On the strong stability and boundedness of solutions of ordinary differential equations

By
Kyuzo Hayashi

(Received September 8, 1959)

In recent years many authors ${ }^{1)}$ have studied the problem of determining gauge functions, that is, Lyapunov functions for various types of stability and boundedness of solutions of ordinary differential equations. In this paper we shall show that the function $D(P, Q)$, introduced by H . Okamura ${ }^{2)}$ in connection with the uniqueness problem in the theory of ordinary differential equations (cf. Definition 1), will work as the above mentioned gauge function.

In $\S 1$ we shall define the Okamura function $D(P, Q)$. In $\S 2$ we shall obtain a necessary and sufficient condition for the trivial solution $x=0$ of the differential equation (1) to be strongly stable ${ }^{3)}$ in terms of the Okamura function. It should be noted that the Okamura function can be determined concretely by the given differential equation itself, though it may not be easy. In $\S 3$ we shall prove a regularization theorem which will connect our condition in $\S 2$ with that of well-known form. In $\S 4$ we shall discuss the strong boundedness problem by the same idea as for the strong stability in $\S 2$.

1. Okamura function.

In $\S 1, \S 2$ and $\S 3$ we consider the differential equation

$$
\begin{equation*}
\frac{d x}{d t}=f(t, x) \tag{1}
\end{equation*}
$$

1) cf., for instant, Antosiewicz [1].
2) cf. Okamura [6], [7\| and [8].
3) cf. Okamura [9] and cf. Yoshizawa [10].
where t is real and x a real n-dimensional vector and where $f(t, x)$ is a continuous function on $E \times F$ to R^{n}, where $E=\{t: 0 \leqq t<+\infty\}$ and $F=\{x:|x| \leqq b\}^{4)}$. Suppose also $f(t, 0)=0$ for $t \in E$.

Let $P=\left(t_{P}, x_{P}\right)$ and $Q=\left(t_{Q}, x_{Q}\right)$ be two points in $E \times F$. When $t_{P}<t_{Q}$ we denote by $\boldsymbol{U}_{P Q}$ the set of all the absolutely continuous functions $u(t)$ on the interval $t_{P} \leqq t \leqq t_{Q}$ to F such that $u\left(t_{P}\right)=x_{P}$ and $u\left(t_{Q}\right)=x_{Q}$.

Definition 1 ${ }^{5)}$. Put

$$
D(P, Q)= \begin{cases}\inf _{u \in \boldsymbol{U}_{P Q}} \int_{t_{Q}}^{t_{P}}\left|u^{\prime}(t)-f(t, u(t))\right| d t & \text { if } t_{P}<t_{Q} \tag{2}\\ D(Q, P) & \text { if } t_{P}>t_{Q} \\ \left|x_{Q}-x_{P}\right| & \text { if } t_{P}=t_{Q}\end{cases}
$$

$D(P, Q)$ is called the Okamura function with respect to the differential equation (1).

It is easily seen that if P and Q are on a solution of (1) we have $D(P, Q)=0$ and if not $D(P, Q)>0$. We have also

$$
|D(P, Q)-D(P, R)| \leqq\left|\int_{t_{Q}}^{t_{R}} M(\tau) d \tau\right|+\left|x_{Q}-x_{R}\right|
$$

where $P=\left(t_{P}, x_{P}\right), Q=\left(t_{Q}, x_{Q}\right), R=\left(t_{R}, x_{R}\right) \in E \times F$ and where $M(t)$ $=\max _{x \in F}|f(t, x)|$. If $t_{P} \leqq t_{Q} \leqq t_{R}$ we have

$$
\begin{equation*}
D(P, R) \leqq D(P, Q)+D(Q, R) \tag{3}
\end{equation*}
$$

so that, if Q and R are on a solution of (1), (3) is reduced to

$$
\begin{equation*}
D(P, R) \leqq D(P, Q) \tag{4}
\end{equation*}
$$

Let O be the point $(0,0)$ and P a variable point (t, x) in $E \times F$. Then we can define a function of (t, x) by

$$
\begin{equation*}
U(t, x)=D(O, P) \tag{5}
\end{equation*}
$$

Since $x=0$ is a solution of (1) we have for all $t \in E$

$$
\begin{equation*}
U(t, 0)=0 . \tag{6}
\end{equation*}
$$

We have also for $(t, x),\left(t^{\prime}, x^{\prime}\right) \in E \times F$
4) $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.
5) cf. Hayashi and Yoshizaw [2] and cf. Hayashi [3].

$$
\begin{equation*}
\left|U\left(t^{\prime}, x^{\prime}\right)-U(t, x)\right| \leqq\left|\int_{t}^{t^{\prime}} M(\tau) d \tau\right|+\left|x^{\prime}-x\right| \tag{7}
\end{equation*}
$$

Since $0 \leqq U(t, x) \leqq U(t, 0)+|U(t, x)-U(t, 0)| \leqq|x| \leqq b \quad U(t, x)$ is a non-negative bounded continuous function on $E \times F$. Let $u(t)$ be a solution of (1) then by (4) $U(t, u(t))$ is a non-increasing function of t.

2. Strong stability.

Definition 2. Given a positive $\varepsilon>0$ and a point $P=\left(t_{0}, x_{0}\right) \in$ $E \times F$, a function $u(t)$, defined on a subinterval $I\left(\ni t_{0}\right)$ of the interval $t_{0} \leqq t<+\infty$ with values in F, which is absolutely continuous on each compact subinterval of $I^{6)}$ is said to be an ε-solution of (1) starting at P if $u\left(t_{0}\right)=x_{0}$ and

$$
\begin{equation*}
\int_{I}\left|u^{\prime}(t)-f(t, u(t))\right| d t<\varepsilon \tag{8}
\end{equation*}
$$

Clearly for any $\varepsilon>0$ every solution of (1) is an ε-solution.
Definition 3. (Strong stability in the sense of Okamura.) The solution $x=0$ of (1) is said to be strongly stable if for any $\eta>0$ there exist an $\varepsilon>0$ and a $\delta>0$ such that for any ε-solution $u(t)$ starting at $\left(0, x_{0}\right)$ provided $\left|x_{0}\right|<\delta$ we have $|u(t)|<\eta$ in the whole of the interval on which $u(t)$ is defined.

Theorem 1. A necessary and sufficient condition for the solution $x=0$ of (1) to be strongly stable is that for any η such that $0<\eta \leqq b$ we have

$$
\begin{equation*}
\inf _{\substack{n \leq x| \\ | \in \mathcal{S}_{1} \leq b}} U(t, x)>0 \tag{9}
\end{equation*}
$$

where $U(t, x)$ is the function defined by the formula (5).
Proof. Put $W(\eta)=\inf _{\substack{\eta \leq 1 \mid 1 \leq \leq \\ t \in B \backslash b}} U(t, x)$ and suppose that there is a positive η such that $0<\eta \leqq b$ and $W(\eta)=0$. Then there exists a sequence $\left\{P_{m}\right\}$ such that $P_{m}=\left(t_{m}, x_{m}\right) \in E \times F,\left|x_{m}\right| \geqq \eta$ and $\lim _{m \rightarrow+\infty} U\left(t_{m}, x_{m}\right)=0$. If we put $U\left(t_{m}, x_{m}\right)=\frac{\varepsilon_{m}}{2}$ we have $\varepsilon_{m} \geqq 0$ and

[^0]$\varepsilon_{m} \rightarrow 0(m \rightarrow+\infty)$. Since $U\left(t_{m}, x_{m}\right)=\inf _{u \in \boldsymbol{U}_{o P_{m}}} \int_{0}^{t_{m}}\left|u^{\prime}(t)-f(t, u(t))\right| d t$, for every m there is an ε_{m}-solution $u_{m}(t)$ of (1) starting at $(0,0)$ such that $\left|u_{m}\left(t_{m}\right)\right| \geqq \eta$. Since $u_{m}(0)=0$ and $\varepsilon_{m} \rightarrow 0(m \rightarrow+\infty)$ the solution $x=0$ of (1) is not strongly stable. This completes the -proof of the necessity.

Now suppose that we have $W(\eta)>0$ in $0<\eta \leqq b$. Let η be an arbitrary constant such that $0<\eta<b$. Then there are an $\varepsilon>0$ and a $\delta>0$ such that $\left|x_{0}\right|<\delta$ implies $U\left(0, x_{0}\right)+\varepsilon<W(\eta)$. Let $u(t)$ be an ε-solution of (1) starting at $\left(0, x_{0}\right)$ defined on an I. Since $\int_{I}\left|u^{\prime}(t)-f(t, u(t))\right| d t<\varepsilon$, if we put

$$
u(t)=x_{0}+\int_{0}^{t} f(t, u(t)) d t+\sigma(t)
$$

$\sigma(t)$ is absolutely continuous on each compact subinterval of I and $\sigma(0)=0$ and $\int_{I}\left|\sigma^{\prime}(t)\right| d t<\varepsilon$. If $\left|x_{0}\right|<\delta$ and if there is a value of t such that $|u(t)| \geqq \eta$, then there is a subinterval $0 \leqq t \leqq t_{1}$ of I such that $|u(t)|<\eta$ in $0 \leqq t<t_{1}$ and $\left|u\left(t_{1}\right)\right|=\eta$. By (7) $U(t, u(t))$ is absolutely continuous in $0 \leqq t \leqq t_{1}$, so that $\frac{d}{d t} U(t, u(t))$ exists almost everywhere in $0 \leqq t \leqq t_{1}$. For any τ such that $0 \leqq \tau \leqq t_{1}$ there exists a solution $v(t)$ of (1) starting at $(\tau, u(\tau))$. Therefore for any small $h>0$ we have

$$
\begin{gathered}
U(\tau+h, u(\tau+h))-U(\tau, u(\tau)) \leqq|U(\tau+h, u(\tau+h))-U(\tau+h, v(\tau+h))| \\
+U(\tau+h, v(\tau+h))-U(\tau, v(\tau)) \leqq|u(\tau+h)-v(\tau+h)| \\
=|\{u(\tau+h)-u(\tau)\}-\{v(\tau+h)-v(\tau)\}|
\end{gathered}
$$

Hence almost everywhere in $0 \leqq t \leqq t_{1}$ we have

$$
\frac{d}{d t} U(t, u(t)) \leqq\left|u^{\prime}(t)-v^{\prime}(t)\right|=\left|u^{\prime}(t)-f(t, u(t))\right|=\left|\sigma^{\prime}(t)\right|
$$

and therefore we have in $0 \leqq t \leqq t_{1}$

$$
U(t, u(t))<U\left(0, x_{0}\right)+\varepsilon<W(\eta)
$$

so that we have $U\left(t_{1}, u\left(t_{1}\right)\right)<W(\eta)$ that is $\left|u\left(t_{1}\right)\right|<\eta$. Thus there arises a contradiction. This completes the proof of the sufficiency.
q. e.d.

Now we obtain the following

Theorem 2. If the solution $x=0$ of (1) is strongly stable, $x=0$ is uniformly stable, that is, for any $\eta>0$ there exists a $\delta>0$ such that $t_{0} \in E$ and $\left|x_{0}\right|<\delta$ imply that for any solution $u(t)$ starting at $\left(t_{0}, x_{0}\right)$ we have $|u(t)|<\eta$ in the whole of the interval on which $u(t)$ is defined.

Proof. Suppose $x=0$ to be strongly stable. Given any η such that $0<\eta \leqq b$, put $\delta=\inf _{\substack{\eta \leqq|x| \leqq b \\ t \in B}} U(t, x)$. Then we have $\delta>0$ by Theorem 1. Since $U(t, x) \leqq|x|$ for $(t, x) \in E \times F$, for any solution $u(t)$ starting at $\left(t_{0}, x_{0}\right)$ provided that $t_{0} \in E$ and $\left|x_{0}\right|<\delta$ we have, on the whole of the interval on which $u(t)$ is defined, $U(t, u(t))<\delta$ so that $|u(t)|<\eta$.

q.e.d.

3. Regularization theorem.

Lemma 1. Let $p(t, x)$ be a real continuous function on $D=E \times\left(F_{1}-\{0\}\right)=\{(t, x): 0 \leqq t<+\infty, 0<|x|<b\}$ and $q(t, x)$ a positive continuous function on D. Then there exists a positive continuous function $\delta(t, x)$ on D such that, for any $(t, x),\left(t^{\prime}, x^{\prime}\right) \in D$, $\left|t^{\prime}-t\right|<\delta(t, x)$ and $\left|x^{\prime}-x\right|<\delta(t, x)$ imply $\left|p\left(t^{\prime}, x^{\prime}\right)-p(t, x)\right|<q(t, x)$.

Proof. Put $D_{m}=\left\{(t, x): 0 \leqq t \leqq m, \frac{1}{m} \leqq|x| \leqq b-\frac{1}{m}\right\}(m=1,2, \cdots)$. Since every D_{m} is a compact subset of D there exists a positive ε_{m} such that $0<\varepsilon_{m}<\frac{1}{m}$ and that, for any $(t, x) \in D_{m}$ and any $\left(t^{\prime}, x^{\prime}\right) \in D,\left|t^{\prime}-t\right|<\varepsilon_{m}$ and $\left|x^{\prime}-x\right|<\delta_{m}$ imply $\left|p\left(t^{\prime}, x^{\prime}\right)-p(t, x)\right|<$ $q(t, x)$. Let $\eta_{m}(t, x)$ be a non-negative continuous function on D such that $0<\eta_{m}(t, x)<\varepsilon_{m}$ in the interior of D_{m} and $\eta_{m}(t, x)=0$ in $D-D_{m}$. If we put $\delta_{m}(t, x)=\max _{1 \leqq \nu \leqq m}\left\{\eta_{\nu}(t, x)\right\} \quad(m=1,2, \cdots)$, we obtain a uniformly convergent sequence of continuous functions $\left\{\delta_{m}(t, x)\right\}$. Therefore $\delta(t, x)=\lim _{m \rightarrow+\infty} \delta_{m}(t, x)$ is a positive continuous function on D. It is easily verified that $\left|t^{\prime}-t\right|<\delta(t, x)$ and $\left|x^{\prime}-x\right|<\delta(t, x)$ imply $\left|p\left(t^{\prime} x^{\prime}\right)-p(t, x)\right|<q(t, x)$.
q. e.d.

Lemma 2. Let $p_{1}(t, x)$ and $q_{1}(t, x)$ be positive and continuous in D then there exists a positive continuous function $\gamma(t, x)$ on D such that $\frac{\partial \gamma}{\partial t}, \frac{\partial \gamma}{\partial x_{i}}(i=1,2, \cdots, n)$ are continuous in D and that for
$(t, x) \in D$ we have $0<\gamma(t, x)<p_{1}(t, x),\left|\frac{\partial \gamma}{\partial t}\right|<q_{1}(t, x)$ and $\left|\frac{\partial \gamma}{\partial x_{i}}\right|<$ $q_{1}(t, x)(i=1,2, \cdots, n)$.

Proof. Let $h_{m}(t, x)$ be a non-negative continuous function on D such that $\frac{\partial h_{m}}{\partial t}, \frac{\partial h_{m}}{\partial x_{i}}(i=1,2, \cdots, n)$ are continuous in D and that $h_{m}(t, x)>0$ in the interior of D_{m} and $h_{m}(t, x)=0$ in $D-D_{m}$. Let c_{m} be a positive constant such that $c_{m} h_{m}(t, x)<2^{-m} p_{1}(t, x)$ and $c_{m}\left|\frac{\partial h_{m}}{\partial t}\right|, c_{m}\left|\frac{\partial h_{m}}{\partial x_{1}}\right|, \cdots, c_{m}\left|\frac{\partial h_{m}}{\partial x_{n}}\right|<2^{-m} q_{1}(t, x)$. Then all the series $\sum_{m=1}^{+\infty} c_{m} h_{m}(t, x), \sum_{m=1}^{+\infty} c_{m} \frac{\partial h_{m}}{\partial t}, \sum_{m=1}^{+\infty} c_{m} \frac{\partial h_{m}}{\partial x_{1}}, \cdots, \sum_{m=1}^{+\infty} c_{m} \frac{\partial h_{m}}{\partial x_{n}} \quad$ converge uniformly in any compact subset of D, so that if we put $\gamma(t, x)=\sum_{m=1}^{+\infty} c_{m} h_{m}(t, x), \gamma(t, x)$ and its first partial derivatives are continuous in D and we have $0<\gamma(t, x)<p_{1}(t, x),\left|\frac{\partial \gamma}{\partial \bar{t}}\right|<q_{1}(t, x)$ and $\left|\frac{\partial y}{\partial x_{i}}\right|<q_{1}(t, x)(i=1,2, \cdots, n)$ in D.

Regularization Theorem. Let $\varphi(t, x)$ be a non-negative continuous function on $E \times F_{1}=\{(t, x): 0 \leqq t<+\infty,|x|<b\}$ such that
(a) $\varphi(t, 0)=0$ for $t \in E$,
(b) $\quad \varphi(t, x) \geqq \alpha(|x|)$ for $(t, x) \in D=E \times\left(F_{1}-\{0\}\right)$ where $\alpha(r)$ is a positive non-decreasing function in $0<r<b$,
(c) $\left|\mathcal{P}\left(t^{\prime}, x^{\prime}\right)-\mathcal{P}(t, x)\right| \leqq\left|\int_{t}^{t^{\prime}} N(\tau) d \tau\right|+L\left|x^{\prime}-x\right| \quad$ for $\quad(t, x)$, $\left(t^{\prime}, x^{\prime}\right) \in E \times F_{1}$ where $N(t)$ is a non-negative function of t continuous in E and L a positive constant,
(d) for any solution $u(t)$ of (1) $\mathscr{\rho}(t, u(t))$ is non-increasing function of t.
Then there exists a non-negative continuous function $\Phi(t, x)$ on $E \times F_{1}$ such that
(a) $\Phi(t, 0)=0$ for $t \in E$,
(b) $\Phi(t, x) \geqq \beta(|x|)$ for $(t, x) \in D$ where $\beta(r)$ is a positive nondecreasing function in $0<r<b$,
(c) $\frac{\partial \Phi}{\partial t}$ is continuous in $E \times F_{1}$,
(d) $\frac{\partial \Phi}{\partial x_{i}}(i=1,2, \cdots, n)$ are continuous and bounded in $E \times F_{1}$,
(e) $\frac{\partial \Phi}{\partial t}+\sum_{i=1}^{n} \frac{\partial \Phi}{\partial x_{i}} f_{i}(t, x) \leqq 0$ in $E \times F_{1}$.

Proof. Let $u(t)$ be a solution of (1) starting at $(t, x) \in E \times F_{1}$, then we have $\varlimsup_{h \rightarrow+0} \frac{1}{h}\left\{\rho^{\prime}(t+h, u(t+h))-\varphi(t, x)\right\} \leqq 0$. On the other hand we have for any small $h>0$

$$
\begin{aligned}
\frac{1}{h}\{\mathcal{P}(t & +h, x+h f(t, x))-\rho(t, x)\} \\
& =\frac{1}{h}\{\mathscr{P}(t+h, x+h f(t, x))-\mathscr{P}(t+h, u(t+h))\} \\
& \left.+\frac{1}{h} \varphi(t+h, u(t+h))-\varphi(t, x)\right\}
\end{aligned}
$$

Here, since $\lim _{h \rightarrow+0} \frac{1}{h}\{u(t+h)-x\}=u^{\prime}(t)=f(t, x)$, we have

$$
\begin{aligned}
\left.\frac{1}{h} \right\rvert\, \mathcal{P}(t+h, x+ & h f(t, x)) \left.-\varphi(t+h, u(t+h))\left|\leqq \frac{L}{h}\right| x+h f(t, x)-u(t+h) \right\rvert\, \\
& =L\left|\frac{1}{h}\{u(t+h)-x\}-f(t, x)\right| \rightarrow 0 \quad(h \rightarrow+0)
\end{aligned}
$$

Therefore we obtain for any $(t, x) \in E \times F_{1}$

$$
\varlimsup_{h \rightarrow+0} \frac{1}{h}\{\mathcal{P}(t+h, x+h f(t, x))-\mathcal{P}(t, x)\} \leqq 0
$$

Now, if we put $\psi(t, x)=\left(1+e^{-t}\right) \mathcal{P}(t, x)$, we have for any $(t, x) \in$ $E \times F_{1}$

$$
\begin{aligned}
\varlimsup_{h \rightarrow+0} & \frac{1}{h}\{\psi(t+h, x+h f(t, x))-\psi(t, x)\} \\
& =\left(1+e^{-t}\right) \varlimsup_{h \rightarrow+0} \frac{1}{h}\{\varphi(t+h, x+h f(t, x)-\varphi(t, x)\} \\
& -e^{-t} \mathcal{P}(t, x) \leqq-e^{-t} \varphi(t, x)
\end{aligned}
$$

and also we have

$$
\begin{aligned}
& \left|\psi\left(t^{\prime}, x^{\prime}\right)-\psi(t, x)\right| \leqq\left|e^{-t^{\prime}}-e^{-t}\right| \mathcal{P}\left(t^{\prime}, x^{\prime}\right)+\left(1+e^{-t}\right)\left|\mathcal{P}\left(t^{\prime}, x^{\prime}\right)-\mathcal{P}(t, x)\right| \\
& \quad \leqq L b\left|\int_{t}^{t^{\prime}} e^{-\tau} d \tau\right|+2\left|\int_{t}^{t^{\prime}} N(\tau) d \tau\right|+2 L\left|x^{\prime}-x\right|
\end{aligned}
$$

since $\mathcal{P}\left(t^{\prime}, x^{\prime}\right) \leqq \mathcal{P}\left(t^{\prime}, 0\right)+\mid \mathcal{P}\left(t^{\prime}, x^{\prime}\right)-\mathcal{P}\left(t^{\prime}, 0|\leqq L| x^{\prime} \mid \leqq L b\right.$. Let $N_{1}(t)$ $=2 N(t)+L b e^{-t}$ and $2 L=K$, then

$$
\left|\psi\left(t^{\prime}, x^{\prime}\right)-\psi(t, x)\right| \leqq\left|\int_{t}^{t^{\prime}} N_{1}(\tau) d \tau\right|+K\left|x^{\prime}-x\right|
$$

Clearly $\psi(t, 0)=0$ for $t \in E$ and $\psi(t, x) \geqq \alpha(|x|)$ for $(t, x) \in D$.
Since $\varphi(t, x)>0$ in D, by Lemma 1 there exists a positive continuous function $\delta(t, x)$ on D such that, for any $(t, x),\left(t^{\prime}, x^{\prime}\right) \in D$, $\left|t^{\prime}-t\right|<\delta(t, x)$ and $\left|x^{\prime}-x\right|<\delta(t, x)$ imply $\left|e^{-t^{\prime}} \mathcal{P}\left(t^{\prime}, x^{\prime}\right)-e^{-t} \mathcal{P}(t, x)\right|<$ $\frac{1}{4} e^{-t} \mathcal{P}(t, x)$ and also $\left|f\left(t^{\prime}, x^{\prime}\right)-f(t, x)\right|<\frac{1}{4 K} e^{-t} \varphi(t, x)$. Let $\delta_{1}(t, x)$ $=\min \left\{\frac{1}{n} \delta(t, x), \frac{1}{2 n}|x|, \frac{1}{n}(b-|x|), 1\right\}$ for $(t, x) \in D$, then $\delta_{1}(t, x)$ is continuous and positive in D and $\delta_{1}(t, x) \rightarrow 0$ as $x \rightarrow 0$ uniformly on $t \in E$. Since $N_{2}(t)=\max _{0 \leq s \leq 1} N_{1}(t+s)$ is also continuous, by Lemma 2 there exists a positive continuous function $\rho(t, x)$ on D such that its first partial derivatives are continuous in D and that

$$
\begin{aligned}
& 0<\rho(t, x)<\delta_{1}(t, x), \\
& \left|\frac{\partial \rho}{\partial \bar{t}}\right|,\left|\frac{\partial \rho}{\partial x_{1}}\right|, \cdots,\left|\frac{\partial \rho}{\partial x_{n}}\right|<\frac{e^{-t} \mathcal{P}(t, x)}{4\{1+n|f(t, x)|\}\left\{N_{2}(t)+n K\right\}} .
\end{aligned}
$$

Now if we put
$\mathcal{P}_{1}(t, x)=\left\{\begin{array}{lrr}\left.\frac{1}{\rho^{n+1}} \int_{t}^{t+\rho} \int_{x_{1}}^{x_{1}+\rho} \cdots \int_{x_{n}}^{x_{n}+\rho} \psi_{1}^{\prime} \tau, \xi\right) d \tau d \xi_{1} \cdots d \xi_{n} & \text { for }(t, x) \in D, \\ 0 & \text { for }(t, x) \in E \times\{0\},\end{array}\right.$
then $\mathcal{P}_{1}(t, x)$ is a non-negative function continuous in $E \times F_{1}$ such that
(a) $\rho_{1}(t, 0)=0$ for $t \in E$,
(b) $\quad \mathcal{P}_{1}(t, x) \geqq \alpha\left(\frac{1}{2}|x|\right)$ for $(t, x) \in D$,
(c) $\frac{\partial \varphi_{1}}{\partial t}, \frac{\partial \varphi_{1}}{\partial x_{1}}, \cdots, \frac{\partial \varphi_{1}}{\partial x_{n}}$ are continuous in D.

Since we may write in D

$$
\mathcal{P}_{1}(t, x)=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \psi(t+\rho \sigma, x+\rho \theta) d \sigma d \theta
$$

where $\theta=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)$ and $d \theta=d \theta_{1} d \theta_{2} \cdots d \theta_{n}$, we have in D for any small $h>0$

$$
\begin{aligned}
\frac{1}{h} & \left\{\mathcal{P}_{1}(t+h, x+h f(t, x))-\mathscr{\rho}_{1}(t, x)\right\} \\
& =\frac{1}{h} \int_{0}^{1} \cdots \int_{0}^{1}\left\{\psi(t+h+\bar{\rho} \sigma, x+h f+\bar{\rho} \theta)-\psi^{\prime}(t+\rho \sigma, x+\rho \theta)\right\} d \sigma d \theta \\
& \leqq \frac{1}{h} \int_{0}^{1} \cdots \int_{0}^{1}|\psi(t+h+\bar{\rho} \sigma, x+h f+\bar{\rho} \theta)-\psi(t+\rho \sigma+h, x+\rho \theta+h \bar{f})| d \sigma d \theta \\
& +\frac{1}{h} \int_{0}^{1} \cdots \int_{0}^{1}\left\{\psi(t+\rho \sigma+h, x+\rho \theta+h \bar{f})-\psi^{\prime}(t+\rho \sigma, x+\rho \theta)\right\} d \sigma d \theta \\
& \leqq\left|\frac{1}{h} \int_{0}^{1} \cdots \int_{0}^{1} d \sigma d \theta \int_{t+h+\rho \sigma}^{t+h+\bar{\rho} \sigma} N_{1}(\tau) d \tau\right|+K|\bar{f}-f|+\frac{n K}{h}|\bar{\rho}-\rho| \\
& +\frac{1}{h} \int_{0}^{1} \cdots \int_{0}^{1}\{\psi(t+\rho \sigma+h, x+\rho \theta+h \bar{f})-\psi(t+\rho \sigma, x+\rho \theta)\} d \sigma d \theta
\end{aligned}
$$

where $\quad f=f(t, x), \bar{f}=f(t+\rho \sigma, x+\rho \theta), \rho=\rho(t, x) \quad$ and $\quad \bar{\rho}=\rho(t+h, x$ $+h f(t, x)$). Then we have

$$
\begin{aligned}
& \lim _{h \rightarrow+0} \frac{1}{h}\left\{\rho_{1}(t+h, x+h f(t, x))-\rho_{1}(t, x)\right\} \leqq\left|\int_{0}^{1} N_{1}(t+\rho \sigma) \sigma d \sigma\right|\left|\frac{d \rho}{d t}\right| \\
& \quad+K|f(t+\rho \sigma, x+\rho \theta)-f(t, x)|+n K\left|\frac{d \rho}{d \bar{t}}\right| \\
& \quad-\int_{0}^{1} \cdots \int_{0}^{1} e^{-(t+\rho \sigma)} \varphi(t+\rho \sigma, x+\rho \theta) d \sigma d \theta
\end{aligned}
$$

where $\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\sum_{i=1}^{n} \frac{\partial \rho}{\partial x_{i}} f_{i}$ so that

$$
\left|\frac{d \rho}{d t}\right| \leqq\{1+n|f(t, x)|\} \frac{e^{-t} \mathcal{P}(t, x)}{4\{1+n|f(t, x)|\}\left\{N_{2}(t)+n K\right\}}=\frac{e^{-t} \mathcal{P}(t, x)}{4\left\{N_{2}(t)+n K\right\}} .
$$

Since $0 \leqq \rho \sigma<\min \{\delta(t, x), 1\}$ and $|\rho \theta| \leqq n \rho<\delta(t, x)$, we have

$$
\left|\int_{0}^{1} N_{1}(t+\rho \sigma) \sigma d \sigma\right|\left|\frac{d \rho}{d t}\right|+n K\left|\frac{d \rho}{d t}\right| \leqq\left\{N_{2}(t)+n K\right\}\left|\frac{d \rho}{d t}\right|<\frac{1}{4} e^{-t} \mathscr{P}(t, x)
$$

and

$$
K\left|f\left(t+\rho_{\sigma}, x+\rho \theta\right)-f(t, x)\right|<\frac{1}{4} e^{-t} \varphi(t, x) .
$$

Hence we have

$$
\begin{aligned}
\lim _{h \rightarrow+0} & \frac{1}{h}\left\{\varphi_{1}(t+h, x+h f(t, x))-\mathscr{P}_{1}(t, x)\right\} \\
& <\frac{1}{2} e^{-t} \mathcal{P}(t, x)-\int_{0}^{1} \cdots \int_{0}^{1} e^{-(t+\rho \sigma)} \mathcal{P}(t+\rho \sigma, x+\rho \theta) d \sigma d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leqq \frac{1}{2} e^{-t} \mathcal{P}(t, x)-e^{-t} \mathcal{P}(t, x)+\int_{0}^{1} \cdots \int_{0}^{1} \right\rvert\, e^{-(t+\rho \sigma)} \mathcal{P}(t+\rho \sigma, x+\rho \theta) \\
& -e^{-t} \mathcal{P}(t, x) \mid d \sigma d \theta \\
& <\frac{1}{2} e^{-t} \mathscr{P}(t, x)-e^{-t} \mathcal{P}(t, x)+\frac{1}{4} e^{-t} \mathcal{P}(t, x)=-\frac{1}{4} e^{-t} \mathcal{P}(t, x)<0 .
\end{aligned}
$$

Moreover it may be proved easily that $\frac{\partial \varphi_{1}}{\partial t}$ is dominated in D by a continuous function of t alone and that $\frac{\partial \varphi_{1}}{\partial x_{i}}(i=1,2, \cdots, n)$ are bounded in D. Therefore if we set $\Phi(t, x)=\left\{\varphi_{1}(t, x)\right\}^{2}$ and $\beta(r)=\left\{\alpha\left(\frac{1}{2} r\right)\right\}^{2}, \Phi(t, x)$ is the function desired in the theorem. q.e.d.

If $U(t, x)$ satisfies the inequality (9) in Theorem 1 , it has the same properties as $\varphi(t, x)$ in the above theorem. Therefore we can state a stability theorem of the well-known form as follows:

Theorem 3. A necessary and sufficient condition for the solution $x=0$ of (1) to be strongly stable is that there exists a nonnegative continuous function $V(t, x)$ on $E \times F_{1}$ where $F_{1}=\{x:|x|<b\}$, such that
(a) $V(t, 0)=0$ for $t \in E$,
(b) $V(t, x)>0$ for $(t, x) \in E \times\left(F_{1}-\{0\}\right)$,
(c) $\frac{\partial V}{\partial t}$ is continuous in $E \times F_{1}$,
(d) $\frac{\partial V}{\partial x_{i}}(i=1,2, \cdots, n)$ are continuous and bounded in $E \times F_{1}$,
(e) $V(t, x)$ is positive definite on $E \times F_{1}$, that is, there exists a positive function $W(r)$ of r defined in the interval $0<r<b$ such that $V(t, x) \geqq W(|x|)$ for $(t, x) \in E \times\left(F_{1}-\{0\}\right)$,

$$
\text { (f) } \frac{\partial V}{\partial t}+\sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} f_{i}(t, x) \leqq 0^{7} \text { for }(t, x) \in E \times F_{1} \text {. }
$$

Proof. The necessity follows at once from Theorem 1 and Regularization Theorem. The proof of the sufficiency is very similar to that of Theorem 1 and therefore is omitted.
q. e. d.
7) $f=\left(f_{1}, f_{2}, \cdots f_{n}\right)$.

If we replace E by a compact interval, Theorem 3 coincides with the uniqueness theorem due to Okamura ${ }^{8}$.

4. Strong boundedness.

Hereafter we consider the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \tag{10}
\end{equation*}
$$

where t is real and y a real n-dimensional vector and where $f(t, y)$ is a continuous function on $E \times R^{n}$ to R^{n}, where $E=\{t: 0 \leqq t<+\infty\}$.

In the foregoing paper [5] (Theorem 7, pp. 18-22), we have verified that (10) may be transformed into

$$
\begin{equation*}
\frac{d Y}{d t}=h(t, Y) \tag{11}
\end{equation*}
$$

where $\sum_{i=1}^{n+1} Y_{i} h_{i}(t, Y)=0^{9}$ for $(t, Y) \in E \times S^{n}$, where $h(t, Y)$ is a continuous function on $E \times S^{n}$ to R^{n+1}, S^{n} being the unit sphere in R^{n+1}, and where $h(t, N)=0, N$ being $(0,0, \cdots, 0,1) \in R^{n+1}$, by the topological mapping $Y=\Phi(y)$ of $R^{n} \backslash\{\infty\}$ onto S^{n} where

$$
\Phi(y)= \begin{cases}\frac{2 \lambda(|y|)}{\{\lambda(|y|)\}^{2}|y|^{2}+1} y+\frac{\{\lambda(|y|)\}^{2}|y|^{2}-1}{\{\lambda(|y|)\}^{2}|y|^{2}+1} N & \text { if } y \in R^{n} \tag{12}\\ N & \text { if } y=\infty\end{cases}
$$

R^{n} being considered as the hyperplane $Y_{n+1}=0$ orthogonal to the vector N.

Now let $P=\left(t_{P}, Y_{P}\right)$ and $Q=\left(t_{Q}, Y_{Q}\right)$ be two points in $E \times S^{n}$. When $t_{P}<t_{Q}$ we denote by $V_{P Q}$ the set of all the absolutely continuous functions $v(t)$ on the interval $t_{P} \leqq t \leqq t_{Q}$ to S^{n} such that $v\left(t_{P}\right)=Y_{P}$ and $v\left(t_{Q}\right)=Y_{Q}$.

In the present case we define the Okamura function $D(P, Q)$ by

$$
D(P, Q)= \begin{cases}\inf _{v \in \boldsymbol{V}_{P Q}} \int_{t_{P}}^{t_{Q}}\left|v^{\prime}(t)-h(t, v(t))\right| d t & \text { if } t_{P}<t_{Q} \tag{13}\\ D(Q, P) & \text { if } t_{P}>t_{Q} \\ \operatorname{dis}\left(Y_{P}, Y_{Q}\right) & \text { if } t_{P}=t_{Q}\end{cases}
$$

8) cf. Okamura [6], pp. 229-231.
9) $Y=\left(Y_{1}, Y_{2}, \cdots, Y_{n+1}\right),|Y|=\sqrt{Y_{1}^{2}+Y_{2}^{2}+\cdots+Y_{n+1}^{2}}$ and $h=\left(h_{1}, h_{2}, \cdots, h_{n+1}\right)$.
where dis $\left(Y_{P}, Y_{Q}\right)$ is the geodesic distance on S^{n} between Y_{P} and Y_{Q}.

If P and Q are on a solution of (11) we have $D(P, Q)=0$ and if not $D(P, Q)>0$. Let $P=\left(t_{P}, Y_{P}\right), Q=\left(t_{Q}, Y_{Q}\right)$ and $R=\left(t_{R}, Y_{R}\right)$ be three points in $E \times S^{n}$ we obtain

$$
|D(P, R)-D(Q, R)| \leqq\left|\int_{t_{P}}^{t_{Q}} N(\tau) d \tau\right|+\operatorname{dis}\left(Y_{P}, Y_{Q}\right)
$$

where $N(t)=\max _{Y \in S^{n}}|h(t, Y)|$. If $t_{P} \leqq t_{Q} \leqq t_{R}$ we have

$$
\begin{equation*}
D(P, R) \leqq D(P, Q)+D(Q, R) \tag{14}
\end{equation*}
$$

so that, if Q and R are on a solution of (11), (14) is reduced to

$$
\begin{equation*}
D(P, Q) \geqq D(P, R) \tag{15}
\end{equation*}
$$

and that, if P and Q are on a solution of (11), (14) is reduced to

$$
\begin{equation*}
D(P, R) \leqq D(Q, R) \tag{16}
\end{equation*}
$$

Let $P=(t, Y)$ and $Q_{1}=\left(t_{1}, N\right)$. Since $Y=N$ is a solution of (11), $D\left(P, Q_{1}\right)$ is non-increasing with respect to t_{1} whenever $t \leqq t_{1}$. Now we put

$$
\begin{equation*}
U(t, Y)=\lim _{t_{1} \rightarrow+\infty} D\left(P, Q_{1}\right) \tag{17}
\end{equation*}
$$

Then we have that $U(t, N)=0$ for all $t \in E$ and that for (t, Y), $\left(t^{\prime}, Y^{\prime}\right) \in E \times S^{n}$

$$
\begin{equation*}
\left|U\left(t^{\prime}, Y^{\prime}\right)-U(t, Y)\right| \leqq\left|\int_{t}^{t^{\prime}} N(\tau) d \tau\right|+\operatorname{dis}\left(Y, Y^{\prime}\right) \tag{18}
\end{equation*}
$$

Since $\quad 0 \leqq U(t, Y) \leqq U(t, N)+|U(t, Y)-U(t, N)| \leqq \operatorname{dis}(Y, N) \leqq \pi$, $U(t, Y)$ is a non-negative bounded continuous function on $E \times S^{n}$. If $v(t)$ is a solution of (11) then by (16) $U(t, v(t))$ is a nondecreasing function of t.

Now if we put

$$
\begin{equation*}
V(t, y)=U(t, \Phi(y)), \tag{19}
\end{equation*}
$$

it is easily verified that
(a) $V(t, y)$ is non-negative, continuous and bounded in $E \times R^{n}$,
(b) $V(t, y) \rightarrow 0$ as $y \rightarrow \infty$ uniformly on $t \in E$,
(c) $\left|V\left(t^{\prime}, y^{\prime}\right)-V(t, y)\right| \leqq\left|\int_{t}^{t^{\prime}} N(\tau) d \tau\right|+K\left|y^{\prime}-y\right| \quad$ for $\quad(t, y)$, $\left(t^{\prime}, y^{\prime}\right) \in E \times R^{n}$ where K is a positive constant,
(d) for any solution $u(t)$ of (10) $V(t, u(t))$ is a non-decreasing function of t.

Definition 4. (Strong boundedness.) Every solution of (10) is said to be strongly bounded if for any $\left(t_{0}, y_{0}\right) \in E \times R^{n}$ there exist an $\varepsilon>0$ and $a B>0$ such that for any ε-solution $u(t)$ of (10) starting at $\left(t_{0}, y_{0}\right)$ we have $|u(t)|<B$ in the whole of the interval on which $u(t)$ is defined.

Theorem 4. A necessary and sufficient condition for every solution of (10) to be strongly bounded is that for all $(t, y) \in E \times R^{n}$ we have

$$
\begin{equation*}
V(t, y)>0 \tag{20}
\end{equation*}
$$

where $V(t, y)$ is the function defined by the formula (19).
Proof. Let $\left(t_{0}, y_{0}\right)$ be a point in $E \times R^{n}$. Then by (12) $Y_{0}=\Phi\left(y_{0}\right) \in S^{n}-\{N\}$. If every solution of (10) is strongly bounded there exist an $\varepsilon>0$ and a $B>0$ mentioned in Definition 4. On the other hand there exists an $\eta>0$ such that the subset $|y| \geqq B$ of R^{n} is mapped by $Y=\Phi(y)$ onto the subset $Y_{n+1} \geqq 1-\eta$ of $S^{n}-\{N\}$. Let $P=\left(t_{0}, Y_{0}\right)$ and $Q_{1}=\left(t_{1}, N\right)$ where $t_{0}<t_{1}$. For any $v(t) \in V_{P Q_{1}}$ there exists a t_{2} such that $t_{0}<t_{2}<t_{1}$ and that $v_{n+1}(t)<$ $1-\eta^{10)}$ in $t_{0} \leqq t<t_{2}$ and $v_{n+1}\left(t_{2}\right)=1-\eta$. If we set $u(t)=\Phi^{-1}(v(t))$, $u(t)$ is also an absolutely continuous function on $t_{0} \leqq t \leqq t_{2}$ and $u\left(t_{0}\right)=y_{0},|u(t)|<B$ in $t_{0} \leqq t<t_{2}$ and $\left|u\left(t_{2}\right)\right|=B$. Hence we have

$$
\int_{t_{0}}^{t_{2}}\left|u^{\prime}(t)-f(t, u(t))\right| d t \geqq \varepsilon
$$

On the other hand by (12) we obtain

$$
\left|v^{\prime}(t)-h(t, v(t))\right| \geqq \frac{2 \lambda(|u|)}{\{\lambda(|u|)\}^{2}|u|^{2}+1}\left|u^{\prime}(t)-f(t, u(t))\right| .
$$

If we put $C_{B}=\min _{0 \leqq r} \frac{2 \lambda(r)}{} \frac{2(r)}{\{\lambda(r)\}^{2} r^{2}+1}$ we have

$$
\begin{gathered}
\int_{t_{0}}^{t_{1}}\left|v^{\prime}(t)-h(t, v(t))\right| d t \geqq \int_{t_{0}}^{t_{2}}\left|v^{\prime}(t)-h(t, v(t))\right| d t \\
\geqq C_{B} \int_{t_{0}}^{t_{2}}\left|u^{\prime}(t)-f(t, u(t))\right| d t \geqq C_{B} \varepsilon,
\end{gathered}
$$

so that we have $D\left(P, Q_{1}\right) \geqq C_{B} \varepsilon$. Since C_{B} is positive and independent of t_{1} we have $U\left(t_{0}, Y_{0}\right) \geqq C_{B} \varepsilon>0$, that is, $V\left(t_{0}, y_{0}\right)>0$.

Next we will prove the sufficiency. Let $\left(t_{0}, y_{0}\right)$ be a point in $E \times R^{n}$. Since $V\left(t_{0}, y_{0}\right)>0$ there exist an $\varepsilon>0$ and a $\mu>0$ such that $V\left(t_{0}, y_{0}\right)-K \varepsilon>\mu$. Then for any ε-solution $u(t)$ of (10) starting at $\left(t_{0}, y_{0}\right)$ defined on any I we have $V(t, u(t))>V\left(t_{0}, y_{0}\right)$ $-K \varepsilon>\mu$ in I. Since $V(t, y) \rightarrow 0$ as $y \rightarrow \infty$ uniformly on $t \in E$, there exists a $B>0$ such that $|u(t)|<B$ in I. This completes the proof of the sufficiency.

q.e.d.

In the present case we can also replace $V(t, y)$ by a more regular function. Though the range of y is not bounded, yet $V(t, y)$ is bounded in the whole of $E \times R^{n}$ and tends to zero as $y \rightarrow \infty$ uniformly on $t \in E$ so that the proof is very similar to that of Regularization Theorem in $\S 3$ and therefore is omitted.

Now we obtain the following
Theorem 5. A necessary and sufficient condition for every solution of (10) to be strongly bounded is that there exists a positive continuous function $V(t, y)$ on $E \times R^{n}$ such that
(a) $\frac{\partial V}{\partial t}$ is continuous on $E \times R^{n}$,
(b) $\frac{\partial V}{\partial y_{i}}(i=1,2, \cdots, n)$ are continuous and bounded in $E \times R^{n}$,
(c) $V(t, y) \rightarrow 0$ as $y \rightarrow \infty$ uniformly on $t \in E$,
(d) $\frac{\partial V}{\partial t}+\sum_{i=1}^{n} \frac{\partial V}{\partial y_{i}} f_{i}(t, y) \geqq 0$ for $(t, y) \in E \times R^{n}$.

If we replace E by a compact interval, Theorem 5 coincides with the boundedness theorem due to Okamura ${ }^{11}$.

BIBLIOGRAPHY

[1] Antosiewicz, H. A., A survey of Lyapunov's second method, Contributions to the Theory of Nonlinear Oscillations, Vol. 4, Princeton, (1958), pp. 141-166.
[2] Hayashi, K. and Yoshizawa, T., New treatise of solutions of a system of ordinary differential equations and its application to the uniqueness theorems, these memoirs 26 (1951), pp. 225-233 [correction, these memoirs 28 (1954), p. 132].
[3] Hayashi, K., On the differential equation of Carathéodory's type, these memoirs 28 (1954), pp. 129-132.

[^1][4] Hayashi, K., On transformations of differential equations, these memoirs 28 (1954), pp. 313-325.
[5] Hayashi, K., On quasi-equicontinuous sets-Sets of solutions of a differential equation--, these memoirs 31 (1958), pp. 9-23, cf. "Errata" written below.
[6] Okamura, H., Sur l'unicité des solutions d'un système d'équations différentielles ordinaires, Mem. Coll. Sci. Kyoto Imp. Univ. A23 (1941), pp. 225-231.
[7] Okamura, H., Condition nécessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano, ibid. A24 (1942), pp. 21-28.
[8] Okamura, H., Sur une sorte de distance relative à un systeme différentiel, Proc. Phys.-Math. Soc. Japan (3) 25 (1943), pp. 514-523.
[9] Okamura, H., On the strong stability of the stationary point in the current, Functional Equations (in Japanese) 40 (1943), pp. 6-19.
[10] Yoshizawa, T., On the stability of solutions of a system of differential equations, these memoirs 29 (1955), pp. 27-33.

Errata

On quasi-equicontinuous sets-Sets of solutions of a differential equation-

By

Kyuzo Hayashi

(these memoirs 31 (1958), pp. 9-23)

Page	Line	For	Read
13		on I	on each compact subinterval of I
15	19	$x \in I$	$(x, y) \in I \times D$
15	30	$\|f(x, y)\| \leqq M(x)$	$\|f(x, y)\| \leqq M(x)$ in $U \times F_{1}$
19	9	$m\left(E_{m}-e_{m}\right)<\delta_{m}$	$m\left(E_{m}-e_{m}\right)<\delta_{m}\left(e_{1} \subset e_{2} \subset e_{3} \subset \cdots\right)$
19	14	$\int_{E_{m}-e_{m}} M(x) d x<\frac{1}{2^{m i}}$	$\int_{E_{m}-c_{m}} M_{m}(x) d x<-\frac{1}{2^{m}}$
19	18	$\max _{x \in!m} M_{m}(x)$	$\max _{\substack{i \in \in_{n}^{\prime}, b y \equiv m}}\|f(x, y)\|$
19	19	$\begin{array}{r} k_{1}(\|y\|)=\max _{x \in e_{m}} M_{m^{\prime}}(x) \\ \|f(x, y)\| \end{array}$	$k_{1}(\|y\|) \geqq\|f(x, y)\|$

1921 positive continuous positive non-decreasing continuous

[^0]: 6) Even though we read "which is continuous and has a continuous derivative" for "which is absolutely continuous on each compact subinterval of I" our discussion holds good throughout the present paper.
[^1]: 11) cf. Hayashi [4], Theorem 2, p. 317.
