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In the foregoing paper [2] we have discussed the boundedness
and the ultimate boundedness of solutions of a system of differential
equations. Now we consider a system of differential equations,

(1) dx
di

where x denotes an n-dimensional vector and F(t, x ) is a  given
vector field which is defined and continuous in the domain

J:

ix ! represents the sum  of  the squares of its components. And let

x=x(t ; x„, t0 )
be a solution through the initial point (to, x0). Except otherwise
stated, we adopt the symbols and the promises in [2].

A t first, we will discuss the boundedness of solutions under
perturbations. Corresponding to the differential equation (1), we
consider an equation

(2) dx x) +H(t, x),
dt

where H(t, x ) is a continuous vector field defined in J .  Here we
give a  definition for the boundedness which corresponds to the
stability under constantly acting perturbations.

Def inition. The solutions of (1) are said to be totally bounded
(or bounded under constantly acting perturbations), if for any a  > 0,
there exist two positive numbers [3 and r  such that, if Ixo l_ ce,
then we have x(t; x„, t0) <j9 for any t>. to (t„, arbitrary), where
x=x(t; xo , to )  is the solution of the equation (2) in which we have
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1H(t, x )1<;-, provided cr < Ix! < f9.
Therefore if  the  so lu tions o f ( 1 )  a re  totally bounded, they

are  naturally uniformly bounded.
Theorem 1. If  the solutions of a linear system,

(3 ) x '=A (t)•x ,

are totally bounded, they are uniformly ultimately  bounded. In fact
we have lx(t) H O  w hen t— > 00. A (t) is a  square m atrix  and the
dot represents matrix multiplication with the column vector x.

Proof. Let

x, = B 1,(t) , x 2 =B i ,(t) „  x n =131 „(t)

be the solution of ( 3 )  such a s  x, = • • • =x; _, = • • • =x„ =0 , x1 =1
for t = 0 .  For i=1 , 2, • ••, n , we have n solutions which are linearly
independednt. Then the  general solution is of the form

x=B(t) • C,

where C  is  a  column vector of constant elements and B (t)  is the
matrix

.

B,, (t) B 2 , (t) • • • B,,, (t)

Bi,(t) B„(t)

[

••• B 2 (t)1B,„(t) 11„(t) ••• B„„(t)

Since B (t)  is non-singular, there exists .13- '(t). Hence the solution
such as x=x„ at t =t„ is of the form

x—B(t) • B - ' (t„) -x ,.

O n the other hand, the solution of the equation,
x '-A (t) • x +d • x  (a -> o :  sufficiently small constant),

such as x=x„ at t =t„ is of the form
(4) x=B(t) • B - . ' (t„) • x„• e''''0  .

Since the  solutions of ( 3 )  a re  totally bounded, i f  Ix„1 _ a ,  there
exists (3(a) and we have

IBM .B - ' (4) • x„le2 ( 6 ' - '" ) --‘9(le),

where th e  absolute value means th e  sum o f  th e  squares o f  its
elements. Hence we have
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(5) IBM • 13- 1  (to ) • xo
 <  ( a )  e --2■51 ! 2BI°

1 t9(a)And for any & >0, if t'.> to + - -  log we have
&

/9 ( a )  e --.2a,+8to < &

i9(a)Therefore if t to+  1   log ,  we have
2o E

IBM • B - 1  (to) <E.

Namely the solutions of ( 3 )  are  uniformly ultimately bounded,
since

2
1
a  

log I 9 ( a )  depends only on a .  From (5 )  clearly we have

IX(01— > 0 as t—> co.
Theorem 2 .  Let R  be a positive constant which may be sufficiently

great and let 4* be the dom ain such as

Suppose that there  ex ists  a positiv e continuous function 50 (t, x)
satisfying the following conditions in

 4 * ;
 namely

F(t, x ) has the property A  (cf. p. 279 in  [2]),
2 °  so (t, x )  tends to infinity uniformly f o r ix --co,
3 °  it) (t, x )  satisfies locally the Lipschitz  condition w ith regard

to x , that is,

Is° (t, x) —so(t, _1(-Hx— XI ,
w h e re  K  is  a positive constant depending only  on L  for

13c L (L : arbitrary ),
4 °  1 ,!-1-no  

hl 3ç 0(t+ h, x+ hF(t, x)) --F(t, x) i.e., D A ,  h a s  the
property  B  (cf. p. 279 in  [2]).

Then the solutions of (1 ) are totally bounded.
Proof. It is suffic ien t to  see that there ex ists r  such  as

111(t, x )I <r and we have
.  1lim  —  o(t+h, x+hF+hH)— ço(t,x ) O.)
h - k )  h

B y the conditions 1 °  and 2°, we determine p suitably for a .  In
<lx[_<19, using the conditions 3° and 4° , we have

 1DR +H F , 399(t+h, x +hF)+K hV III(t,  x)I - 50 (t, x)n
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<D,40+1CVIH(t, x)1
<--).+K V IH(t,x )1 ,

where À is determined by the property B .  Hence, if 11/(t, x) 1 n_<
22/K2 , we have

DP; if F .< 0
 •

Thus we can see that the solutions of (2 ) such as 1X0 l_< a  are
bounded by p. Since ; and K  are determined depending only on
a ,  the solutions of (1) are totally bounded.

Theorem 3. W e assum e that F(t, x ) in  th e  system (1) has
continuous partial derivatives of the f irst order w ith respect to  x .  If
F(t, x ) is periodic of  t  and the solutions issuing from t---- 0 are equi-
bounded and the solutions are ultimately bounded, then they are
totally bounded.

Proof. By Theorem 12 in [2], when (1) satisfies the assump-
tions of the theorem, there exists a positive function 50(t, x ) defined
in 4* (R be sufficiently great) which is continuous with its partial
derivatives of the first order and tends to infinity uniformly as
1x1 —> co and satisfies the following conditions ;

1° 50(t, x) has the property A,
20a 5 °  •  F(t, x ) has the property B.at ax

Moreover observing the construction of 50 (t, x), clearly we see that

so 350(t, x ) is periodic of t  and hence - -  is so also. Therefore 1- -
dx

is bounded, if  1x1 is bounded. From

Iso(t, x)--50(t, x) I <12, ,&S° ( t, x4_0(x—X) )  
,rax,

        

K -V1x ,
we see that F (t, x ) satisfies all the conditions in Theorem 2. Hence
the solutions of (1) are totally bounded.

aFNow we assume that F(t, x) and — - are bounded when 1x1
dx,

a Fis bounded a n d  - - is continuous and that the solutions are
ax,

uniformly bounded and uniformly ultimately bounded. Then we can
obtain a similar function 50(t, x )  (gr. p. 290 in [2]). In this case,

awe can prove the boundedness o f -  i
°
 by using the boundedness of

dx
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 N a m e ly  u t i l iz in g  the boundedness of -a—
F

variation, we will see that
aix(t+ r; x, 

1 aet

and the equation of

w here a  and  p  are constants determined depending only o n  1x1.
By the symbol in  the foregoing paper (p. 288 in  [2]),

a5°
 —  rG'(Ix(7;x, 0 i)  a lx(rax;

 t )  I  d r..,,
and  hence considering th e  property of G' and taking X  suitably,
we have

a5° <  a G ' (X )r reu.( ' - ') dr. — a G' (X) 
ax; •

Since a, T, p and  G' (X )  a re  determined depending only on
for a suitable number A (1x1) depending only o n  1x1 w e have

a99 < A (Ix i).

Thus our so (t, x) satisfies also all the conditions in Theorem 2 and
hence the solutions are totally bounded.

N ext w e w ill d iscuss th e  ultimate boundedness of solutions
under perturbations which have a given order w hen 1x1 is great.

Definition. F o r  a  given positive function f( 1x1), the solutions
o f  (1) a re  sa id  to  b e  ultimately  bounded under constantly  acting
perturbations of order f( 1x1),  i f  there exist two positive constants
B and a  so  th a t IH (t , x)I <- a f ( 1x1) for and then w e have

lim lx(t ; x0 ,01 K B ,

where x=x(t; x o , to )  is any solution of (2).
Theorem 4 .  We suppose that there exists a positive continuous

function 50(t, x) satisfying the following conditions in J"; nam ely
1° 50(t, x) has the Property A,
20  r( t ,  x ) tends to infinity  uniformly as  lx1--,co ,
30

— V(t, x)1"--/CV lx— Xl, w here X may be sufficiently
near x and K  is  a constant depending only on

40 D 5 0 , where G(v) is a positive continuous function
f o r v
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5 °  If= (IxD f(Ix l).----0 (G 2(Ix I))( I x H o o ) .
T hen the solutions of  (1 ) are  ultimately bounded under con-

stantly acting perturbations of order f( Ix!).
P ro o f. It is sufficient to show that a  is determined in  .1* and

if  IH(t, x) I K tvf(Ix1), then Di-, /IF has the property B .  We have

D „„ço D A 9 + 111(t, x)I
-<- - G(Ix1) +K(Ixl) 11-1(t, x)I

On the other hand, by 50 , we can take a n  a  such as

a <  ( 1 X 1 )  
4K2 (IXDAX1)

Since, for such a n  a, we have

Dr+,(50 — G(Ix1) + K af (x l)

— G (Ix i) K (ix i) G(Ixi) 
2K(Ixi) Vf(ixi)

G(Ix1),

hence D„,,so has the  property B.
When (1) satisfies the conditions in Theorem 3, there exists

9(t, x) satisfying the conditions 1°, 2° and 3° in Theorem 4. And
in place of 4 0 we have

+ 392 • F(t, x) — G(ixi) ,at a x
where G( x i)  is monotone and G (1x1)--> co a s  Ix' co. Therefore

if  we h a v e   -f(ixi)=0(G2(ixi)), then the solutions of (2) areaso
ax

ultimately bounded.
Thus when x is a  2-dimensional vector i n  (1) and  (2), it is

seen that there exists a  periodic solution also, even if we give such
perturbations as in the above.

This time we consider a  system o f  differential equations of
Carathéodory's ty p e . We suppose that in  a  system,

dxdt =F(t, x),(6)

F(t, x) is finite a n d  it is a  measurable function o f  t  when x is
fixed a n d  it is a  continuous function o f x  when t  is fixed, and
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that, if L  (L :  arbitrary), we have

(7 ) V1F(t, x)l M (t),

where M (t )  is summable fo r 0_<t_< r  (r  :  arbitrary) and of
course, it may depend on  L. Remark again that I F(t,

F i (t, x) 2 . Then we can obtain similar results as those in the

foregoing paper [2].
In the paper [1] we have proved a theorem analogous to the

following one. Namely i f  there exists a function ço (t, x) satisfying
the following conditions in ;

10 ço(t, x ) is positive continuous and it has the property  A,
2° so(t, x ) tends to infinity  uniformly as  lxj—>00,
30 io (t, x ) has the property a.c.u. (cf. p .  253 in  [1]),
4° x )  satisfies locally the Lipschitz  condition with regard

to x,
50 D,„io . — K a.e. (f or 1x1__ L, K >  0  is a constant and it may

depend on L),
then the solutions of (6 ) are uniformly ultimately bounded.

Now we will show that its reciprocal problem holds good for
a certain equation.

Theorem 5. We suppose that F(t, x) in the system  (6) satisfies
locally the generalized Lipschitz condition w ith regard to x, i.e., for
xi L, L  ( L :  arbitrary)

'V IF (t , x) — F (t , K (t) Ix ,

w here K (t )  is  a  summable function and it m ay  depend on L .  I f
F(t, x) is periodic of t  and the solutions issuing f rom  t = 0  to  the
rig h t are  equi-bounded and the solutions are ultimately bounded,
then there exists such a function 99(t , x) as the above-mentioned.

P ro o f. Without the loss o f generality, we can assume that
the period of F(t, x) is 1. We can see that now the solutions are
uniformly bounded and uniformly ultimately bounded just as in
the case where F (t, x ) is continuous. H en ce  w e  assume that
the solutions are uniformly ultimately bounded for the bound B.
Namely if lx„I a, there is T  depending only on a  such as if
t > to + T , then lx(t; xo , to) I < B .  Such T  is infinite in number ; so
we take the infimum of such T , denoted by T ( ) .  Then T (a )
is non-decreasing with respect to a. . At first we put
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sup x (t; xo, to) 1=f  ( 2).
to e<or,
o to < o r ,

f()2 ) is uniquely determined and it is non-decreasing with respect
to )2. If we put

sup IF(t, x0) I = g(t, )0,
I . 0  W ( 1 )

then g(t, )2) is a  measurable function of t and it is a non-decreasing
function of )2 and clearly it is periodic of t. Moreover g(t, )2) is
summable with respect to t, since it is bounded by a  summable
function M ( t ) .  Let h(t, )2) and k(t, )2) be

s)ds=h(t, )2)

and

rhi(t, s)ds=k(t, )2)

respectively. Then we have clearly g(t, )2) h(t, )2) k ( t ,  ) . For
fixed )2, k(t, )2) is a  measurable function of t, for fixed t it is con-
tinuous with its derivative with respect to )2 and it is non-
decreasing with respect to and moreover it is periodic of t. If
we put

re(t, y) +r,
then -1;(t, -o) has the same properties as those of k(t, -6). Now we
consider a function of (t, );) for t< co, )2 0 as follows ; namely

G ( t  )  [ 'h (t 4 )  "  4 B ) ] ( ) 2 — B )  ( )  2  B ), )2 = 
0 (0 <B).

Then for fixed t, this function has the same properties as those of
G(-6) which we have used in the foregoing paper (p. 288 in  [2]).
Clearly this is a  measurable function of t for fixed )2 and this is
periodic of t. Since we have

G(t, y) (t, 4)2))2 ,

we have for y L

G (t, )2)_< Lk (t, 4L),

while 7? (t, 4L) is summable and hence G(t, )2) is bounded by a
periodic summable function. Similarly if )2 L, )2) is bounded
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by a  periodic sumrnable function. H ere L  is arbitrary.
Now we put

(8) x) G(r, lx(r; x , t)l)dr .•

Then io(t, x )  is  positive w hen Ix >B . It is seen easily that it has
the property A , since i f  Ix' _< cr, we have

99 (t, x) f : +6 (7 , f(a))(17 .

Next we will show that 50(t, x) satisfies the condition 2 ° .  Since
k(t, )9) we can choose o  such  as

t+ p
'V Xk(s, ix l)ds= - 1- 1 .
2 " n

From the equality
r t+ p

(S , dS [k (S r  IX1) 'XI] ds

=ç'+k(s, Ixl)dst
it follows that we have

It <  1  
—  2V n -Vixl

Therefore if  lx1 is sufficiently great, we have p < A . O n the other
hand, w e have for t 7 t

IX,7(7 ;  X , t) —xil<= 1 g(s, k(s,
n

and from  this we have

lx(r; x,
— 4

Hence for sufficiently great lxj w e have

so (t, x)..çà (7, --I-xl )d r
4

r e + t+p
(IX

> I

t
41X 1

)  —  
k ( r ,  4 B )d r }
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>(.1xl _13)1 V 1xl
4 2 4B)(1-.-}

n

while we have
t +p ' 41

k (7, 4B)dr i k(r, 4B)dr= (7 , 4B) dr -=const. .

Thus we can see that y,  (t, x) tends to infinity uniformly as
To prove the condition 3

0
, we consider at first

14° (t, x  —99 (t, (7, Ix (7 ; x, t) I) —G(7, x(r; 0 I) Idr.

Since G(t, 7) is differentiable with respect to 7,-, we have

I G(7, lx(r ; x, t)I) —G(7, lx( - ; x', 01)1

=Ilx(r; x, 0  I — Ixer ; x', 011
X G.,(7, lx(z-  ; x, I +I)  (Ix(r ; X, 0 — lx(r ; X', t )I ))

V Ix— x 'l M(7),'"

(1) In general, we consider a  system o f Carathéodory's type, xi — F (1 , x ), where
F (t , x ) is  defined for a<t<P, Ixl_<r. N ow  to  s im p lify  the statement, let 1x1 be

. W e assume that IF(t, x)—F(1, K(t)Ix—XI, where K (t )  is summable for

a < l _ < f i .  L e t  x = x ( t )  and x = ( I )  b e  tw o  solutions, then if z ( a ) = ( a ) ,  we have
x(1)= -X(1) by the Lipschitz condition. Now we assume that IX (Œ ) — ga )1 0  and hence

if we p u t  x i (0 —=  ( 0 ,  we have 17/(1)1 =0 ,  w here W O  =  Y ,  (W . For alm ost

a ll t

Evi (1)vi'M (01Fi (t, x(0 ) - Fi (t, -A-, ( 0 ) }1=1 1=1

( i )  W(Ê, x(t)) —F(t, X (0) I (by Cauchy's inequality)

-<-172 (t) 12 K(t)
and hence we have

r e n
1 1)2(01 - 2  E 72 i(Ov t / (1)di _GT K (t)d t .

a

Since 1)2(012 is absolutely continuous, we have

r im  12 1 r n
log iv (t) 12 - lo g  177(a) 12 = 1, d  - 177(01 - 2 122 )2 r (0 V i'(Odt

1 TI(a) 1 2  / a /- 1

< 2 r  KUM/ .
a

Therefore we have

I ( t) I i (a) I
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where C is a suitable constant and M (7 ) is a  periodic summable
function. Then w e have

199 (t, x) - - 40 (t, x')1_<CA/lx— fM ( r )d r ,

i.e., we have

199 4, X) (t, XI
)  I C .

Next if we assume t<.t.', then from

(t, , G (7 , x(r; x, t)l)dr

+jj_G(r, x(r; x, 01) —G(r, lx(7; X, r )1)] eh.-

w e have

x )-4 9 (r, lx(r; x, t)j )dr

+ f IGer, lx(7 ; x, 01) — G(7 , lx(7; x, t' ) I)

th at is, we obtain an inequality

" Kmd,
lx (0 —X(0 1-<-1X(&) — i (a ) leL •

In our case, w e have

11x(r; x, 1)1 —Ix(r; x', x, x', 011xi(r; x, —xi(r; x',t=i

< A Vlx(r; x, I) —  x(r ; x', 01

(A  be a suitable constant).

From the above-mentioned, we have

x, —  x(r ; x ', Ix— x/I

w hile for 1< r  t - F 7 '

ff(4" < eç tt+ r  I r " d ' .
Here A  is  a suitable constant and it depends On IX, but it is independent of t, because
w e can assume th at K (s) is periodic. Consequently we have

V lx (x ;x , t )  — x ( r ; t ) I < A 1/1x—el
and hence we obtain

11x(r; x, 01-1x(r; x ', 011<C/1x— el.
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+ T

—  G ( 7 , 19 ) &7 + . I lx(7; x, t)1— ix(r; x, t')
J e'

X G(7 , 1X(r; X, + (IX( 7 ; X, t) — Ix ( ; X , r )1)) dr

G(7, 3)d- + r qx(7 ;
x , 01— lx(r ; x, t')11 M(1.-)dr

.

re'
‹S . G ( 7 , 19 )dr li-1(7) 1Xi(7 ; X, t) — x ( ;  X ,  r)ldret

w h e r e  9=f(11:1) a n d  M (7 ) is a  suitable periodic summable
func tion . N ow  w e consider th e  c a se  t'_< 7 .<r+T .  Since the
solution is unique by the Lipschitz condition, if w e put

xi (e; x, t) X „
w e have

x,(7; X, t') x ,(7; x , t).

O n the other hand, from the equality

(t' ; x, t) =x i +  F,(s, x(s; x, t))ds,

we obtain

x(s; x,1))ds.

Hence we have
et e

IX,— x„I_.<1 x(s; x, t))Ids 1, 111(s)ds

where - .M(s) is a summable function determined by g(s, lx1).
w e have

Since

71,

12, ix,(7; x, t) —x„ (7; x, t')1=y,lx
1
(7; x, I') ; x, t')I

<A /Ïl lx ( 7 ; X, t') —x(r; x,

<V n  AA/IX—xi (')
I I

n =n24 feli-4(s)ds,

we obtain

     

(2) cf. (1).
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_

15' (t, 5(' (t' G(r, -FV2i9M(r)nArif (s)ds] dr,
•Il

9) 2I9ynA/17/(7)1 d:-

w here is a  suitable constant such that f  M(r)dr Kr . That is
el

to say, we have

( t ,  X ) - - F(r, x)1_1 , 1V(s)ds

where N (s ) is summable and of course, it depends on  the  region
o f txl. Therefore we obtain the inequality

- (t', N(s)ds+ k .

From this- it is seen that 5 (̂t, x) has the property a.c.u. (cf. 253-
254 in  [1 ]). At the same time the condition 4° is proved.

1f th e  p o in t  (t, x ) moves along a  fixed solution, say the
solution through (t„, X), w e have

49 (t, x(t))= i7G(r , x(2- ; x0 , t„)

so that for almost all t

d x(t)) = —G(t, x(t; xo, t))) D(It

= —G(t, Ix()

whence we can prove the condition 5° easily.
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