MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXII, Mathematics No. 1, 1959.

Note on a chain condition for prime ideals*

By

Masayoshi NaGATA

(Received Dec. 27, 1958)

We say that a ring R is of *finitely generated type* over a ring S if R is a ring of quotients of a finitely generated ring over S.

We say that the *dimension formula* holds for a local integral domain *S "* if the following formula is true for any local integral domain *R* which dominates *S* and which is of finitely generated type over *S :"*

$$
rank R + \dim_{S/I} R/m = rank S + \dim_{(S)}((R)),
$$

where π , (π) ; π , (π) denote the maximal ideals and the fields of quotients of *S* and *R* respectively.

On the other hand, we introduced in [C. P.]³³ the *second chain condition* for prime ideals, which is stated as follows if we restrict ourselves only to integral domains :

The first chain condition holds in an integral domain *R* if and only if every maximal chain of prime ideals in *R* has length equal to rank *R. .* The second chain condition holds in an integral domain R if and only if the first chain condition holds in any integral extension') of *R.*

It should be remarked here that if *R* is a Noetherian integral domain, the second chain condition for *R* is equivalent to each of the following conditions, as was shown in $[C, P.]$:

Condition C': The first chain condition holds in every *finite*

^{*} The work was supported by a research grant of National Science Foundation.

¹⁾ The same notion can be defined for general local rings, but is a trivial generalization.

²⁾ In general, if *S* is Noetherian, then we have the inequality rank $R+\dim R/\mathfrak{m}$ \leq rank S+dim $((R)).$

³⁾ We refer by $[C. P.]$ the paper "On the chain problem of prime ideals" Nagoya Math. J. 10 (1956).

⁴⁾ An integral extension of an integral domain *R* is an integral domain which is integral over *R.*

integral extension of *R contained in the derived normal ring of R.*

Condition C'' : The first chain condition holds in the derived normal ring of *R."*

The purpose of the present paper is to prove the following

Theorem . *If the second chain condition holds in a Noetherian integral dom ain I an d if R is a local integral dom ain which is of finitely generated type ov er I, then the second chain condition and the dimension form ula hold f o r R.*

§ 1 . The second chain condition.

The definition of the second chain condition shows the validity of the following

LEMMA 1. If the second chain condition holds for an integral domain *R* and if $\mathfrak p$ is a prime ideal of *R*, then the second chain condition holds in both R/\mathfrak{p} and $R\mathfrak{p}^6$.

Under the notation in Theorem, we shall prove at first the validity of the second chain condition in *R .* In order to do so, by virtue of Lemma 1, we may assume that *I* is a local ring dominated by *R*. By induction on the number of generators of an integral domain over *I* of which *R* is a ring of quotients, we may assume that $R = I[x]$ with an element x of R and a prime ideal p of $I[x]$. Again by virtue of Lemma 1, we may assume that x is transcendental over *I* and that ψ is a maximal ideal of $I[x]$. Let I' be the derived normal ring of I. Then $I^{r}[x]$ is the derived normal ring of $I[x]$. Therefore it is sufficient to prove that

() For any maximal ideal of 1¹ [x] containing the maximal ideal m o f I, then length of any maximal chain of prim e ideals in* $f'[x]$ *which ends at* m' *is equal to* $1 + rank$ *I.*

The assertion is obvious if rank $I = 0$ (i.e., *I* is a field). Hence we assume that rank $I > 0$. We shall prove the assertion by induction on rank I . By the second chain condition in I , we see that rank (m'/\sqrt{I}) = rank *I* and therefore rank m' = rank *I*+1. Let $0\leq \mathfrak{p}'_1\leq \cdots \leq \mathfrak{p}'_s=m'$ be a maximal chain of prime ideals in $I'[x]$. Since rank m' = rank $I+1$ \geq 2, we have s \geq 2. Hence, if rank $I=1$, the assertion is true. Thus we assume that rank $I \geq 2$. If $\mathfrak{p}'_1 \bigcap I' = 0$,

⁵⁾ The condition C" is equivalent to the second chain condition even if *R* is not Noetherian (see [C. P.]).

⁶⁾ By virtue of the definition of the second chain condition (see [C. P.]), Lemma 1 is valid even if we omit the assumption that R is an integral domain.

then $\mathfrak{p}'_1 = (\mathfrak{p}'_1 \bigwedge I')I'[x]$, and we see that $s = \text{rank } I + 1$ by induction assumption. If $\mathfrak{p}_2' \bigcap T' = \mathfrak{m}' \bigcap T'$, then applying the induction assumption to $I/(\mathfrak{p}_2'/\sqrt{I})$ and $I_{(\mathfrak{p}_2'/\sqrt{I})}$, we see that $s=$ rank $I+1$. Therefore we assume that $\mathfrak{p}_2' \bigcap I$ is the maximal ideal and that $\mathfrak{p}'_1\bigcap Y=0$. If rank $I=2$ and if $\mathfrak{p}'_2=(\mathfrak{p}'_2\bigcap I')I'[x]$, then we have *s=* 3. Therefore it is sufficient to show that each of the following situations does not occur :

(1) rank $I=2$, \mathfrak{p}'_2 is maximal and $\mathfrak{p}'_2 \bigcap I'$ is maximal.

(2) rank $I > 2$ and $\mathfrak{p}'_2 \bigcap I'$ is maximal.

By the assumption that $\mathfrak{p}'_1 \bigwedge V = 0$, we see that $a = (x \text{ modulo})$ \mathfrak{p}'_1 is algebraic over *I*. Since the second chain condition is preserved under integral extensions, we may assume that *a* is in the field of quotients of I . Furthermore, since I' has only a finite number of maximal ideals, by the same reason as above, we may assume that I' has only one maximal ideal. If a is integral over *I,* we have a contradiction immediately (to each of the cases (1) and (2)).

If *a* is not integral over *I* and if 1/a is integral over *I,* then we have a contradiction by the assumption that $\mathfrak{p}_2' \bigcap I'$ is maximal. Thus neither a nor $1/a$ are integral over *I*. Therefore \mathfrak{p}'_1 is generated by certain number (which may be infinite) of elements of the form $ax-b$ $(a, b \in I')$ and the a's and the b's of these elements generate ideals α and β of purely rank 1 in *I'*. Therefore \mathfrak{p}'_1 is contained in the ideal of $I^r[x]$ generated by the maximal ideal of I^r . Since ν_2 contains the maximal ideal of *I'*, we have $\nu_2' = (\nu_2' / 1')I'[x']$. This shows in particular that (1) is impossible. Furthermore, in the case (2), $a+b$ must be a primary ideal belonging to the maximal ideal. Hence, under the induction assumption, we proved in particular that, if *c* and *d* are non-units in *r* which are not contained in any prime ideal of rank 1, then, for a transcendental element y, the second chain condition holds in $I'(y)/(cy-d)$,⁷ (whose rank is equal to rank $I' - 1$. We consider $I'(y)[x]$. Then there is no prime ideal between $\mathfrak{p}_1^* = \mathfrak{p}_1 I'(y)[x]$ and $\mathfrak{p}_2^* = \mathfrak{p}_2 I'(y)[x]$. By induction assumption, we see that $a^* = aI'(y) + (cy - d)I'(y)$ and $b^* = bI'(y)$ $+(cy-d)I'(y)$ are of rank 2. Since $a+b$ is primary to maximal ideal of *I'*, $a^* + b^*$ is primary to the maximal ideal of *I'(y)*. Since

⁷⁾ When I is a local ring with maximal ideal μ , for a transcendental element y over *I*, the ring $I(y)$ denotes the local ring $I[y]_{\mathfrak{m}}$.

rank $f'(y) = \text{rank } I' > 2$, α^* and b^* have no common prime divisor of rank 2. Therefore the ideal generated by \mathfrak{p}'_1 and $cy-d$ in $I'(y)[x]$ is contained in a prime ideal, say q*, such that (i) $q^* \leq p_2' I'(y)[x]$ and (ii) $q^*/(cy-d)$ is of rank 1. By the validity of the second chain condition in $I'(y)/(cy-d)$ and by the induction assumption, we see that $q^* \neq p_2' I'(y)[x]$, which contradicts to that there is no prime ideal between $\mathfrak{p}'_1 I'(y)$ and $\mathfrak{p}'_2 I'(y)$. Thus the proof is completed.

§ 2. The dimension formula.

Under the notation in Theorem, we have proved that the second chain condition is true for *R .* Let *R '* be any local integral domain which is of finitely generated type over R and which dominates *R .* Since *R '* is of finitely generated type over *R,* there is a sequence of local rings $R_0 = R$, R_1, \dots, R_{n-1} , $R_n = R'$ such that (i) R_i dominates R_{i-1} and (ii) there exists an element a_i of R_i such that R_i is a ring of quotients of $R_{i-1}[a_i]$. Then by (*) in § 1 applied to R_{i-1} , the dimension formula between R_i and R_{i-1} holds, which proves the dimension formula between *R '* and *R.*

§ 3. A suplementary remark.

We shall prove the following

Proposition. Let *R* be a Noetherian integral domain and let *R'* be a finitely generated integral domain over *R* with transcendence degree r. If ψ is a prime ideal of R and if ψ' is a minimal prime divisor of pR' such that $p' \cap R = p$, then the transcendence degree of R'/p' over R/p is at least *r*.

Proof. Let *S* be the complements of $\mathfrak p$ in *R*. Then, considering R_s and R'_s , we may assume that *R* is a local ring and that $\mathfrak p$ is the maximal ideal of R . We use double induction on rank $\mathfrak p$ and the number of generators of R' over R .

(i) If rank $R \leq 1$, then the second chain condition holds in *R*. Therefore, by Theorem, we see the assertion immediately. Therefore we assume that rank $R > 1$.

(ii) If rank $\mathfrak{p}'+1$, then there exists a prime ideal q' of rank 1 in *R'* such that $q' \subset p'$ and that $q' \cap R=0$. Since p' is a minimal prime divisor of pR' , $q' \bigcap R$ is different from p. Therefore, by our induction assumption applied to $q' \cap R$, we see that the transcendence degree of R'/q' over $R/(q' \bigwedge R)$ is at least *r*. Therefore, by our induction assumption applied to $\frac{p}{q'}\cap R$, we see that the assertion is true in this case. Therefore, we assume that rank $\mathfrak{p}' = 1$.

(iii) Assume that R'/p' is not algebraic over R/p . We may assume that x_1 modulo p' is transcendental. Then, by induction assumption applied to $p' \cap R[x_i]$, we see that the assertion is true in this case. Therefore we assume that R'/p' is algebraic over R/p .

(iv) Now we shall show that R' must be algebraic over R . Let R'^* be the derived normal ring of R' and let p'^* be a prime ideal of R'^* lying over \mathfrak{p}' . Since rank $\mathfrak{p}'=1$, we have rank $\mathfrak{p}'^*=1$. Therefore $\nu = R_{p^*}^*$ is a discrete valuation ring (for, since *R* is Noetherian, *R'* is Noetherian and *R'** is a Krull ring)⁸. Set $A = \mathfrak{b} \bigcap K$, *K* being the field of quotients of *R*. Set $B = A[x_1, \dots, x_n]$, $\mathfrak{p}^*=\mathfrak{p}^{\prime*}\mathfrak{b}\bigcap A$, $\mathfrak{p}^{\prime\prime}=\mathfrak{p}^{\prime*}\mathfrak{b}\bigcap B$ and let B^* be the derived normal ring of *B*. Then, obviously, $R^{\prime*} \subseteq B^* \subseteq \mathfrak{b}$. Therefore \mathfrak{b} is a ring of quotients of B^* ($\mathfrak{v} = B^*_{(\mathfrak{p}^*\mathfrak{p} \cap B^*)}$). It follows that $\mathfrak{p}^{**} = \mathfrak{p}^*\mathfrak{v} \cap B^*$ is a minimal prime divisor of \mathfrak{p}^*B^* and rank $\mathfrak{p}^* = 1$. It follows that, replacing *B* to a finite integral extension of *B* contained in B^* if neccessary, rank $p'' = 1$. Since R'/p' is algebraic over R/p , B/p'' is algebraic over A/\mathfrak{p}^* . Since A is of rank 1, the dimension formula is true and we see that R' is algebraic over R . Thus the proof is completed.

Corollary. If, in the proposition, there are elements y_1, \dots, y_s of *R'* which are algebraic over *R* and such that their residue classes modulo \mathfrak{p}' are algebraically independent over R/\mathfrak{p} , then the transcendence degree of R'/p' over R/p is at least $r+s$.

§ 4. One question.

P rob lem . *W hether o r not ex ists a N oe the rian local integral domain R w ith m ax im al ideal* ni *such that (1) rank R is greater than* 1 , (2) *the derived norm al ring of R is a local ring which may not* be Noetherian and (3) the union of all the $m^{-n} = \{a : am^n \leq R\}$ *is not finite over R.*

The reason why the writer is asking this problem is that $(-)$ if there is no such an example, then we can prove the following two assertions :

⁸⁾ See for instance, On the derived normal rings of Noetherian integral domains, in this Journal vol. 29, No. 3 (1955), pp. 293-303.

90 *Masayoshi Nagata*

 $(\#)$ The zero ideal of the completion of a Noetherian local integral domain has no imbedded prime ideal.

 (Z) The following 3 conditions for a Noetherian local integral domain *R* are equivalent to each other :

 (k) *R* is unmixed.

 (5) The second chain condition holds in *R*.

 (k) Any maximal ideal of the derived normal ring of *R* has rank equal to rank *R.*

 (\rightharpoonup) If there is such an example, it is nearly certain that such an example can produce an example of Noetherian local integral domain for which (\mathbb{H}) above is not true.

Kyoto University and Harvard University

 \sim