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In  recent years many authors" have studied the problem of
determining gauge functions, that is, Lyapunov functions for
various types of stability and boundedness of solutions of ordinary
differential equations. In  th is  p ap er w e  sh a ll show th a t  the
function D(P, Q), introduced by H. Okamura" in connection with
the uniqueness problem in  th e  theory o f  ordinary differential
equations (c f. Definition 1 ), w ill w ork as the above mentioned
gauge function.

In  §1  we shall define the Okamura function D (P , Q ). In §2
we shall obtain a necessary and sufficient condition for the trivial
solution x=0 of the differential equation (1) to be strongly stable"
in  terms of the Okamura function. It should be noted that the
Okamura function can be determined concretely by the given
differential equation itself, though it may not be easy. In § 3 we
shall prove a regularization theorem which will connect our con-
dition in  § 2  w ith  th a t o f  well-known form . In  § 4  we shall
discuss the strong boundedness problem by the same idea as for
the strong stability in § 2.

1. Okam ura function.

In §1, § 2 and §3 we consider the differential equation

dx
d t  

= f(t
'  
x)

1) cf., for instant, Antosiewicz
2) cf. Okamura [6], [ 7 j  and [8 ] .
3 )  cf. Okamura [9] and cf. Yoshizawa [ lo i .

(1 )
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where t  is real and x  a real n-dimensional vector and where f(t, x)
is a continuous function on Ex F to R ,  where E= It : 0< t<  +  col
and F= Ix :1 x i<  M .". Suppose also f(t, 0)=0 for t GE.

Let P ---(t, xp ) and Q = (to ,  xo ) be two points in E x  F . When
tp< t Q  we denote by U p Q  the set of all the absolutely continuous
functions u(t) on the interval tp< t< tc, to  F  such that u (t)= xp
and u(tQ )=x Q .

Definition 15 ) . Put

inf ii/(t)oe f (t, u(t))Idt i f  tp< t o  ,
REup,2 Q
D(Q, P) i f  tp> t o  ,

i f  tp=t o .

D (P, Q ) is  ca lled  the  Okamura fu n ct io n  w ith  respect to  th e d iffer-
en tia l equation  (1).

It is easily seen that if  P  and Q are on a solution of (1) we
have D(P, Q)= 0 and if not D (P , Q )>0 . We have also

ID(P, Q)-D(P, R)I< I M(7)d7 + xo —  xR

where P—(tp, xp), Q=(t Q ,  x(2 ), R—(tR , x R ) E E xF  and where M(t)
= maxif(t, x )1 . If tp< tQ ‹  tR  w e  have

, EF

( 3 ) D(P, R)<D(P, Q)+ D(Q, R)

so that, if  Q and R are on a solution of (1), (3) is reduced to

( 4 ) D(P, R)<D(P, Q).

Let 0  be the point (0, 0) and P a variable point (t, x) in Ex F.
Then we can define a  function of (t, x) by

( 5 ) U(t, x) = D(0, P) .

Since x=0 is a solution of (1) we have for all t GE

( 6 ) U(t, 0) = 0 .

We have also for (t, x), (t', x') E E x F

4) (xi , x_; , • • • , x „) and I x I .=-N/xl+4+ • • • +4 .
5) cf. Hayashi and Yoshizaw [2] and cf. Hayashi [3].

( 2 ) D(P, Q) =
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( 7 ) U(ti, x')— U(t , x)1 . M(7)(1Ti + — xi •t
Since 0<  U(t, x)<  U(t, 0 )+  U(t, x)—U(t, 0)j <  x l< b  U(t, x )  i s  a
non-negative bounded continuous function on E x F .  Let u(t) be a
solution of (1 ) then  by (4 ) U(t, u(t)) is  a  non-increasing function
of t.

2 .  Strong stability.

Defin ition  2. Given a positive 8>0 and a point P=(t o , x o ) E
Ex F, a  function u (t), defined on a subinterval .1-( t o ) of the inter-
v al t0 < t< + 0 0  w ith values in F, which is absolutely continuous on
each compact subinterval o f  I"  is  s aid  to  b e  an 8-solution of (1)
starting at P  if u (t o )=x, and

( 8 ) (t) — f(t , u(t)) 1 dt <8 .

Clearly for any & > 0 every solution of (1) is  an 'S-solution.
Defin ition 3. (Strong stability in  th e  sense of Okamura.)

The solution x=0 of (1) is said  to  be  strongly  stable if for any
77> 0  there exist an 8>0 and a 8>0 such that fo r  any 8-solution
u(t) s tartin g  at (0, x0 )  prov ided lx 0 1< 8  w e have j u ( t ) <

97 in the
whole of the interval on which u(t) is defined.

Theorem  1. A  necessary and sufficient condition for the solu-
tion x = 0  o f (1 ) to be strongly  stable is that fo r  any  77 such that
0<9.7<_b we have

( 9 ) in f  U(t, x) > 0
t e l l

where U(t, x) is  the function defined by the formula (5).

P r o o f .  Put W(97)= in f  U(t, x) and suppose that there is a
tE n

positive 97 such that 0 < n < b  and W (y )= O. T hen there exists a
sequence {P m } s u c h  t h a t  Pm = (t , x„,) E Ex  F ,  x 7.1 and
lim U(t„„ x„ ,)= 0 . I f  w e p u t U(t m ,  x „ , )= - ' w e have 6„, >. 0  and2

6 )  Even though we read "which is continuous and has a  continuous derivative"
fo r  "which is absolutely continuous on each compact subinterval o f  I "  our discussion
holds good throughout the present paper.
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t m

m 0 (m--> + co). S in c e  U(t„„ x„,)— inf luV)—f(t, u(t))Idt,
u E U 0 . , ”  o

for every m  there is an &„,-solution Um (t ) o f (1) starting at (0, 0)
such that > 97. Since un ,(0)= 0  and &„,,  0  (m --> + 00) the
solution x= 0 o f  (1) is not strongly stable. This completes the
-proof of the necessity.

Now suppose that we have W(97)>0 in 0< 71< b. Let n  be
an arbitrary constant such that 0 < v < b .  Then there are an &>0
and  a  6 > 0  such that I xo < 6  implies U(0, x0 )+&< W (y ). Let
u(t) be an &solution of (1) starting at (0, x 0 ) defined on an I. S ince

/40 —f(t, u(t)) 1 dt<&, i f  we put

u(t) xo + u(t))dt + 0-(t)

cr(t) is absolutely continuous on each compact subinterval of / and

0-(0)— 0 and Ç 10 -'(t) d t<E . If 1x 0 k ( 6  and if there is a value of

t  such that lu (t )1 > ',i, then there is a  subinterval 0< t <  t , of /
such that I u(t)1 <7/ in 0  t< t ,  and lu(ti) = 7). B y  (7) n t, u(t))
is absolutely continuous in  0< t <  t „  so that U(t, u(t)) exists

almost everywhere in  0< t < t „  For any T  such that 0<q- < t 1

there exists a solution v(t) o f (1) starting at (-7-, u(7)). Therefore
for any small h > 0  we have

U(7- + h, u(r + h))—U(T , u(7))  l U(r + h, u(7. + h))— U(r + h, ver + h))I
+U(7- + h, ver + h)) — U(T , v(7)) < lu(r + h)— v(.7- + h)I

= I {u(q- + h)— u('r)} — Iv(T + h) — v(T)} I •
Hence almost everywhere in 0 < t< t 1 w e  have

—
d  

U(t
'

 u (t)) < v'(t) I  (t)— f(t, u(t)) I = I (TV)1dt 

and therefore we have in 0 < t< t 1

U(t,u(t)) < U(0, x0 ) +&< W(n)

so that we have U (t„ u(t1))<  W('il) that is u(t i ) Ky. Thus there
arises a contradiction. This completes the proof of the sufficiency.

q. e. d.
Now we obtain the following
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Theorem  2. If the solution x = 0 o f  (1) is strongly stable, x=0
is uniformly stable, that is , f o r any gi> 0  there exists a  8 > 0  such
that t, EE and (X 0 1 < 6

 imply that f o r any solution u(t) starting at
(to ,  xo )  we hav e iu(t) K y  in the whole of  the interval on which u(t)
is defined.

P ro o f .  Suppose x = 0  to  b e  srrongly stab le . Given any 77

such that 0<i) < b, put a =  in f  U(t, x). Then we have 8 > 0  by
tEE

Theorem 1. Since U(t, x) I x  for (t, x )EExF, for any solution
u(t) starting at (t„ x 0 )  provided that t0 EE and  I x 0 l<6  we have,
on the whole of the interval on which u(t) is defined, U(t, u(t)) < 8
so that I u(t) I <n-

q. e. d.
3. Regularization theorem.

Lem m a 1. L e t  p ( t ,  x )  b e  a  real continuous function on
D=Ex(F,— {0})— {(t, x): 0 < t ‹ +  Do, 0 ‹  x  < b }  a n d  q (t, x ) a
positiv e continuous function o n  D. Then there exists a positive
continuous function 8(4 x) on D such that, f or any (t, x), (t', x') E D,
It' — tl < 8(t, x) and Ix' xl <8(t, x) imply IP(t' , x')—p(t, x)I <q(t, x).

P roo f. Put D„,={(t, x): 0<t<m , <1x1<b—  m
i l  (m=1, 2, •-•).

Since every D„, i s  a compact subset of D there exists a positive
6„, such that 0< E , n < -

1
 a n d  that, fo r a n y  (t, x) ED,,, a n d  any

(t', x') E D , It' —tl<6,n  a n d  I x'—xl<8„, imply P ( r ,  x') —p(t, x)l <
q(t,x). Let 91„,(t, x ) be a  non-negative continuous function on D
such that 0<?7,n (t, x) <&„, in the interior of D„, and 'ring , x) = 0 in
D D „ , .  If we put 8„,(t, x)= max {n,(t, x)} (m=1, 2, • • •), we obtain

a uniformly convergent sequence of continuous functions {8„,(t, x)}.
Therefore 8(4 lim 8„,(t, x) is  a positive continuous function on

1,1 , 4 - o o

D .  It is  eas ily  v e r if ied  th a t t' —tl <8(t, x ) an d  I x'— x <8(t, x)
im ply IP(t' x')—fi(t, x)j <q(t, x).

q. e. d.

Lem m a 2. L et p i (t, x ) an d  qi (t, x) be positiv e and continuous
in  D  then there exists a positive continuous function 7(t, x) on D such

th a t a r Y  a Y  (i=1, 2, ••• , n ) are  continuous in  D  a n d  that f orat
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(t, x) G D  w e  hav e  0<y (t, x )<p ,(t, x ),  <q ,(t, x ) andat
q,(t, x) (i=1, 2, • • • , n).

P r o o f .  Let hm (t, x ) be a  non-negative continuous function on
ah ah .D  such that _ —  (i =1, 2, • • • , n )  a re  continuous in  D  and
d t  ' a x i

that k ( t ,  x)> 0  in  the interior o f Dm  a n d  hm (t, x )=0 in D—Dm .
Let cm  be a positive constant such that cm h,,,(t, x) <2 - rn x ) and

ah,, ax i , ••• , a x n  < 2 _rn qi (t, x). T h en  a ll t h e  series

C h m (t, a h  4- -  a h , ah 
a x,a m a x „  converge uni-Em=1 f f ix ) ,  E t

„ ,  E ••• , E c
form ly i n  a n y  compact subset o f  D ,  s o  th a t  if w e  put

+00
ry(t, E x ), 7(t, x ) and its first partia l derivatives are

continuous in  D  and  w e  have 0 < y (t, x )<A (t, x),

and ary
ax i

Regularization Theorem. L et p(t, x ) be a  non-negative con-
tinuous function on  E x F,—  { (t, x ):0<t‹+ 0  , lx 1<b}  such that

(a) p(t, 0)=0 f o r t  EE,
(b) p(t, x) x l) for (t, x ) E D=Ex (F,—  101) where a(r) is a

positive non-decreasing function in  0 <r<b ,

(c) x')—P(t> N(7)&7-1-1-LIx' — f or (t, x),

(t', x') E Ex  F1 w here N (t) is a  non-negative function o f  t  continuous
in E and L  a positive constant,

(d) f or any solution u(t) of  (1) p(t, u(t)) is non-increasing func-
tion of  t.
T hen there ex ists a  non-negative continuous function (D(t, x) on
E x F , such that

(a) (13(t, 0)=0 f o r t  GE,
(b) x) /3(1x1) for (t, x ) E D where 13(r) is a positive non-

decreasing function in  0 <r<b ,

(c) - is continuous in  E x F i,at
ai?(d) - (—  (i= 1, 2, • • • , n) are continuous and bounded in E x  F 1 ,ax

aY,

<qi(t, x ) (1=1,2, • ,  n) in  D.

-aï <q,(t,

q. e. d.
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aq) a(p(e) ( t ,  x ) 0  i n  E x  F , .-a-t-

P r o o f .  Let u(t) be a solution of (1) starting at (t, x)

then we have lim —1,- Ip(t + h, u(t + h))—  p(t, x)}  <0. On the other
h  - 1- 0 n

hand we have for any small h>0
1  

{p(t + h, x+hf(t, x ))— (t, x)}h
1-  { p ( t  h, x+hf(t, x))— (p(t+h, u(t+h))1h
1 (+ --(Jo t+h, u(t+h))— p(t, x)}  .h

H ere, since lim fu(t+h)—  =u'(t)—  f (t, x ), we have
h - ) . + 0  n

1 - IP(t + h, x + hf(t, x)) — P(t + h, u(t +h))1 ‹ x + hf(t , x)—u(t +h)lh — h

= LI —

1  
fu(t+h)—  — f(t, 0 (h +0) .h

Therefore we obtain for any (t, x) E E x F ,

 1lim {p(t+h, x + hf(t, x ))— (t, x )}  < 0.
h + + 0  n

Now, if w e put ilr(t, x)---(1+e - t)p(t, x ), w e have for an y  (t, x) E
E x F,

 1lim {i/r(t+h, x+hf(t, x))—Alf(t, x)}n
—=  (1 +  t) 1lim - , { rp(t +h, x+hf(t, x )— (t, x)}

—e- tp(t, x) ‹ — e - tp(t, x)

and also we have

Ifr(r, x') — kk(t, x) I — Icp(t', x')+ (1+ e - ') I P (t' , x') — (t, x ) I
t/ ,t/

< L b !  e- Td7- 1 + 2 1  N (T )ch il2 L Ix '— x l
t

since qi(t', x') <P ( r,  0) + O r, x') — PW , 0  < L  x' I< Lb . L et N i (t)
=2.1■II(t)+Lbe- t  and 2L =K , then
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I , fr(r, x)1._ I V: N1(r) ch. +K i x'— xi.

Clearly qr(t, 0)=0 for t E E  and AIT(t, X)>  I XI) for (t, E D.
Since p(t, x) > 0  in  D, by Lemma 1 there exists a positive

continuous function 8(t, x) on D such that, for any (t, x ), (r, x ') E D,
it' — tl<8(t, x) an d  x'— x i <8(t, x) imply x')—e-ttp(t, x)1 <
1 1x ) and also If(r, x)I <  -  e  t p ( t ,  x ) .  Let 81 (t, x)

4K
1min 8(t, x),x i ,  -

1  
(b-1x1), 11 fo r  (t, x) E D , then 81 (t, x)n 2n n

is continuous and positive in D and 81 (t, x) —.0 as x —.0 uniformly
on t E E .  Since N 2 (t )=  max N i(t+s ) is also continuous, by Lemma

2 there exists a positive continuous function p(t, x) on D such that
its first partial derivatives are continuous in  D and that

0 < p(t, x ) < 8 0(t,
ap ap a p e t  (t ,  x )
at a x , ax,, 4{1 + nif(t, x)1}{N 2 (t)+nK1 •

Now if  we put

P xn-P
P V for (t, x) E D,

Pi(t, x) t x, x„
0 for (t, x) E Ex {O},

then p i (t, x) is a  non-negative function continuous in  Ex F , such
that

(a) Pi(t, 0)— 0 for t EE,

(b) p 1 (t, x ) > “ ( 2
1-1x1 ) for (t, x)ED,

(c) a 1
a 1

• PP' are continuous in  D.a ' 2 ax„

Since we may write in  D

(p,(t, x) ••• Ç
=

(t+ p, x+ Ado-c10
0 0 0

where 0—(01 , 02 , ••• ,0„) and cl0=c10,c102 ••• c10, w e have in D for
any small h>0
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h
1 Ip i (t+h, x +hf (t, x ))— (p i (t, x)}

1  "
••• N r ( t  + h - Fija, X - P h f  + 0 )  — * ( t  +  p c ,  X +  p9)}do - d0

o o

1  "
••• 1* ( t+h +, x +h f +p 0 ) - 0 1 r( t+p o - +h, x +p0+h1)1do - dn

a  0
1

+ • Nr(t+ po- +h, x+ p0+hf)-11r(t+ po-, x+ p0)}  dcr dO
n 0

•••ç i do-dO r +P 6  Ari (r)d7 —f1±n1 f17,
n  o t+h+pm h  1"
1 "+ pk (t+po-+h, x +pe+hf )— *(t+pc, x +p0)} do-d0
rc 0 0

w here f = f ( t ,  x), f =f it+ x + p0), p= p (t, x ) a n d  /5= p(t+h, x
+h f ( t ,  x ) ) .  Then we have

.urn' {(P1(t +h, x + hf (t, x)) — 1 (t, x )}  <15 N i(t + po-) do-1
h -4+0 n 0

+K 1f(t+ po-, x+ pe)— f(t, x )1+nK

— •••Ç e - " ' " )(p(t+ po- , x+p0)clŒdO ,
0 0

where _ _ = 2 P  Ê 3 1 )  f .  so thatcit at ax,

e- '<p(t, x ) x )  <_{ 1+n1f(t, x )1}
4{1 +n1f(t, x )1} { N 2(t)+nK } 4 {N 2 (0+ nK }

Since 0< p o -< m in  {8(t, x), 1}  a n d  p0 f <n p <6 ( t ,  x ) ,  we have

dp
dt

dp
dt

rN i(t+polo - do- i
0

and

dp
dt +nK  dp

dt

 

dp 1 1 
 e ( t ,  x )dt 4<{ N 2(t)+ nif}

     

1  _K if (t+ po-, x + p0)— f(t, x )1< e tcp(t, x ).
4

Hence we have

u rn -1, {cp,(t +h, x + hf(t, x))—  y,(t, x)}n

< 1
9  e -  p (t, x ) e  " " °1)P(t+ po-, x+09)(10- dO
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1
0x)—e - t P(t, x) d- le -c t+"-)9 ( t  + p e r, x  p 0 )— 2 0

—e-fp(t, x)Ido-d0

x)—e - '9)(t, x)+ 1 e - tp(t, x) e-19)(t, x) <  0 .

.Moreover it may be proved easily that 
a t  

is dominated in D

by a continuous function of t alone and that apx  ( i=  1, 2, ••• , n) are

bounded in  D .  Therefore if w e  s e t  (1)(t, x)= {rp,(t, x)} 2 and

4(r)----{a(  1  r)} 2, (1)(t, x) is  the function desired in the theorem.2
q. e. d.

I f  U(t, x ) satisfies the inequality (9) in Theorem 1, it has the
same properties as (Mt, x ) in the above theorem. Therefore we
can state a stability theorem of the well-known form as follows :

Theorem  3. A  necessary and sufficient condition for the solu-
tion x = 0  o f  (1 )  to be strongly stable is that there exists a  non-
negative continuous function V (t, x) on Ex F 1 where F,= {x  < b } ,
such that

(a) V(t, 0)=0 f o r t GE,
(b) V(t, x) > 0  fo r  (t, x )EEx(F,—  {o}),

av . . •
(c) a t  is continuous in  E x  F 1,

a v  .(d) (z= 1, 2, •  , n) are continuous and bounded in E x  F 1 ,

(e) V ( t ,  x )  is positive definite o n  E x F„ that is, there exists a
positive function W  (r) o f  r  defined in  the interval 0 < r < b  such
that V(t, x) W (Ix1) for (t, x )GEx(F,— { 0} ),

aV OV
( f ) --af ax i f i ( t ' x ) (7)

P ro o f .  The necessity follows at once from Theorem 1  and
Regularization Theorem. The proof o f th e sufficiency is very
similar to that of Theorem 1 and therefore is omitted.

q. e. d.

f o r ( t, x )E E x F,.

7 )  f = f2,
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I f  w e replace E  by a compact interval, Theorem 3 coincides
with the uniqueness theorem due to Okamura".

4 .  S tro n g  boundedness.

Hereafter we consider the differential equation

(10) dy
f(t,dt

where t  is real and y a real n-dimensional vector and where f(t, y)
is a continuous function on Ex  R" to R", where E= It : 0<t<,,:+ col.

In the foregoing paper [ 5 ]  (Theorem 7, pp. 18-22), we have
verified that (10) may be transformed into

dY
d t

h(t
'  
Y)

w here E Y i h.(t, Y )= 09  f o r  (t, Y ) E E x S " ,  w here h(t, Y )  i s  a

continuous function on Ex S " to  R "", S " being the unit sphere
in R " 1 , a n d  where h(t, N)=0, N being (0, 0, • , 0, 1) E R " ',,  by
the topological mapping Y—(13(y ) of R"\J loo } onto S" where

(12) (1)(y) = f IMIY1)} 2 1Y12+ 1 . 'IX(IY1)}21Y12±1
N y  E R "2 X (  I y l)  IX(IY1)}21Y12 — 1•

if y = 00 ,

R" being considered as the hyperplane , = 0 orthogonal to the
vector N.

Now let P= (t , 17
1 )  and Q = (t 0 , Y 0 ) be two points in Ex S".

When tp< t o  we denote by "V"„Q the set of all the absolutely con-
tinuous functions v(t) on the interval tp < t< t Q to  S" such that
v (t )= Y , and v(t o ) — YQ.

In the present case we define the Okamura function D(P, Q) by

inf 100— h(t, v(t))1dt if tp<  4 2 ,
v E V  l'Q ` t P

D(Q, P) if t, >  to ,
dis ( Y, , 17

0 ) if tp =  t0

8) cf. Okamura [6], pp. 229-231.
9) Y = (Y i, Y2 ; • • • ; Yn±1); I Y I =\/ Yi+1/ + • • • Y 4 1 a n d  h = ( h l , h 2 , •••

(13) D(P, Q)
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where dis (Ye ,  YQ )  is the geodesic distance on Sn between Ye  and
Y Q .

If P  and Q  are on a solution of (11) we have D(P, Q) =0  and
if not D (P, Q )>0 . Let P—(te ,  Ye ), Q—(t Q , Y 0 )  and R.—(tR ,  YR)
be three points in Ex S " we obtain

D(P, R)— D(Q, N (r)d7I +dis (Ye ,  17.0)

where N (t)= max h(t, Y )1 . If te < 4 2 < t e  we have
YEs,.

(14) D(P, R) < D(P,Q)+D(Q, R) ,

so that, if Q and R  are on a solution of (11), (14) is reduced to

(15) D(P, Q)> D(P, R)

and that, if P  and Q are on a solution of (11), (14) is reduced to

(16) D(P, R)< D(Q, R)

Let P--(t, Y) and Q,— (t„ N ). Since Y= N  is a solution of
(11), D(P, Q,) is non-increasing with respect to t ,  whenever t < t 1 .
Now we put

(17) U(t, Y) = lirn D(P, Q1).

Then we have that U (t, N )=0 for all tE E  and that for (t, Y),
(t', Y ') E Ex S"

tf
(18) I Mr, 17 ') U(t, Y)1<1 N(T) dr1 + dis ( Y, Y') .

Since 0 ‹  U(t, Y ) ‹  U(t, N)+ IU(t, Y )— U(t, N)I ‹dis ( Y, N )< 7r,
U(t, Y ) is a non-negative bounded continuous function on Ex S".
I f  v (t) is  a solution of (11) then by (16) U(t, v (t)) is  a  non-
decreasing function of t.

Now if we put

(19) V(t, y) =  U(t, (1)(y))

it is easily verified that

(a) V(t, y) is non-negative, continuous and bounded in Ex R",
(b) V(t, y) , 0 as y  co uniformly on t E E,

t,

(c) V(t', V(t, N(T)dg-I + for (t, y),

(t', y') E Ex R " where K  is a positive constant,
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(d) for any solution u(t) of (10) V(t, u(t)) is  a  non-decreasing
function of t.

Definition 4. (Strong boundedness.) Every solution of  (10) is
said to be strongly  bounded if  f or any  (t„ yo) E Ex R " there exist
an  e > 0  a n d  a  B > 0  such that f o r  any  6-solution u(t) o f  (10)
starting at (t o , yo )  w e hav e lu(t)l < B  in  th e  whole o f  th e  interval
on which u(t) is defined.

Theorem 4 .  A  necessary and sufficient condition for every solu-
tion o f  (10) to be strongly  bounded is that f o r all  (t, y) E EX R" we
have

(20) V(t, y) > 0

where V(t, y ) is  the function defined by the form ula (19).

P ro o f .  L e t  (to , yo ) b e  a  p o in t  in  Ex R". T h e n  b y  (12)
Y0= 4 ) (Y0) E S"— {N} .  If every solution of (10) is strongly bounded
there exist an  s > 0  and  a B > 0  mentioned in  Definition 4. On
the other hand there exists an n>0  such that the subset 15, 1 B
o f  R "  is  m ap p ed  b y  Y—(13(y ) onto th e  subset Y 1 1--97 of
Sn— In  Let P = (t „  Y0) and Q,—(t„ N) where to < t , .  For any
v(t) E V p 0 1 there exists a  t, such that t0 < t 2 < t i  and  that v „ ,(t )<
1—n1"  in  to < t<  t ,  and vn ± 1(t2) =1— n. If w e  s e t  u(t)— ( 1 ) - 1 (v(t)),
u (t) is  a lso  an  absolutely continuous function on to < t< t ,  and
u(t0)=Y0, I u(t) K B in  t0 < t < 4  and I u(t2) I B .  Hence we have

I U V) U(t)) I dt .L
On the other hand by (12) we obtain

vi (t) —h(t, v(t))I> 
2 x ( I u l )

u(t))1{MIu1)} 2 1u12 +1
2X(r)If we put CB =  m in  we have13 {X(r)} 2r2 +1

Çl
t2

u'(t) —  h(t, v(t))Idt h(t, v(t))1dtto

CB Y2 u'(t)—f(t, u(t))1dt>C B 6 ,

10) v=-(v i  , v2 ,  • • • ) .
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so  th a t w e  have D (P ,Q ,)>C B 8. Since CB  i s  positive and in-
dependent of t, we have n to , Yo) CBE>0, that is , V(to, Y0 )>0.

Next we will prove the sufficiency. Let (to , yo)  be a point in
E x R " .  Since V(to , .Y0)> 0  there exist an & > 0  and a p,> 0  such
th a t  V(to , yo ) — K > .  T h e n  f o r  any te -solution u ( t )  o f  (10)
starting at (to, yo) defined on an y  I w e h ave  V(t, u(t)) >  V(to, .3'0)
—K&>,u, in 1 . S in ce  V(t, 0 as uniformly on t GE, there
exists a  B > 0  such that lu(t)1 < B  in  /. This completes the proof
of the sufficiency.

q. e. d.
In  the present case w e can also replace V(t, y )  b y  a more

regular function. Though th e  ran ge  o f y  is not bounded, yet
V(t, y )  is bounded in  th e  whole o f E x R "  and tends to zero as
y—, C)() uniformly on t EE so that the proof is very similar to that
of Regularization Theorem in  §3  and therefore is omitted.

Now we obtain the following

Theorem 5. A  necessary and sufficient condition f o r  every solu-
tion o f  (10) to be strongly bounded is that there exists a  positiv e
continuous function V(t, y) on  E x  R " such that

O V  .(a) is continuous on Ex R n

a v(b) (i =1, 2, ••• , n ) a r e  continuous a n d  bounded in ExR" ,

(c) V (t , y ) ,  0 a s  y—>00 uniformly o n  t E E,
a v  -  a v(d) - —+ E - -f.(t, y ) >0  f o r  (t, y) E Ex R" .at i=, ay i

If we replace E  by a compact interval, Theorem 5  coincides
with the boundedness theorem due to Okamura'''.
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E rra ta

On quasi-equicontinuous sets—Sets of solutions
of a  differential equation—

By

KyuZ0 H AYASH I

(these memoirs 31  (1958), pp. 9-23)

Page Line For Read
13 28 on / on each compact subinterval of /
15 19 x E / (x, y) E Ix D
15 30 f(x, y) I M(x) If(x, Y)I < M (x ) in Ux
19 9 m (E -e ,„ )<s„, m (E ,-e„„ )< „ ,

19 14 M(x)dx<" M  (x )d x < -
1

E m - ern Em -em   2'"

19 18 max M (x ) max f (x , y)1
E'ri I 111

19 19 k 1 (1y1)= max M (x ) k,( 1 yl) If(x, Y)i
(x ,  y)

19 21 positive continuous positive non-decreasing continuous


