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1. INTRODUCTION

K. Itdo [19507* and K. Yosida [1952] defined and constructed
all the Brownian motions on Lie groups. The purpose of the
present paper is to give a new method for constructing the
Brownian sample paths on the 3-dimensional rotation group SO (3).
The idea is to inject the differentials 3(d?) of a (skew) Brownian
motion on the Lie algebra into SO (3) via the exponential map e
and to piece the resulting infinitessimal rotations e[#(d?)] into a
continuous path (product integral):

1.1 0.(2)
= [\el3ds)]
= liff_} e[3(0, 277)] -+ e[ 5(27"[27], £)] t>0.

The same trick gives the Brownian motions on all the classical
(non-exceptional) simple Lie groups of E. Cartan’s list.

F. Perrin [1928] computed the counterparts of the Gauss
and Poisson laws on SO (3); for a sketch of Perrin’s results, see
P. Lévy [1948: 194-203].

I divide the paper into 8 sections: 2 deals with SO (3), its Lie
algebra, and its differential operators; 3 with its Brownian mo-
tions. 4 states the program of injection. 5 is devoted to sums
g:Z‘Bi,, of stochastic integrals

* K. Ito [1950] means K. Ito’s 1950 publication listed at the end of this paper;
K. Ité [1950: 6-8] would mean pages 6-8 of that work.
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t
L2 h=e, fo={ s ids) = s(ds)+ aldsy

6 contains the identification of g with g.=/\e[3(ds)]. 7 identifies
s<t

g=g. with a Brownian motion on SO(3). 8 contains an example
which C. D. Gorman [1958] has also treated*. I will suppose, for
the purposes of 5, 6, and 7, that the reader is familiar with stoc-
hastic integrals as presented, for example, in K. Itd6 [1951].

I wish to thank H. Trotter who suggested the problem of 8
which was the starting point of this paper. I must also thank
K. Itd6 for helpful talks and for a trick used in 5.

2. ROTATION GROUP

R® is the (real) 3-dimensional euclidean space of points
x=(x,, X,, x,), etc.; |x|=/x2+x3+x%;¢e,=(,0,0), ¢,=(0, 1, 0),
e,=(0,0,1); x is the outer product for R® (e, Xe,=e,, e,Xe,=¢,,
e, X e, =e,); small German letters §, efc. stand for (real) 3x3
matrices ; *f is the transpose of f; f' its inverse; |f| its norm;
SO (3) is the (multiplicative) group of 3x3 orthogonal matrices
g (g¥g=e= the unit) of determinant +1.

Bringing in the infinitessimal rotations

00 O 0 01 0-10
2.1 e, =10 0 =1}, ¢ = 00 O], =1 0 0
01 O -1 0 0 0 0 0
and the product
2.2 [fo, ol = fife—Rfis
a short computation justifies
2.3 [e,e.] =c¢, [enel=c¢, [e,e]=ce,

which shows that the vector space A of matrices
2.4 a = e, + e, + e, a=(q, a, aa) eR’

under the product 2.2 is isomorphic to R® under the outer product.
A is the so-called Lie algebra of SO (3).
A is connected to SO (3) via the exponential map

2.5 e(f) = nzof”/n!

* Note added in proof : for a complete account, see C. D. Gorman, Brownian mo-
tion of rotation. Trans. Amer. Math. Soc. 94 (1960), 103-117.
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and the logarithm
2.6 l(f)zZl(f—e)”/n [f—el<1:

in fact, / maps the neighborhood |g—e|< 1 of SO (3) onto a neigh-
borhood of the O element of A and e¢ maps the neighborhood
[a|<lg2 of A onto a neighborhood of ¢ in SO (3); both maps
are 1:1; in the first case, the inverse map is e¢; in the second,
it is /.

SO (3) is homeomorphic to the 3-dimensional projective space
P?: in fact, P°, viewed as the spherical surface S*< R* with anti-
podal identifications, is homeomorphic to the solid 3-dimensional
ball of diameter 2= with antipodal surface points identified, and
the map taking « (|a|<=) into the rotation g of total angle |«
about the axis « in the sense of the right-hand screw rule is a
homeomorphism of the solid ball with surface identifications onto
SO (3) (for small «, ¢—g is just the exponential map).

Consider the class C*[SO (3)] of functions f=f(g) defined on
SO (3) such that, for g€SO (3), h(a)=f(ge[ e, +a,e,+ae]) is of
class C, near a¢=0 and define

2.7 (@1f)(g) = kl(o) ’ ((Ezf)(g) = 112(0) ’ (@sf)(g) = hs(o) ’

where the subscripts stand for partials.
Writing out the power series for f at g=e up to terms of
degree 2, it develops that, with the commutator product 2.2,

2.8 [@1, @2] = @3’ [@2: @3] = @1, [@37 @1] = @:2,
so that the algebra of differential operators
2.9 €= a1@1+a2@2+a3@3 Q= (an Qa,, aa)ERa

under the commutator product is isomorphic to the Lie algebra;
under the usual product, €,, &,, &, generate the algebra of dif-
ferential operators on SO (3) commuting with left translations.

Contracting @,, &,, €, to the class of functions f € C*[SO (3)]
such that f(g,)=s(g.) if g.e;=g.6; (,=(0, 0, 1)) and viewing them
as differential operators on the coset space SO (3)/SO (2)=S" of
points ge, one gets the following 3 operators:

_cosyrcosp O
sinyr 9P’

_cosyrsing 9 O
sinyy 9}’ 9P’

2.10 sin <,b% cos (758%,
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where 0<+r<= is the colatitude and 0<$< 27 the longitude of
a¢;.

The reader is referred to W. Maak [1950: 161-179, 209-210]
and to I. Gelfand and Z. Ya. éapiro [1956 ; 207-245] for proofs
and more information.

3. BROWNIAN MOTIONS ON SO (3).

Consider the space of all continuous (sample) paths w:
te[0, +o0)—g(t) €SO (3), let B, be the smallest Borel algebra
of subsets of the path space measuring the entries of g(s) for each
s<t, let B be the smallest Borel algebra containing all of these,
and take non-negative Borel measures Pg defined on B of total
mass +1, one to each ge€SO(3), such that Pg[g(0)=g]=1 for
each g€ S0 (3) and Pg(B) is Borel on SO (3) for each B€ B.

[W, B, P geSO@3)] is said to be a (left) Brownian motion
on SO (3) if it is Markov :

3.1 Plg(t+s)edg|B,] = Pb[g(t) €dg]ly_qcs) t, s>0
and if it is also (left) group-invariant :

3.2 Py(B) = Py(37'B) g€S0O (3), Be B,

where g7'B is the set of sample paths such that the translated
path g7'g(¢) : ¢ >0 lies in B.

Given such a Brownian motion, its generator & is defined
as

3.3 (®f) (@ = lim ¢ "E[ f(g(t)—f(g)]
§€S0 3), E(f) = j FP(dw)

for the class C(®) of functions f€ C[SO (3)] such that the limit
exists (pointwise) and the resulting & f lies again in C[SO (3)].
Because C(®) is a (left) ideal in C under the convolution

3.4 (£®£) ) = | £(557)0)ds,

where dg is Haar measure for SO (3), it is clear from the inclusion
C*QC(G)C* that C(G)NC? is well-populated, and it is possible
to conclude that & is an elliptic differental operator of degree 2
commuting with (left) translations:
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3.5 G =1 517,66+ SIm6;,
2 i5<s i<
where
Iy 1, I
3.6 (= |l Ly by | =lim B [gt)—c]
Ly L I '

is symmetric (I=*I) and non-negative definite ({>0), and

3.7 m = me, +me,+me, = lim¢'E,[g(t)—e].
t40

On the other hand, an elliptic differential operator such as 3.5
with [=*[>0 generates a (left) Brownian motion ; for the proofs,
the reader is referred to the articles of K. It6 [1950] and K. Yosida
[1952].

4. INJECTION

Consider, now, the standard Brownian motion on R?® with

enerator 1 ( 4 + o + aZ) and sample paths w: {—>x(f)€R?
g 2\ox} " Ox3 " Ox3 pe b ' ’

write P for the Wiener measure for paths starting at 0, let
E(f)= S fP(dw), select an SO (3) Brownian generator & as in

3.5, introduce the (skew) R*® Brownian motion
4.1 2(t) = "Px(t) +mt >0,

where ' is the non-negative definite root of I and m=(m,, m,, m,),
and, making the identification of KR*® and A (e,—e¢,, ¢,—¢,, e;—¢,),
think of 4.1 as a Brownian motion 3=z, + 2,6, + 2,¢, in the
Lie algebra itself.

We inject 3 into SO (3) via the exponental, thus:

4.2 g.(¢) = g(0) €SO (3) t=0
= g.(727")e[3(A)] t>0
A=1[j278, j=1[2t], #%A)=3)—327")
and assert that g, converges to a limit g., that the convergence
is uniform on compacts, and that g. is the Brownian motion on

SO (3) with generator &.
With the help of P. Lévy’s Holder condition [1937 : 168-172]
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. |x(2,)—x(2)| _
4.3 lim sup = ot igt| —
0t <t,<1
and the multiplication table
0 0 O -1 0 0 -1 0 O
4.4 =10 -1 0|, e=| 0 0 0], e%:l 0—-1 0
0 0 -1 0 0 -1 0 0 O
0 0 o 0 0 0 0 0 0
ee, =11 0 0}, ee, = |0 0 01, ee, = lO 0 0
0 0 O 0 1 0 1 0 0

it is clear that, up to terms involving 3(A)’ (of magnitude < 27***),

4.5  g.(t)—gu(j27") = gu(727")(e[3(A)] —e) = gn(J'Z’")(a(AH%a(A)Z),

where

0 _za(A) zz(A)
4.6 5(A) = 21(A)91+32(A)e2+23(A)ea = zs(A) 0 '_Zx(A)
—ZQ(A) Z‘(A) 0

and
1 2
4.7 7245(A)
h[zz(A)z‘i'za(A)z] ZI(A)ZZ(A) zl(A)ZS(A)
=3 a@a@) —[aAF+aGF] 2@ |,
za(A)zl(A) za(A)zz(A) _[zl(A)z+zz(A)2]

and the reader who knows stochastic integrals will at once con-
jecture that g.=1lim g, is the solution of
nfeo

4.8 at) = 90+ | gids) >0,
where
4.9 i(ds) = 3(ds)+ 3 tds
latl] L L,
e N S AV I A
L, Lo —[ha+l]

t is computed from 4.7 using the multiplication table
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4.10 dt | x,(dt) | x,(dt) | x,(dF)
dt 0 0 0 0
x(dt)| O dt 0 0
x(dt)| O 0 dt 0
xy(ds)| O 0 0 dt

and the resulting

41 dt | z,(dt) | z,(dt) | z,(dt)
dt 0 0 0 0
adty| 0 | ndt | 1.t | Lt |
z(dt)y| O l,dt | 1dt » ,,dt
z(dty| O | L,dt | L,dt | l,dt

and S gdi means perform the matrix multiplication gdj and compute

the 9 resulting stochastic integrals.
The program is to solve 4.8 for g and to compare g and g,:
the result will be that limg,=g, permitting the identification of
n1~oo

the product integral /\e[3(ds)] with g and, at the same time,
s<t

proving its existence.

5. SOLVING THE INTEGRAL EQUATION

Given (constant) g(0) € SO (3), consider the continuous SO (3)
solutions g=g(f) of 4.8 such that, for each #>0, g(#) depends
upon #(s):s<¢ alone.

Given 2 such solutions g, and g,, their difference g=g,—g,
satisfies

5.1 ot) = § a(s)itds)  £>0

and, using a formula of K. Itdé [1951: 60], it develops that
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5.2 a(2)*g(?)
t t t
— {"garrg+ [ grairg+ [ adiraig
0 [ 0
t
= | gtai+rdi+aprai+g.
[
But, according to the multiplication table 4. 11,
5.3 di+*di = tds, di*dj = dy*dy = —1ds,

and therefore g*g=0, which is impossible unless g,=g;.
Consider, next, the presumptive solution

5.4 g =2
t
W = [ had 2>1, =00
and let us check that the sum is convergent using the following
trick of K. Ito.

Given f{, if ¢,(=|f|’)=>v.>>7, are the eigenvalues of f*f, if p,,
p,, b, are the corresponding projections (y,p,+v.p,+v:.p;=f*f), and

if S , do is the arithmetical average over the spherical surface S’
S

then
2 — 2 — 2 . 1
5.5 [ 1potdo = [ 1pordo = 1pordo -
and
A
5.6 [ cotiodo >, Inol*do = 31712,
s s 3

where of*fo is the inner product of o€ S* and {*fo€ R*.
Viewing "?x(¢) : t >0 as a Brownian motion v in the Lie algebra,

, L, £, . 1
5.7 In(t) = S In»llds‘!_ s In~1n(ds) 1=
[ 0

t4+m,
and using 5.6 to check

t
5.8 B[,

£3ES [Stln 19(ds) S in_li)(dS)]odo

0

=3 ES [Stl,. L (ds)*n(ds)*, 1]0d0

— _3E S [S' 1,,_1f*1,,_1ds] 0do < 3|¥|E S:H,,_l]ds,
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it is seen that

5.9 (Eli(8) %)

g <E 'St i”_li ds 2>I/Z+ <E 2)1/2

< qile+ @ity ([ fooilds)

[ fucsnias)

As to Zoi,,, since b,=i,—E(i,) is a martingale, |§,| is a semi-

martingale, so that, using a result of Doob [1953: 314-315] in
conjunction with 5.9,

5.10 P(max|9,(s)| =>27")
s<t
< 2”E|H,|*
<327E |, 06,%5,0d0
S

<32"E Ssz oLi,*1,— E(,Y*E(j,)Jodo

_<_322"ES , 0l *,0do
S
< 32" E|j,|*

is the general term of a convergent sum, and now the Borel-
Cantelli lemma implies that the convergence of

5.11 goin = Eobﬁ EOE(L.) :E) . +e(it)

is uniform on compacts.
g is therefore well-defined and continuous; that it solves 4.8
is clear; and that it lies in SO (3) follows from

5.12 a(t)*a(t)
— g(0)*g(0)+ S o[ di +*dj+di*diT*q

=e t>0

and from the fact that det (g) (= =*1) is continuous and = +1 at
t=0.

6. CONVERGENCE PROOF
Coming to the proof that limg,=g (= > 1,), take <1, j=[2"¢],
"y o n=0
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and let us estimate
t
6.1 0090~ | asi@s)

= 10— [ 1u9)i(ds)
027~ 6(0)— B aulli— 12 A,

where
6.2 ful8) = 8u(8)—8a((i —1)277)  s€A,
A, =[G—12" 27" i< o,
P. Lévy’s 4.3 implies that
6.3 r{lsafdf"(t)|< V327 ig2r nt oo
and that, up to terms of magnitude 2"[ /327 "/g2"]?<27"",
6.4 gu(j27") —g(0)— igjgn((i —-1)277)iA;)

= 238,((i—1)27") (e[3(A)1—e—i(4))
= ; gu((1 —1)27")w;

W, — ; [3(A,°—£2"] i< o,

Itd’s trick (5.6) and the semi-martingale method of 5.11 give
6.5 P[max| > 8a{({—1)27")o, | > 27"]

j<ot i<

< 27PE| 23 g.(i—1)27")w, |*

j<2"

<32 E | o[ 37 g0, *3 g,0,Jo do
i<2" i<2"

S

= 32073 o[ 3 g.(1,27" +1,27" +1,27*")*q, Jo do

= 327" Eg , 0L 23 g, ,*w,*g, 7o do
S i<2"
E SS2 i<z

< 3(It, ]+ [+ [, )27

with constant i,, i,, i,, so that, thanks to the Borel-Cantelli
lemma,

6.6 18.(727")—g{0)— _;,gn((i—l)Z’")i(A;)l<2'”’3 ntoo.
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t
As to S f.di, if &,=&,t) is the indicator of the sphere |f.(t)]

<27"7 then, as is clear from 6.3,

t t
6.7 (i =[fea  t<1, e,
and now

t . t . t
6.8 [ tudi = (" fiids+ [ aveas)
in conjunction with
6.9 ’Stf,,idsig|i|2’”/" t<1, ntoo,
6. 10 P [max S' f,,&‘,,x)(ds)t > -]

t<1 0

< 32"°E SSZ 0 [S; f,,E,,l)(ds)*S; f,,E,,t)(ds)]o do

= —32"°F SSZ 0 S: &, f,,f*f,,ds]o do

£32n/2|ﬂ2—2n/3 — 3'f,2—n/6’

and the Borel-Cantelli lemma, justifies

6. 11 max;g' f,,dii<2‘”/“ nt oo
0

t<1

Collecting all this, if 0,—g,—g(0)— S'g,,di, then
[

6.12 max |[0,(¢)|< 3. 27" ntoo,
<1

and using K. Itd’s method of stochastic differential in conjunction

with dj+*dj+di*di=0 to check

t
6.13 g.*g=0,%g+e— S o, *dj*g

t t
and estimating S o, *dj*g as we estimated S f.di justifies
0 1]

n/s

6.14 max|g—g,| =max|g,*g—e|< 2"
<1 t<1
completing the proof.

7. COMPUTING THE GENERATOR

nt oo,

g.=g= > i, is a Brownian motion on SO (3): in fact, it is con-
nz=0
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tinuous and its Markovian and (left) group-invariant character
is clear from the product integral

7.1 Gu(:) = gu(2)) t s[r\« e[ 3(ds)] t,>1,.

Coming to its generator, we adapt the stochastic differential
of K. Ito [1951; 59-65] to the present setting and find that for
FECTSO (3],

7.2 sf(g(1)

— Ag(0)+ S [2(ds) - grad]f(g)
+ S: ; [2(ds) - grad 1 (g)
— Fg(ON+ S [07x(ds) - grad]i(g)

+ S:<®f><g>ds,

where grad is short for (§,, &,, &,).
But now it is clear that

7.3 lﬁigl ELf(g@))— fF(H)]

—lim¢'E g' (® £)(q)ds]
tyo 0
= (&f)(H) b = g(0),
and this completes the identification of g,.=g= Z‘,oi,, as the SO (3)
BROWNian motion with generator &.

8. ROLLING WITHOUT SLIPPING

Consider the standard Brownian motion on the plane R*x 0 R®
2 2
with generator %(88?%+§§§> and sample path w: ¢t— x(f)=(x,(¢),
x,(2), 0) and let a sphere of diameter 2 roll without slipping on
the plane R*x —1C_ R®* while its center traces out the polygonal
line joining the points x(j27"): j=>0 of the plane R?XxO0.
Concentrating on times #< 1, select m=m(w) such that

8.1 [ 2(2,)—x(8,) | < (¢,—8,)° 0<,<t,<1, t,—t, 2™

and 2"°<[g2, so that, for |a|<2" e[ae, +ae,+ae,] is the
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counterclockwise rotation of angle || about the axis «.

exsXx(A) Given n>m and i<2" it is clear from
the DIAGRAM that as ¢ grows from ¢, =
(f—1)27" to £,<i2™" the sphere suffers a
rotation

8.2 e[ —x(Ae,+x,(A)e,] A=[t,1t]

of angle |x(A)[<2™* counterclockwise
about the axis e, cross x(A).

One sees at once that the total rotation
up to time ¢ is identical in law to the g,(f) of 4 computed for

1 00
8.3 =10 1 0], m=m,=m=0, g0)=ce,
0 0O

and one concludes that lim g,=g.. is the SO (3) Brownian motion

nag oo

with generator @z%(@ﬂ@ﬁ), permitting the identification of that

motion with the total rotation up to time t of a sphere of diameter
2 rolling without slipping on the plane R*X —1 as its center per-
forms a standard Brownian wmotion on the plane R*x0. C. D.

Gorman [1958] also got a proof that lim g, exists in the present
MTOO

case.
Consider, now, the path g.¢, of the north pole ¢,=(0, 0, 1) : this

motion is Markov ; its generator &, is %(@H(&ﬁ) cut down to
the coset space SO (3)/SO (2)=5*:

1< 1 9
2 \sin O

where + is colatitude and ¢ is longitude on S* (see 2. 10).

8. 4 ®, — sin a?;, +cott aa(;)

@, splits into the Legendre operator (2 sin \}r)“ag—sin«}rai

1 , az "Il‘ 11’
2' cot '\I/' a’(’b—z,
path; in fact, colat (g.e,) is the process attached to the Legendre
operator on [0, #] and /longitude (g.e,) is a standard circular
Brownian motion independent of colat (g.e,) run with the clock

plus and this splitting is reflected in the sample
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S’ cot* [ colat(g..e;)|ds .
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