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In recent years many authors® have studied the problem of
determining gauge functions, that is, Lyapunov functions for
various types of stability and boundedness of solutions of ordinary
differential equations. In this paper we shall show that the
function D(P, @), introduced by H. Okamura® in connection with
the uniqueness problem in the theory of ordinary differential
equations (cf. Definition 1), will work as the above mentioned
gauge function.

In §1 we shall define the Okamura function D(P, Q). In §2
we shall obtain a necessary and sufficient condition for the trivial
solution x=0 of the differential equation (1) to be strongly stable®
in terms of the Okamura function. It should be noted that the
Okamura function can be determined concretely by the given
differential equation itself, though it may not be easy. In §3 we
shall prove a regularization theorem which will connect our con-
dition in §2 with that of well-known form. In §4 we shall
discuss the strong boundedness problem by the same idea as for
the strong stability in §2.

1. Okamura function.

In §1, §2 and §3 we consider the differential equation

(1) o fit,

1) cf., for instant, Antosiewicz [1]].
2) cf. Okamura [6], [7]| and [8].
3) cf. Okamura [9] and cf. Yoshizawa [10].
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where ¢ is real and x a real n-dimensional vector and where f(¢, x)
is a continuous function on EX F to R”, where E= {t :0<t< + oo}
and F={x:|x|=<b}*. Suppose also f({, 0)=0 for t€E.

Let P=(fp, xp) and Q=(fy,, xy) be two points in EXF. When
tp<to, we denote by Up, the set of all the absolutely continuous
functions #(f) on the interval {,<t<{, to F such that w(¢p)=x,
and u(fg)=xg.

Definition 1. Pyt

inf (|0 —ft, unldt i tp<to,

u€Upq

2 D(P, Q) = .

(2) (P, Q) D, P) i >t
|xo—xp| if lp=tlg.

D(P, Q) is called the Okamura function with respect to the differ-
ential equation (1).

It is easily seen that if P and @ are on a solution of (1) we
have D(P, )=0 and if not D(P, Q) >0. We have also

ID(P, Q= D(P, R | ' Mir)dr| + | xo— x|

where P=(tp, xp), Q=(tg, xo), R=({g, xg) €EEXF and where M(t)
=max|f(¢, x)|. If t,<t,<1tr we have
xgF

(3) D(P, R)y<<D(P, Q)+ D(Q, R)
so that, if @ and R are on a solution of (1), (3) is reduced to
(4) D(P, R)y=<D(P, Q).

Let O be the point (0, 0) and P a variable point (¢, x) in EX F.
Then we can define a function of (¢, x) by

(5) U(t, x) = D(O, P).

Since x=0 is a solution of (1) we have for all teFE
(6) U, 0) = 0.

We have also for (¢, x), ¢/, ¥')€EEXF

4) x=(x1, x_;;“'y-xn) and lxlz\/'k%+'£g;*; - +:x72;'
5) cf. Hayashi and Yoshizaw [2] and cf. Hayashi [3].
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(7) U, ) U, x)|<| :M<v>dv|+|x'—x|.

Since 0 U, ) U, O)+ | UG, x)—Ut, 0)|<|x|<b U(t, x) is a
non-negative bounded continuous function on ExF. Let u(f) be a
solution of (1) then by (4) U(¢, «(¢)) is a non-increasing function
of .

2. Strong stability.

Definition 2. Given a positive ¢ >0 and a point P=(t,, x,) €
ExF, a function u(t), defined on a subinterval I(>t,) of the inter-
val t,<t<+ oo with values in F, which is absolutely continuous on
each compact subinterval of I® is said to be an &-solution of (1)
starting at P if u(t,)=x, and

(8) S W/ (t)—f(t, w(t)) | dt<é .

Clearly for any & >0 every solution of (1) is an &-solution.

Definition 3. (Strong stability in the sense of Okamura.)
The solution x=0 of (1) is said to be strongly stable if for any
n >0 there exist an € >0 and a 8 >0 such that for any E-solution
u(t) starting at (0, x,) provided |x,|< 8 we have |u(t)|<n in the
whole of the interval on which u(t) is defined.

Theorem 1. A wnecessary and sufficient condition for the solu-
tion x=0 of (1) to be strongly stable is that for any n such that
0<n=b we have
(9) inf U(¢, x) >0

NN o
ten

where UL, x) is the function defined by the formula (5).

Proof. Put W(n)zn <1[nif< U(t, x) and suppose that there is a
=Mi<so
en
positive 5 such that 0<79<<b and W(y)=0. Then there exists a
sequence {P,} such that P,=({,, x,)€EXF, |x,/=7 and

lim U(t,,, x,)=0. If we put U, x,,,):gg we have &,=0 and

Moy too

6) Even though we read ‘“‘which is continuous and has a continuous derivative”
for “which is absolutely continuous on cach compact subinterval of I our discussion
holds good throughout the present paper.
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&,—0 (m—>-+oo). Since U(,, 1,)= inf Y’" () —F(E, ud)|dt,

ueUop,,”°
for every m there is an &,-solution #,(f) of (1) starting at (0, 0)
such that |u,(¢,)|=%. Since #,(0)=0 and &,—0 (m— + o) the
solution x=0 of (1) is not strongly stable. This completes the
-proof of the necessity.

Now suppose that we have W(5) >0 in 0< 9<b. Let 5 be
an arbitrary constant such that 0<’%<d. Then there are an &_>0
and a 6>0 such that |x,/<8 implies U(O, x,)+E< W(sy). Let
u(t) be an &-solution of (1) starting at (0, x,) defined on an I. Since

S, W (&) —F(t, u(t))|dE< &, if we put
u(t) = x,+ S' £t w(t)dt + olt)

a(t) is absolutely continuous on each compact subinterval of I and
a(0)=0 and { lo/(¢)|dt<&. If |x,|< 8 and if there is a value of
JI

t such that |u(f)|=7%, then there is a subinterval 0<t<¢ of I
such that |u(f)|<#n in 0=¢<t, and |u(t)| =% By (7) U, u(?))

is absolutely continuous in 0<¢<t,, so that %U(t, u(t)) exists

almost everywhere in 0<¢<¢#,. For any T such that 0<r<¢,
there exists a solution »(f) of (1) starting at (r, #(7)). Therefore
for any small 2~>0 we have

U+ h, u(r+h)—Ulr, u(7)) < |U(T+h, u(t+h)—Ulr+h, v(t+h))|
+U(r+h, ot +h)—U(r, v(7)) < |u(r+h)—v(r+h)|
= [{u(m+h)—u()} — {o(r+h)—ov(T)} | .

Hence almost everywhere in 0=<{<_¢, we have
%U(f, ul)) = | @)—v' @) = /@) — ¢, u@t))| =o' @),

and therefore we have in 0<¢<¢,
U(t,u(t)) < U0, x,)+¢& < Wi(n)

so that we have U(f,, u(t,))<Wi(5) that is |u(?,)|< 5. Thus there
arises a contradiction. This completes the proof of the sufficiency.
: q.e.d.

Now we obtain the following
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Theorem 2. If the solution x=0 of (1) is strongly stable, x=0
is uniformly stable, that is, for any 5 >0 there exists a 6 >0 such
that t,cE and |x,|< 8 imply that for any solution u(t) starting at
(Z,, x,) we have |u(t)|< = in the whole of the interval on which u(t)
is defined.

Proof. Suppose x=0 to be strongly stable. Given any 7
such that 0<#<b, put 8= inf U(¢, x). Then we have 8 >0 by

< N<b
ten

Theorem 1. Since U(t, x)<|x| for (¢, x) € EXF, for any solution
u(t) starting at (¢,, x,) provided that {,€E and |x,|< 6 we have,
on the whole of the interval on which u(#) is defined, U(¢, u(f))< 6
so that |u(f)|< 1.

g.e.d.

3. Regularization theorem.

Lemma 1. Let p(t, x) be a real continuous function on
D=EX(F,—{0})={(t, 2) : 0= ¢t<+ oo, O<|x|< b} and q(t, x) a
positive continuous function on D. Then there exists a positive
continuous function 6(t, x) on D such that, for any (¢, x), (¢, ') € D,

[t —2|< 8, x) and |x'—x|<8(¢, x) imply | p(t', ) —p(t, x)|<q(t, x).
Proof. Put Dm:{(t, ) 0<t<m, %gmgb—;} m=1,2, ).
Since every D,, is a compact subset of D there exists a positive

&,, such that O<8m<% and that, for any (4, x)€D,, and any

(t',xyeD, |t'—t|< &, and |x'—x|<8,, imply [p(t’, x')—p(t, x)|<
q(t,x). Let 72,(¢, x) be a non-negative continuous function on D
such that 0<9,,(¢, x)< &, in the interior of D,, and 7,(¢, £)=0 in
D—-D,,. If we put (¢, x):lrsnyzgn{v;,,(t, x)} (m=1, 2, --+), we obtain

a uniformly convergent sequence of continuous functions {3,(¢, x)}.
Therefore 6(¢, x)= lim 6,,(¢, x) is a positive continuous function on
oy 00

D. It is easily verified that [#/—¢|<6(¢, x) and |x"—x|<8(¢, x)

imply |p(t" x')—p(¢, x)|<q(¢, x).
q. e.d.

Lemma 2. Let p,(¢, x) and q,(, x) be positive and continuous
in D then there exists a positive continuous function (¢, x) on D such

that oy

o) . .
I T (1= ,
of ox, (i=1,2, -+ ,n) are continuous in D and that for
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(¢, x) €D we have 0<(t, x)<p(¢, x),
ql(t, x) (izl, 2) Tty n)-

Oy
?t_‘<ql )

Proof. Let #,(¢, x) be a non-negative continuous function on

D such that -a-él—t’”, —aﬁ”‘ (/=1,2,---,n) are continuous in D and

that #,(t, x) >0 in the interior of D,, and h,(t, x)=0 in D—D,,.
Let c,, be a positive constant such that c,,7,,(¢, x)< 27" p,(¢, x) and

ah h,, .
of qErs “y Com (¢,, x). Then all the series

on on, on,, .
Zc h,(t, x), 2 Com at Z Cmpy Zl s converge uni-

formly 1n any compact subset of D, so that if we put

(¢, x)= Zc h.a(t, x), y(t, x) and its first partial derivatives are

continuous in D and we have 0< (¢, x)< pi(¢, %), l l<qll‘ x)

a;/; <alt, %) =1,2,---,n) in D.

q. e. d.

Regularization Theorem. Let @(t, x) be a non-negative con-
tinuous function on EXF,={(t, ) : 0= t<+ oo, |x|< b} such that

(@) o(t, 0)=0 for t<€E,
b) @, x)=a(|x|) for (¢, x) € D=E X (F,— {0}) where a(r) is a
positive non-decreasing function in 0< r<_b,

(c) |¢<t',x'>—¢<t,x>|g|S:N<rr)drr|+L|x’—x| for (%),

', x'Ye EXF, where N(t) is a non-negative function of t continuous
in E and L a positive constant,

(d) for any solution u(t) of (1) p(t, u(t)) is non-increasing func-
tion of t.
Then there exists a mnon-negative continuous function P, x) on
EXF, such that

(@) P, 0)=0 for t€E,

b) P, x)=PB(|x]) for (¢, x) € D where B(r) is a positive non-
decreasing function in 0< r<_b,

(c) %(Z)— is continuous in EXF,,

(d) gﬁ (1=1,2, -, n) are continuous and bounded in EXF,,
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@) %‘;4,2%%2@, 2 <0 in EXF,.

Proof. Let u(f) be a solution of (1) starting at (¢, x) € EXF,,
then we have Tim 1 {pit+h, ult+h)—o(t, x)} =<0. On the other

h>+0 h

hand we have for any small 2_>0
1 iptt+h, 217, D)t 2))
= %z_ {pt+h, x+hf(t, x))—pE+h, ult+ h))}

+,;‘l7(p(t—i—h, u(t+h)—p(t, 2)} .

Here, since lim ;7 {u(t +h)— x} =u'(t)=f(t, x), we have

}11 |+ I, x+hf(E, 1)) —p(E+h, u(t+h))|§»% \x+hf(E, x)—ulE+h)|

= LI} {ult+h) 2} —ft, )| >0 (h— +0).
Therefore we obtain for any (¢, x) € EXF,

fim - {p(t+h, x-+hf(E, ) —p(t, D} < 0.

B0

Now, if we put (¢, x)=(1+e ) p(t, x), we have for any (¢, x) €
EXF,

T L {4, x4 A, )=, )

= Qe ) Tm L {plt+h, 5+ 07, 0 —lt, 1)

h>+0

—e 'plt, x) = —e 'p(t, x)
and also we have
Iy(t', &) —(t, )| <|e " —e ! |p(t’, &)+ (L+e ") | @, x')—op(t, x)]

¢/
t

< Lb| S erdr|+2| | N(v)dr| +2L | % — x|
Jt

since @(t, ¥)Zp(t’, 0)+ |p(t’, ) —p(t’, 0| <L|x'|<Lb. Let Nt
=2N({#)+Lbe™* and 2L=K, then
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W, )=, D= | N K| ¥ x.

Clearly (¢, 0)=0 for ¢t € E and (¢, x)=«(|x|) for (¢, x) € D.
Since @(f, x)>0 in D, by Lemma 1 there exists a positive

continuous function 6(¢, x) on D such that, for any (¢, x), (¢, ¥) €D,

|t/ —t|<8(¢ x) and | &' —x|<8(¢, x) imply |e " p(t’, x')—e 'p(t, x)|<

%—e”w(t, %) and also |f(, &) —f(t, x)|<a}{, et p(t, x). Let 8t x)

. (1 1 1
= =3 Sl —(b— 3
mm{ (¢, x), 5 x|, —(0—|x|), 1} for (¢, x) €D, then 6,(¢, x)

is continuous and positive in D and 6,(¢, x) -0 as x— 0 uniformly
on t€E. Since N,(t)= max N,(t+5) is also continuous, by Lemma
0<s <1

2 there exists a positive continuous function p(¢, x) on D such that
its first partial derivatives are continuous in D and that

0<p(t, x) <42 x),
1ap 9p 9p

9| |9 e ' plt, x)
ot | 8x1 <

4{1+n|f(t, x) [} {NB) +nK}

, y Tt

Now if we put

S o R M L e
(2, _( )

for (¢, x) e Ex {0},

then @,(¢, x) is a non-negative function continuous in EXF, such
that

(@) ot 0)=0 for teE,
0 pit, nza }1x]) for (¢, WeD,

ot’ dx,’ ’'Ox

Op, ° o . .
) P, 2P ... 2P are continuous in D.

n

Since we may write in D

pit,n = ||

0vJ0

Sl«{r(t—i-pzr, x+p0)dodb

where 0=(9,, 0,,---,0,) and d0=db,df, .- df,, we have in D for
any small 2 >0
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%{wl(tﬂz, x+hf(t, 2)—p( 2)}

_1 S S ((t + T+ o, %+ I f+p0) — it +po, 2+ p0)} dodO
0 0

IA

SS |t + I+ o, 2+ If+pO)—rlt + po+ , x+pO+hf)|dodd

S g (Wt + po+ I, 2+ 0+ hf) — it + per, 1+ p0)} dodO

Ky pl
h pP—P

0
1 t+h+po
. dcrdﬁs N,(r)dr

t+h+po

+K|f—fl+

IA
x|~
s s

v 0

-

+

S

So..

where f=f(¢, x), f=f(t+po, x+p0), p=p(¢, x) and p=p(E+h x
+7if(t, x)). Then we have

S (Wt +po+ T, %+ pO+hf)— Vit +po, x+p)} dodd

11m A+, 2+ RfE, 2) — it 1)) =) SM(t+p<r)oda1 %

n>+0 f1
dp.
dt

+K|f(t+po, x+p0)—f(t, x)| +nK

1 1
_S S e~ POt + po, x+p0)dedl
0

0

dp ap 8/)
where a7t Z f, so that

dp e '(t, x) e~ 'pl(t, x)
ar ’g{””'ﬂ" D TATAFE O NGO T KT~ AN 4K}

Since 0=pos<min {8(¢, x), 1} and |pf|<np<8(¢, x), we have

([ N+ poyodo ‘2‘;‘+nK‘ lé{N(t)JrnK}‘ 1<—e"¢(t %)

and
K|f(t+po, x+pO)—f(t, x)|< i e tolt, x) .

Hence we have

’1113(1)} {p(t+h, x+hf(¢ x))—p,(¢, x)}
1

<3

<

e tolt, x)—g S e~ POp(t+ po, x+ pb)de db
0 0
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1 1
é%e"{ﬂ(t, x)—e 't x)+g S le~ " *2p(t 4 pa, x4-p0)
0 0
—e 'p(t, x)|dadb
<%6"¢(t, x)—e 'pl(t, x)+%e"fp(t, x) = —%e‘@(t, x) < 0.
Moreover it may be proved easily that %(? is dominated in D
by a continuous function of # alone and that g% (=1, 2, ---, n) are

bounded in D. Therefore if we set P, x)={p,(# x)}* and

B(r)= {a(% r)}z, ®(¢, x) is the function desired in the theorem.
q.e.d.

If U(¢, x) satisfies the inequality (9) in Theorem 1, it has the
same properties as @(f, ) in the above theorem. Therefore we
can state a stability theorem of the well-known form as follows:

Theorem 3. A necessary and sufficient condition for the solu-
tion x=0 of (1) to be strongly stable is that there exists a non-
negative continuous function V(¢, x) on EXF, where F\= {x: |x|< b},
such that

(@) V(t, 00=0 for t€E,
(b) V(t, x)>0 for (t, x) € EX(F,—{0}),
(c) %—‘; is continuous in EXF,,

(d) 8V (i=1, 2, -+, n) are continuous and bounded in EXF,,

(e) V(t, x) is positive definite on EXF,, that is, there exists a
positive function W (r) of r defined in the interval 0< r<_b such
that V(¢, x)2 W([xl) for (¢, x) € Ex(F,— {0}),

(f) + Z P f(t 2)<0” for (¢, x) € EXF,.

Proof. The necessity follows at once from Theorem 1 and
Regularization Theorem. The proof of the sufficiency is very
similar to that of Theorem 1 and therefore is omitted.

q.e.d.

7 f=(f1vf2v e fde
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If we replace E by a compact interval, Theorem 3 coincides
with the uniqueness theorem due to Okamura®,

4. Strong boundedness.

Hereafter we consider the differential equation
dy _ S
(10) dt = f(t, »)

where ¢ is real and y a real n-dimensional vector and where f(¢, ¥)

is a continuous function on EX K" to K", where E= {f : 0=<t<+ oo},
In the foregoing paper [5] (Theorem 7, pp. 18-22), we have

verified that (10) may be transformed into

(1) dy

ar = h(t,Y)

where ZY/Z (¢, Y)=0> for (¢, Y)€EXS", where NI(f,Y) is a

continuous function on EXS” to R"', S” being the unit sphere
in R"', and where #i(f, N)=0, N being (0, 0, ---,0, 1) € R"*!, by
the topological mapping Y=®(y) of R"\J{} onto S* where

21 ) W R"
12) Dy J{M:ym P TS ERR (TN SrTEes R

N if y= oo,

R” being considered as the hyperplane Y,,,=0 orthogonal to the
vector N,

Now let P=(tp, Yp) and Q=(¢,, Y,) be two points in ExS”.
When #,<#o we denote by Vj, the set of all the absolutely con-
tinuous functions o(f) on the interval {,<<¢{<f{, to S” such that
v(tp)=Yp and v(to)=Y,.

In the present case we define the Okamura function D(P, Q) by

inf ([0 —nit, o) 1de i 1< to,

vVEVpo~
(13) D(P, Q) = D(Q, P) if o >to,
dis (Yp, Yo) it 2, =1,

8) cf. Okamura [6], pp. 229-231.
9) Y=(Y,, Y, -, Yu+1)r lYI '_—\/Y%—l—Y%—}— -:-7+Y$VH and h=(h1v hgy ey hn+1)'
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where dis (Y, Y,) is the geodesic distance on S” between Y, and
Y,.

If P and @ are on a solution of (11) we have D(P, Q)=0 and
if not D(P, ) >0. Let P=(tp, Yy), Q=(to, Yo) and R=(tg, Yy)
be three points in EXS” we obtain

IDP, )~ D@, R)|=| [ Nm)dr| +dis (Y, Yo)

fq
ip

where N(f)= max |I(t, Y)|. If {,<t,<t, we have
yvesn

(14) D(P, R) < D(P,Q)+ D@, R),

so that, if @ and R are on a solution of (11), (14) is reduced to
(15) . D(P, Q) = D(P, R)

and that, if P and @ are on a solution of (11), (14) is reduced to
(16) D(P, R) < D(Q, R)

Let P=(¢#,Y) and @,=(¢{, N). Since Y=N is a solution of
(11), D(P, @,) is non-increasing with respect to #, whenever ¢<¢,.
Now we put

(17) Ut,Y)=1im D, Q,) .

t>too

Then we have that U(¢, N)=0 for all t€ E and that for (¢ Y),
(', Y)eExS”

(18) U, Y)- UG, V) <| S:'Nm dr| +dis (Y, Y').

Since 0U@, Y)SU( N)+ Ut Y)—U(t, N)|<dis (Y, N)< =,
U(t,Y) is a non-negative bounded continuous function on ExS”.
If o(f) is a solution of (11) then by (16) U(#, »(¢)) is a non-
decreasing function of ¢.

Now if we put

it is easily verified that

(@) V(¢ ») is non-negative, continuous and bounded in EX R”,
(b) V(t, »)—>0 as y—co uniformly on f€E,

t,
© 1V, )~V I<I| Neoydr| +Kly—3]  for ()

(t', y) e Ex R” where K is a positive constant,
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(d) for any solution u(#) of (10) V(¢, u(¢)) is a non-decreasing
function of £.

Definition 4. (Strong boundedness.) FEvery solution of (10) is
said to be strongly bounded if for any (t,, y) €EXR" there exist
an €>0 and a B>0 such that for any &-solution u(f) of (10)
starting at (t,, y,) we have |u(t)|< B in the whole of the interval
on which u(t) is defined.

Theorem 4. A necessary and sufficient condition for every solu-
tion of (10) to be strongly bounded is that for all (¢, y) € EXR" we
have

(20) V(t, » >0
where V(t,y) is the function defined by the formula (19).

Proof. Let (¢, ) be a point in EXR”. Then by (12)
Y, =P(y,) €S”"— {N}. If every solution of (10) is strongly bounded
there exist an € >0 and a B_>0 mentioned in Definition 4. On
the other hand there exists an _>0 such that the subset |y|=B
of R” is mapped by Y=®(y) onto the subset Y,.,=1—9 of
S*—{N}. Let P=(¢, Y,) and Q,=(¢,, N) where ¢,<¢{,. For any
v(t) € Vpg, there exists a ¢, such that #,<#,<# and that v,,,(#)<C
1—7 in £,<t<¢t, and v,,(t)=1—7 If we set u(t)=DP'(v(2)),
u(?) is also an absolutely continuous function on #,<¢<#, and
u(t)=y,, lu(t)|<B in t,<t< ¢, and |u(f,)]=B. Hence we have

[ wey—rit, wmae = e
to
On the other hand by (12) we obtain

, 2M(|u)) ’
— ,
[v'(¢) h(t,v(t))l2_{k(lul)}2|u|2 1Iu(t) S, u(t))].

If we put Cz= min 2Mr)

R N S| we have

S’ () — Rt v(8)) | dE= S: |0/ (8)— It (8)) | dt

gcagf Wty —f(t, ult))|dE=Cpé,

10) v=C(vy, 05, , 0, :1).
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so that we have D(P, Q)=Cgzé Since Cg is positive and in-
dependent of ¢, we have U(¢,, Y)=Cz& >0, that is, V(¢,, ,) >0.

Next we will prove the sufficiency. Let (#,, ¥,) be a point in
ExR". Since V(t,, y) >0 there exist an € >0 and a x>0 such
that V(¢, y)— K& >u. Then for any & solution u(f) of (10)
starting at (¢,, y,) defined on any I we have V(¢ u(t)) > V(t, »,)
—Ké& >, in I Since V(¢, y)—0 as y— o uniformly on ¢ € E, there
exists a B_>0 such that |«(¢)|<”B in I. This completes the proof
of the sufficiency.

q.e.d.

In the present case we can also replace V(¢, ) by a more
regular function. Though the range of y is not bounded, yet
V(¢, y) is bounded in the whole of EXR” and tends to zero as
y—oo uniformly on #€E so that the proof is very similar to that
of Regularization Theorem in §3 and therefore is omitted.

Now we obtain the following

Theorem 5. A necessary and sufficient condition for every solu-
tion of (10) to be strongly bounded is that there exists a positive
continuous function V(t,y) on ExX R" such that

oV

(a) En s continuous on EX R",

) gfv (i=1, 2, --- , n) are continuous and bounded in EXR",
(c) V(}, »N—0 as y—oo uniformly on t€E,

@ W+ %}%f,—(t, N=0 for (t,y) €EXR”.

If we replace £ by a compact interval, Theorem 5 coincides
with the boundedness theorem due to Okamura'®.
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Errata

On quasi-equicontinuous sets—Sets of solutions
of a differential equation—

By

Kyuzo HavAsHI

(these memoirs 31 (1958), pp. 9-23)

Page Line For Read

13
15
15
19

19

19

19

19

28 on [ on each compact subinterval of I
19 xel (x, ) €eIxXD
30 1f(x, 3) =M |f(x, ) |=M(x) in UXF,

9 m(E,—e,)<3, m(E, —e,) <5, (e e, e, ++)

1 N g 1
14 SEm—(’m M(x) dx< _Zni SEm—z’m Mn('x') d" < _2;71
18 max M, (x) max |f(x, y)|

rl=m

19 k(|y|)=max M, (x) k(lyD) =1f(x, p)]
= f(x, )]

21 positive continuous positive non-decreasing continuous



