points, say P1 , P2 , • • • ,  and P,, of C in  such a way
that th,=-Ap, is the  local ring of C a t  Pi  over k  for all i. P u t S,
=A — p 6 fo r  each i  and S= u S 1 . Since S  is multiplicatively closed

and does not intersect with q , we have As/g21- "s=;1/q and A s/qA ,
= A/ q . By Lemma 2 we have dimk (A: A) = dim k (A, : A s ) , which
is equal to dim, ( A A * : A s*) by Lemma 3 .  As is well known, the
completion A ,* is  the direct sum o f  th e  completions A s,* 's and
therefore A s*  is so of the As i s. By this we have dimk(A.,* : As*)

6

EdinIk(ASi * A s ,* ) ,  w h ic h  is  e q u a l to  Edimi(21- s, : A s ,)  by

Lemma 3 .  But, easily to be seen, A s  is  the integral closure of
A s, and dimk(As i  : A s,) =8(P: C ) fo r  each j. H e n c e  w e  have
proved that dimk(A : A ) =  a (P : C) .pEe

W e w ant to sum  up the above result in  the following.
T heorem  2. (T he general Genus Form ula) For an  arbitrary

curve C in  P N  w e have:
p„(C ) = (C ) F ina (P C) — (r —1) ,

w here r(C) is the effective genus o f  C  an d  r  is  the  number of
absolutely irreducible components of C.

By virtue of Theorem 1, we see that Theorem 2 includes the
classical genus formula for plane curves a s  o n e  o f  special cases.
The following Theorem may be considered a s  a  generalization of
the  modular property of the arithmetic genera of curves o n  a  non-
singular surface (o r a  su rface  fo r which any intersecting points
of curves are  simple), which is observed through the Proposition
1 and its remark ; in  the following we have no restriction in this
sense.

T heorem  3. (T he general Modular Property of the arithmetic
genera o f  curv es) L et C4 ( 1 S i r )  be curv es in PA ", n o  two of
which have any common component. Then we have

M G.+ C 2 + • • • + C,) =±1,P (C,) + deg( )IC) — (r —1).
4 = 1  " 4=1
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(Proof) By virtue of Proposition 4, for each point P  of C--=

a (P : C) =1; (P : C,) +i(P , AC) .  Using this and applying Theorem
1=1

2 to the' C  and each of the Ci 's, we can easily construct the proof.
(III)

We want to show an application of the Principle o f  Degene-
ration which was proved by O. Zariski to the effective genera of
degenerated curves.

For two curves C  and C ' in  PN and a field 14, we shall say
that C ' is a  specialization of C over k , if the Chow-point c ' of C'
is a specialization of that c of C over ko . In the field k =k o (c) we
can take a  ground p lace  0  which maps c  to  c' ; a  ground
place means a place whose valuation ring, denote by b , is discrete
of rank 1 and satisfies the finiteness condition . For such a place
0, a point P ' of P '  lies on C ' if and only if P' is a  specialization
of some point of C  over b , or, if and only if in  the  local ring  91
of I" ' a t P ' over 1.) the  ideal t of C  does not contain th e  unity.
The quotient ring o  =91M is called the local ring of C at P ' of
C ' over b.

We shall denote by p  the  prim e ideal o f  1). Since »  is im-
bedded isomorphically in  91 and in o, th e  same notations b and p
will be used in  91 and  in  o .  Denote by K the image field of k  by
th e  p la c e  . We can see that if  Z5' is th e  J-radical o f th e  ideal
po then o/a is isomorphic to the local ring o' o f  C ' at P ' over
K over the  isomorphism b / p  K . In  this sense the minimal prime
divisors p,(1< i < r )  of po correspond in a one to one way to the
prime rational components C'0 ' 's o f  C ' which contain the point P'.
From the assumption that C ' is a  curve, i. e., it has no multiple
components, the local ring op, is a  valuation ring whose maximal
ideal is generated by p. We shall denote by I I  a  fixed prime
element of 0 , which is not a zero-divisor in o. Consider the inte-
gral closure a of o in  o[1/11](=k[o]).

Lemma 1 4 .  BB is an unmixed ideal and 11ii n ; moreover
Ho is unmixed if  and  only i f  i3=o.
(P roo f) If we apply Lemma 2 o f  § 4 in  [2],' observing that //
is not a  zero-divisor in  o a n d  in  a n d  that op, is normal with the
maximal ideal generated by 11 for all minimal prime divisor p i  of
L f , we see the assertion easily.

We shall denote by the  integral closure of o in its total ring
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of quotients, which is a  finite o-m odule. Since ô  is integrally
closed, hence direct sum of normal rings, / /5  is an unmixed ideal
and l i ô  n ô =.11 ô. P u t  15' = 15/ ,  - - , --13/// ô and o '=o/a  ;  and
15'  are also finite o'-modules. Further hence 15 ', is a subring of
the total ring of quotients of o', which follows from the fact that
Op is normal for all minimal prime divisor p, of / / o .  Therefore
we have the well-defined d im (b ' o ')  associated to each point P'
of C'.

L em m a 15 . W e have dim„ (6' o') =0 if and o n ly  if  liv  is
unmixed.
(Proof) S in c e  I l i i n o = a ,  we see Hi) 2,75 a but the converse is
obvious ;  we have l iô  ô. Therefore observing that ô is a finite
o-module, we conclude that 6'—ii/a ô and o '=  o /  coincide if and
only i f  '6= o,' ) which is equivalent to that // o  is unmixed by
Lemma 14.

We shall denote by 3(15" :C /C )  instead of the above dimx (13' :
o') ; we can prove that this integer depends only upon P , , C  and
C ', or, it is independent of the ground place, but we need not this
fact and the proof is omitted.

T heorem  4. Notations being as above, we have p(C 9— p a (C)
= E a ( P , : C/C').

p ,e c ,
In order to prove this we must have some further preliminary

considerations. Let t —13[yo , y„ • • •, yx ] be the homogeneous coordi-
nate ring of C  over b, j. e., the quotient ring of b[Y ] by the ideal
generated by all the forms in it which vanish on C .  We shall
denote by -t-)  and by -6  the integral closures of to respectively in
the total ring of quotients of t  and in t  [1/II]=k [y ] ; then and
therefore t  ,  is a finite t -m o d u le . In a usual manner,2' ) we can
prove that h e n c e  , has a finite number of homogeneous gene-
rators as t -m o d u le . Therefore, if  we take a set of generators

(0_< i_<_S) of the b-module and also such (0, (0 i <  T )  of
t„ , for sufficiently large m , then » [ ]  =  b [ C O 3  : „  •  •  •  ,  Cs ]  is integrally
closed in its total ring of xuotients and b [a] =I) [w, , w „  •  •  •  ,  (or ]  is
so in k [(0 ]. W e shall fix such b [C] and b [ tu ] ,  and denote by C
curve in P ' with k[C] as its homogeneous coordinate ring and by
Cs  the curve in PT  with k [w ]. Further we shall fix a homogeneous
ring b[>2] generated by a set of generaters )2,'s of b-module to„, for
the above fixed integer in. Let P ' be an arbitrary point of C'
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and let 43 be the ideal of P ' in e., the ideal generated by all
such elements F(y )  as the 0-image o f F ( Y )  vanish at P'. Put

=  n  ,  the ideal o f P ' in 1.) [v]. I t  is easily to be seen that
the ring consisting of all homogeneous elements of degree 0 in the
ring of quotients Fil3 is equal to that ring in 1.1M -

3 , which is noth-
ing but the local ring y of C  at P ' over O. Further we see that,
i f  w e put M =  [72]—  , the ring consisting o f all homogeneous
elements of degree 0 in o [C]m is the derived from o as in Lemma
14, and in the same way that ring in »[W] j , is that S i n c e  the
curves C and 6' are rational over the field k  the Chow-points of
them are also rational over k  and the C  and '6 have uniquely
determined specializations over the ground place 0, which will be
denoted by (in P s )  and by 6 ' (in P 7 ') respectively. T h en
the rings i5' and "(3' are the semi-local rings of the points on
and those on 6 ', respectively, which correspond to the P ' of C'
(the correspondence is determined by the inclusion : 4)2] ç [w] ç

0 [ci).
Now we shall observe the above obtained simultaneous speciali-

zations : e),( -e , , C ')  over the 0, and prove the Theorem 4.
Applying the Therem which we have shown in  [5], w e have
(6 , m ) =X ('', ni), for at every point P ' o f C ' the local ring of

C  at P ' over o is obtained as a ring of quotients of the i  derived
from the local ring of C at the corresponding point P ' of C ' over
t1 and for all such o // o is an unmixed ideal. But X (6, m) =dm
+1 — p(C ) and .)=dm+1-A ,(e , ) whese d is the common
degree o f e and e ,  in  PT  : therefore we have p(C) =p„("C').
Obviously k[)2]=k[(0]. hence '6 and C  are biregularly equivalent
to each other over the field k  and we have pa(C)=p.(e)=P.(C , )•
On the other hand ; for each point P ' of C ', if  we denote by 13

1 ',
P 2 ' 1 • • • ,  and t h e  corresponding points of 6 ' to P ',  in the same
way as in the proof o f Theorem 1 we have 8(P' : C') —
c) =dim (6' = 8 ( P ':C / C ') .  Thus we have p,(c , ) -p a (c) =x(e)
-p„(c- , ) = ya(P' : C /C ')  applying the Genus Formula to C ' and
to C '.  We have completed the proof of Theorem 4.

Now we are going to prove the final result in this paper. In
the following we shall assume that a  non-singular curve can be
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derived from C by normalization with reference to the field k ; if
not, we may replace k  by its finitely algebraic extension and it) by
an arbitrary extension in it, which is also a  ground place and
cause the same specialization C—> C '.  We take the constructed
as above with respect to such a ground place.

T heorem  5. Suppose C is absolutely irreducible, we have

Tr (C ) (C ) = (F" : _ (r
7"f E,

w here r is the number of the absolutely irreducible components of
C'. Moreoverwe have y8(15, : e (r — 1), i.e., r (C ) > 7 . r (C9 .

ci
(Proof) Applying the Theorem in [5] to the C  and we have
pa (&)=pc,(e ,). By assumption the above obtained e-  is  a  non-
singular curve derived from C , and Pa(C) = 7r (C ) by definition.
Therefore the first assertion follows directly from the Genus For-
mula applied to the C'. Let C 1', a n d  be the absolutely
irreducible components of C '.  By Proposition 4 w e have ya(f5 , :

74E'
>. deg ( )1b.;') ; therefore if we prove the inequality : deg( 51. bs bi=1

r-1, we shall conclude the second assertion. By virtue of the
Principle of Degeneration, 2 2 ) however, the curve is  con n ected
and the inequality is proved elementarily, refering to Proposition 1
and Definition 1.

Notes

1) We shall say so instead of "absolutely non-singular."
2) W e have only to prove that we have the same i(P : C1C2) by replacing k by

its arbitrary extension Let i e  be the local ring of P 1 9 a t  P  over 1 1 . Since C's
are rational over k ,  A i re is the ideal o f C , in And since P  is rational over k,
for the maximal ideal M  of R  Mk/ R  is maximal ideal ideal in kg? and R '=(k i R )(j f ' R)•

By these we see that R i /(At, A2) = (R/(111, A0) R)  T h e  independency follows
from Lemmas 1 & 3.

3) It means the quotient ring of R  by the ideal of C.
4) c f. [9 ] , in this paper " simple "  means "absolutely simple."
5) c f. [11].
6) c f. [9].
7) c f. [9 ]  o r [12].
8) c f. [3].
9) c f. [4 ] o r  [12].

10) c f. [9].
1 1 )  c f. [10].
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12) Here the xi 's may contain zero-divisor (but no nilpotent elements). The
specialization is defined in the same way as usual. On the other hand the precise
meanings of y i ly 0 =x i  is  as follows: x i is  the ratio of the images of y i  and y o in the
ring o f quotients o f k [y ] with respect to the set of all powers of Yo.

13) Th is is well-known fact when k [x ] is integrity domain. But the general
case (so far as free from nilpotent elements) can be reduced easily to the case using
the decomposition o f unity.

14) cf. [3] or [11].
15) This is true for any graded k[Y]-module having a finite number o f genera-

tors. Refer to the theorem of syzygies.
16) As in the note 13), we may use the decomposition o f unity in the total ring

o f quotients of k [y ] and reduce it to the irreducible case.
17) cf. [6].
18) Or, see [1] .
19) cf. [1].
20) cf. [6].
21) cf. [13].
22 ) c f. [7 ].
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