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In the foregoing paper [2] we have discussed the boundedness
and the ultimate boundedness of solutions of a system of differential
equations. Now we consider a system of differential equations,

1) 4% _ B, x),

dt
where x denotes an n-dimensional vector and F(f, x) is a given
vector field which is defined and continuous in the domain

d: 0=Zt<o, |x<oo.
|x| represents the sum of the squares of its components. And let
x=x(t; %, t,)

be a solution through the initial point (#, x,). Except otherwise
stated, we adopt the symbols and the promises in [2].

At first, we will discuss the boundedness of solutions under
perturbations. Corresponding to the differential equation (1), we
consider an equation

@ 9 _pit, )+ Ht, %),
dt

where H (¢, x) is a continuous vector field defined in 4. Here we
give a definition for the boundedness which corresponds to the
stability under constantly acting perturbations.

Definition. The solutions of (1) are said to be totally bounded
(or bounded under constantly acting perturbations), if for any a>0,
there exist two positive numbers # and 7 such that, if |%|<a,
then we have |x(¢; x,, ,)|<f for any t=>t, (f,, arbitrary), where
x=x(t; x,, t,) is the solution of the equation (2) in which we have
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|[H(t, x)| <y, provided a < |x| <j.

Therefore if the solutions of (1) are totally bounded, they
are naturally uniformly bounded.

Theorem 1. If the solutions of a linear system,

3) ¥=A@) =%,

are totally bounded, they ave uniformly ultimately bounded. In fact

we have |x(t)|— 0 when t—>o0., A() is a squave matvix and the

dot represents matrix multiplication with the column vector x.
Proof. Let

xlth(t)y xﬁzBi‘;’(t)i """ » xn:'Bm(t)
be the solution of (3) such as x,==x,_,=%.,==1x,=0, x,=1
for t=0. For i=1, 2, ---, n, we have »n solutions which are linearly
independednt. Then the general solution is of the form
x=B@)-C,

where C is a column vector of constant elements and B(?) is the
matrix

Bn(t) le(t) B,,,(t)
Blﬂ(t) B-_»:(t) an(t)

B“,(t) B-),[(t) B,m(t)

Since B(¢) is non-singular, there exists B~'(¢#). Hence the solution
such as x=ux, at {=¢, is of the form

x=B()-B'(t) x,.
On the other hand, the solution of the equation,
x’=A(@)-x+0-x (6>0: sufficiently small constant),
such as x=x, at t=t¢, is of the form
(4) x=B(t) -B™'(t,) %, "%

Since the solutions of (3) are totally bounded, if |x,|<«, there
exists A(a) and we have

|B() -B™' (1) -5, |€** ™% < 3 (),

where the absolute value means the sum of the squares of its
elements. Hence we have
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(5) |B(t) -B™* (to) x| < B () g0t 20,

And for any &€>0, if t>1t, + log ﬁ(“) , we have
9((1)3‘26”‘26“’(8 .

Therefore if t>t0—|- %5 B (a) , we have
0

|B(t) -B™! (tu) 'xo| <&,
Namely the solutions of (3) are uniformly ultimately bounded,
since %logﬁ(éEQ depends only on «. From (5) clearly we have
0
lx(®)|—>0 as t— .
Theorem 2. Let R be a positive constant which may be sufficiently
great and let 4* be the domain such as
0<t<w, |xI=R.
Suppose that there exists a positive continuous function ¢(t, x)
satisfying the following conditions in d* ; namely
1° @(t, x) has the property A (cf. p. 279 in [2]),
2° @(t,x) tends to infinity uniformly for |x|—co,
3> @(t,x) satisfies locally the Lipschitz condition with regard
to x, that is,
let, x) —ot, B IS KYx—3],
where K is a positive constant depending only on L for
XIS L, %< L (L: arbitrary),
4° I/irp%{go(t—l—h, x+hF@t %)) —e@, %), ie, Dp¢ has the
property B (¢f. p. 279 in [2]).
Then the solutions of (1) are totally bounded.
Proof. It is sufficient to see that there exists y such as
|H(t, x)| <y and we have

ﬁ% \@(t+h, x+hF+hH) — o, 5) 1 <0

By the conditions 1° and 2°, we determine # suitably for «. In
a<|x|< 8, using the conditions 3° and 4°, we have

Dy STm L 1o (t-+h, x+hF) + Kn [HGE |-, )|
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<D,¢+KvV|H(, %)|

where 2 is determined by the property B. Hence, if |H(, x)|<
22/K? we have
DF+H90§0-

Thus we can see that the solutions of (2) such as |x,|<a« are
bounded by fB. Since 4 and K are determined depending only on
a, the solutions of (1) are totally bounded.

Theorem 3. We assume that F(t,x) in the system (1) has
continuous partial derivatives of the first order with respect to x. If
F(t, x) is periodic of t and the solutions issuing from t=0 are equi-
bounded and the solutions are ultimately bounded, then they are
" totally bounded.

Proof. By Theorem 12 in [2], when (1) satisfies the assump-
tions of the theorem, there exists a positive function ¢ (¢, x) defined
in 4* (R be sufficiently great) which is continuous with its partial
derivatives of the first order and tends to infinity uniformly as
|x] > and satisfies the following conditions;

1° ¢(t, %) has the property A,

2° ‘;—?—i—g—i-F(t, x) has the property B.

Moreover observing the construction of ¢ (¢, x), clearly we see that
¢(t, x) is periodic of f and hence %% is so also. Therefore }%;

| OX |
is bounded, if |x| is bounded. From

) ar RN
9@ 2) —¢t D=2 gf-(t, x+0(x—%)), |%—%|
=\ 9y, |

< KViz—3|,
we see that ¢ (¢, x) satisfies all the conditions in Theorem 2. Hence
the solutions of (1) are totally bounded.

Now we assume that F(¢, x) and S—F are bounded when |x|

is bounded and g—E is continuous and that the solutions are

uniformly bounded and uniformly ultimately bounded. Then we can
obtain a similar function ¢(¢, x) (¢f. p. 290 in [2]). In this case,

we can prove the boundedness of }3—’” by using the boundedness of
| oX
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Z—F. Namely utilizing the boundedness of % and the equation of
x, 1
variation, we will see that
| Olx(t47; %, 8)|
diilh SFEIEZAN

< ae'’
ox; ’

where ¢ and g are constants determined depending only on |x].
By the symbol in the foregoing paper (p. 288 in [2]),

2% 6/ (fx(e; 2, ) 2AEE 2D g
8xt v, ’ ax,

and hence considering the property of G’ and taking X suitably,

we have

Kia <aGX) [‘+2““""dr=M [e#"—1].
’ ox; | — J, yJ
Since @, T, ¢ and G'(X) are determined depending only on ||,
for a suitable number A(|x|) depending only on |x| we have

99 | < A(a)).
L ox; |

Thus our ¢ (¢, x) satisfies also all the conditions in Theorem 2 and
hence the solutions are totally bounded.
Next we will discuss the ultimate boundedness of solutions
under perturbations which have a given order when |x| is great.
Definition. For a given positive function f(|x|), the solutions
of (1) are said to be wultimately bounded under comstantly acting
perturbations of ovder f(|x]), if there exist two positive constants
B and « so that |H(¢,x)| <af(]x|) for |¥x|=B, and then we have
lim |x(t; %, )| < B,
where x=x(t; x,, {,) is any solution of (2).
Theorem 4. We suppose that there exists a positive continuous
Junction ¢(t, x) satisfying the following conditions in J*; namely
1° @(t, x) has the property A,
2° @(t, x) tends to infinity uniformly as |x|— oo,
3° et x)—e, )| <KV |x—Xx|, where % may be sufficiently
near % and K is a constant depending only on |x|,
4° Dro<—G(|x|), where G(n) is a positive continuous function
Jor =R,
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5° K(IxDf(x)) =0(G*(]x]))  (Jx¥]|>0).

Then the solutions of (1) are ultimately bounded under con-
stantly acting perturbations of ovder f(|x]).

Proof. It is sufficient to show that « is determined in J4* and
if |H(t, x)| <af(|x]), then D,.,¢ has the property B. We have

Dpnp < Do+ KV [H(, %)
<—-G(x)) +K(x)) VH(, %) .
On the other hand, by 5°, we can take an « such as

e GUD)
— 4K (xDs(xD)

Since, for such an a, we have
Drnp < —G(|x]) +K (%)) Vaf(|x])

< —G(|a]) + K(|x)) V7 (1x]) 2K(|%lf/lx)’(m)

1
<—=G(|x]),
=5 (%)
hence D.,,¢ has the property B.

When (1) satisfies the conditions in Theorem 3, there exists
¢(t, x) satisfying the conditions 1°, 2° and 3° in Theorem 4. And
in place of 4° we have

3¢ , 99, <_
3 + o8 F, x)=—G(|=]),
where G(]x|) is monotone and G(|x|)—> as |x|—>c. Therefore

if we have ?]-f(lxi)=O(G?(|xl)), then the solutions of (2) are
%

ultimately bounded.

Thus when x is a 2-dimensional vector in (1) and (2), it is
seen that there exists a periodic solution also, even if we give such
perturbations as in the above.

This time we consider a system of differential equations of
Carathéodory’s type. We suppose that in a system,

dx
6 —— =F(, x),
(6) 7 (t, x)
F(t, x) is finite and it is a measurable function of f when x is

fixed and it is a continuous function of x when ¢ is fixed, and
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that, if [x|< L (L: arbitrary), we have

(7 VIF(E, )| M),

where M(t) is summable for 0Zt<+t (z: arbitrary) and of
course, it may depend on L. Remark again that |F(, x)|=

i‘F,;(t, x)>. Then we can obtain similar results as those in the

i=1
foregoing paper [2].

In the paper [1] we have proved a theorem analogous to the
following one. Namely if there exists a function ¢(t, x) satisfying
the following conditions in dJd*;

1°  o(t, x) is positive continuous and it has the property A,

2° @(t, x) tends to infinity uniformly as |x|— oo,

3° @(t, x) has the property a.cu. (cf. p. 253 in [1]),

4° ¢(t, x) satisfies locally the Lipschitz condition with regard

to x,
5° Do < —« ae. (for |x|<L, k>0 is a constant and it may
depend on L),
then the solutions of (6) are uniformly ultimately bounded.

Now we will show that its reciprocal problem holds good for
a certain equation.

Theorem 5. We suppose that F(t, x) in the system (6) satisfies
locally the generalized Lipschitz condition with regard to x, i.e., for
%S L, IS L (L: arbitrary)

VIFEt, x)—Ft 5 |<K@®) vVx—3,

where K(t) is a summable function and it may depend on L. If
F(t, x) is periodic of t and the solutions issuing from t=0 to the
vight are equi-bounded and the solutions are ultimately bounded,
then there exists such a function ¢(t, x) as the above-mentioned.

Proof. Without the loss of generality, we can assume that
the period of F(t,x) is 1. We can see that now the solutions are
uniformly bounded and uniformly ultimately bounded just as in
the case where F(t, x) is continuous. Hence we assume that
the solutions are uniformly ultimately bounded for the bound B.
Namely if |x)|<a«, there is T depending only on « such as if
t>t,+T, then |x(¢; x,%,)| <B. Such T is infinite in number; so
we take the infimum of such 7, denoted by T (a). Then T(a)
is non-decreasing with respect to a. At first we put
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sup |x(¢; %, L) | =f ().
lcolS
to5t <o
o05to<o

S(») is uniquely determined and it is non-decreasing with respect
to . If we put

sup V|F(t, x)|=g(, ),
1 20lSF ()

then g(t, ») is a measurable function of ¢ and it is a non-decreasing
function of 7 and clearly it is periodic of . Moreover g(t, n) is
summable with respect to ¢ since it is bounded by a summable
function M(t). Let h(t,5) and k(t, 5) be

["e, 9as=nct, »
n
and

j"if(t, )ds=k(, »)
)

respectively. Then we have clearly g(¢, ») < h(t, ) < k(t, 7). For
fixed 7, k(f, ) is a measurable function of ¢, for fixed ¢ it is con-
tinuous with its derivative with respect to 7 and it is non-
decreasing with respect to » and moreover it is periodic of £. If
we put

k@, 7) =k, ) +n,

then I;(t, ») has the same properties as those of k(f, 7). Now we
consider a function of (¢, ) for 0<t< o, »=>0 as follows ; namely

G, ={[E<t, )kt 4B))-B)  (¢=B)
0 (0= 79<B).
Then for fixed ¢, this function has the same properties as those of
G(») which we have used in the foregoing paper (p. 288 in [2]).
Clearly this is a measurable function of ¢ for fixed » and this is
periodic of £. Since we have
G, =k, 49)7,
we have for s <L

G(t, ) S Lk, 4AL),

while E(t, 4L) is summable and hence G(¢, ») is bounded by a
periodic summable function. Similarly if <L, G,(¢, ) is bounded
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by a periodic summable function. Here L is arbitrary.
Now we put

®) ot x) = rc(:, lx(z: x, B)|)d- .

Then ¢(¢, x) is positive when |x|>B. It is seen easily that it has
the property A, since if |¥|<«, we have

o(t, D[ G, fa))ds .

Next we will show that ¢ (¢, x) satisfies the condition 2°. Since
k(t, 7) =7, we can choose ¢ such as

l+‘£ \/I7|
k(s, ds=—-.
| B, 1aas=20A

From the equality

t+p t+p

j ks, |x|)ds=j [k(s, &) +|x|] ds

= g:-kp(s) \xl)ds-l_ lx|'” ’

it follows that we have

1
P
T 2vin V|

Therefore if |x| is sufficiently great, we have #<1. On the other
hand, we have for t <t <¢+p

T tee var
FIGEDESIENYIS |x|)ds§§ kG, lxl)ds=2~}%

and from this we have
x(t;x, 0 |= _|x_|_
B¢ )= 1
Hence for sufficiently great |x] we have

o, x)iSG( Lﬁ%)dt

t+p

%(MTI—B)U:%(” |x|)dt——jl k(s 4B)dr}
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2(%_'9){2‘/«/—@“[:%(7’ 1Bydzl,
while we have

¢+£ I,+_l 1 _
{ k(s 4B)dr§[ kG, 43)(1::[ % (<, AB)d-=const. .
Thus we can see that ¢(t, x) tends to infinity uniformly as |x]— co.
To prove the condition 3°, we consider at first

dr .

lp(t, x) —¢ &) |§£+ITG(:, EICGERI I EL G CREICHE NN
Since G(t, ») is differentiable with respect to 7, we have
GG, 12752, D) —G (e, 2(7; 8, D) |
=[lx(z; 2, O] —[x(; &, D]
X G (7, |2(z; %, O +0(|2(z; %, 1) | —
SCVx—o|-M(),"

x(z;2,01))

(1) In general, we consider a system of Carathéodory’s type, ¥’ =F({, x), where
F(1, x) is defined for «a <t<B, |¥|<7. Now to simplify the statement, let |x| be

/n

A/ Zixi‘-'. We assume that |F(t, x) —F(¢, %) |< K({)|x—%|, where K({) is summable for

a<t<pB. Let x=x(tf) and x=%(¢) be two solutions, then if x(a)=%(a), we have
x2(t) =%(f) by the Lipschitz condition. Now we assume that [¥(a)—%(a)|#0 and hence

if we put x;(t) —%;(t) =5;(1), we have |p(t)|+0, where |77(t)|=\/§57;;(t)‘-'. For almost
=
all ¢
;ﬂz(i)m’(l)='2177i('){pi @ x))—F:(t, %))}

<|lp@IIF{, x()) —F{, %())| (by Cauchy’s inequality)
=ln(®) 2K

and hence we have
ct n ¢
[ i s nroar<| Kwat.
Ja i= o

Since |(2)|? is absolutely continuous, we have

L (mwE g ot o
log I —log In()P={ " —rdt={ w2000 W
(e L=

3
ng K(t)dt .
(2

Therefore we have

t

' K(s)els
1)< in@) e,
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where C is a suitable constant and M(z) is a periodic summable
function. Then we have

. - (t+T
ot ®) —o(t, )| CVE=#T | M()dr,
i.e., we have
le(t, x) —¢t, &) |SCVx—x.
Next if we assume t<t’, then from
ot 1) —¢(t, 1) =[G, x5 Dds
+I6 6 1565 0D -GG, x5 ) D] e,

we have

ot ) —¢ (¢, )| <[ G, 1353 5 D) s

+[1GG 1565 5 DD =G, [5G 5. 1)) lds

that is, we obtain an inequality
_ _ (”x(s):m
[2(1) —z(D) | <[x(a) —F(a) e .

In our case, we have '

n
[1#(x; % )] —|x(z; &/, t)IlgEllx.: (o5, D) +xi(r; ¥, Dz (v; %, 1) —x; (v; %/, )|
=

SAVIEGE; % ) —x(@; 7, D)
(A be a suitable constant).

From the above-mentioned, we have

T
Viz(r; x ) —x(c; #, 1) | <V ]x—+/] eszk(ws,

while for i<t <t+T
T T
estk(")'isgest "‘“""‘gz.

Here A is a suitable constant and it depends on ||, but it is independent of {, because
we can assume that K(s) is periodic. Consequently we have

Via(e; 5,0 —x(; &, S AV [x— ]
and hence we obtain

H2(e; % 0| —12(0; &, DIISCV =]
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4 t'+ T
<['G(, et [z 5 0= s 5 1)1
X Gy(z, (75 2, ) | +0(|x(z; x, ) | —|2(z; %, t)]))dr

+7T

<((6e pae+ | Tees; 5 01— 156 5 ) 1M )
¢! W1E "
gth(r. B)dz+ ‘112;9M(r)§le(r; %, 1) —x,(7; %, 1) |dz

where fA=f(J¥]) and M(:) is a suitable periodic summable
function. Now we consider the case #<:<¢'+7. Since the
solution is unique by the Lipschitz condition, if we put

x5 xt)=X,,
we have
2(0; X, ) =x,(7; %, 1).
On the other hand, from the equality
55 %, 1) =x,~,+J:'F,-,(s, 5(s; %, 1)) ds,
we obtain
X;—xL.:J‘:’F,(s, x(s; x,1))ds.
Hence we have

| X, — x| éjﬂlF,-(s, x(s; x, 1)) |ds érﬁ(S)ds ,

where M(s) is a summable function determined by g(s, |*|). Since
we have

glxi(f;x, t) —x (7; x, t')|=glx.-(f; X, 1) —x(7; x, 1) |
SVuVias; X 1) —x(z; x5, 1)]
<V AVIX—x®
<V AVn | M) ds=n A (s)ds,

we obtain

@) cf. (1).
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ot 0 —¢t, 9| | GG, D+ | [2aM A M()as) ds
<[(6¢. o +28mAM () ds
where 7 is a suitable constant such that j:“TJVI (f)d-<y. That is
to say, we have
ot ) —¢ (¢, )< [ Nesds,

where N(s) is summable and of course, it depends on the region
of |x|. Therefore we obtain the inequality

l¢(t, x) —e ', 2) | < ‘1:’1\/(s)ds+l?\/|x—x’\ .

From this- it is seen that ¢(f, x) has the property a.c.u. (cf. 253-
254 in [1]). At the same time the condition 4° is proved.

If the point (¢, x) moves along a fixed solution, say the
solution through (¢, ,), we have

ot 5®) = |GG, 2 5, 1) D s
so that for almost all ¢

_(;i_t. e, x(t))=—G, |x; %, t)]) ae.

Il

-G, |x]) a.e.
<—4(|x|-B)? ae.

whence we can prove the condition 5° easily.
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