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1 .  INTRODUCTION

K. Itô [1950]* and K. Yosida [1952] defined and constructed
a ll the Brownian motions on Lie groups. Th e purpose of the
present paper is to give a  new method fo r  constructing the
Brownian sample paths on the 3-dimensional rotation group SO (3).
The idea is to inject the differentials 3(dt) of a  (skew) Brownian
motion on the Lie algebra into SO (3) via the exponential map e
and to piece the resulting infinitessimal rotations e[i(d t)] into a
continuous path (product integral) :

1. 1 goo(t)
= e[(ds)]

s

= lim  e[(0, 2 ')] •  e [5 (2 - n[2"t], t)] t > 0 .

The same trick gives the Brownian motions on all the classical
(non-exceptional) simple Lie groups of É. Cartan's list.

F. Perrin [1928] computed the counterparts of the Gauss
and Poisson laws on SO (3) ; for a  sketch o f Perrin's results, see
P. Levy [1948: 194-203].

I  divide the paper into 8 sections : 2 deals with SO (3), its Lie
algebra, and its differential operators ; 3 with its Brownian mo-
tions. 4 states the program of injection. 5 is devoted to sums
l=  1„ of stochastic integrals

*  K. Ito [1950] means K. ItO's 1950 publication listed at the end of this paper ;
K. Ito [1950: 6 -8 ] would mean pages 6-8 of that work.
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1 1.2j e =j , ,  i(d s ) i(ds) =  i(d s )+ 
2

5(ds) 2 .0

6 contains the identification of g with g o o = e[i(d s)]. 7 identifies
t

g = go., with a Brownian motion on SO(3). 8 contains an example
which C. D. Gorman [1958] has also treated*. I will suppose, for
the purposes o f 5, 6, and 7, that the reader is familiar with stoc-
hastic integrals as presented, for example, in K. Itô [1951].

I wish to thank H. Trotter who suggested the problem o f  8
which was the starting point of this paper. I  must also thank
K. Itô for helpful talks and for a trick used in 5.

2. ROTATION GROUP

123 i s  th e  (real) 3-dimensional euclidean space of points
x = (x, , x,, x,), e t c . ;  1x1= N/A+ x + x R  ; e, = (1, 0, 0), e 2 = (0, 1, 0),
e3 = (0, 0, 1) ; x is  the outer product for l e  (e,x e 2 =e 3 , e2 x e3 =
e, x e, = e 2 ) ; small German letters f, e t c .  stand for (real) 3 x 3
matrices ; *f is the transpose of f ; f - 1  i t s  inverse ;  I f I  its norm
SO (3 ) is  the (multiplicative) group o f  3 x 3 orthogonal matrices

(g*g = e= the unit) of determinant +1.
Bringing in the infinitessimal rotations

2.1 e1 =
' 0
0

, 0

0
0
1

0
— 1

0
,e 2 =

0 0 1
0 0 0

—1 0 0
,e 3 =

0
1
0

— 1
0
0

0
0
0,

and the product

2.2 Efi, = f1f2—f2f1
a short computation justifies

2. 3 =  e 3 , Ce2, =  e 1 , Ce2, = e2,
which shows that the vector space A  of matrices

2.4 a + a2e2+ a,e, a =  (a„ a2 , a 3 ) E R 3

under the product 2. 2 is isomorphic to IV under the outer product.
A  is the so-called Lie algebra o f SO (3).

A  is connected to SO (3) via the exponential map

2.5e ( f )  =  E fn I n!
n -2 0

*  Note added in  proof : for a complete account, see C. D. Gorman, Brownian mo-
tion of rotation. Trans. Amer. Math. Soc. 94 (1960), 103-117.
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and the logarithm

2.61 ( f )  =  E (f—e)ln I f — 1

in fact, 1 maps the neighborhood lg — e <1 of SO (3) onto a neigh-
borhood o f th e  0  element o f  A  and e  maps the neighborhood
I I </g 2  o f A  onto a  neighborhood o f e  in  SO (3) ; both maps
are 1 : 1 ; in the first case, the inverse map is e; in the second,
it is 1.

SO (3) is homeomorphic to the 3-dimensional projective space
P 3 : in fact, P 3 ,  viewed as the spherical surface S 3 C R 4 with anti-
podal identifications, is  homeomorphic to  the solid 3-dimensional
ball o f diameter 27r with antipodal surface points identified, and
the map taking a  (I a l< 7 r) into the rotation g of total angle I a I
about the axis a  in the sense of the right-hand screw rule is a
homeomorphism of the solid ball with surface identifications onto
SO (3) (for small a, a—>g is just the exponential map).

Consider the class C2 [50  (3 )] o f functions f = f(g) defined on
SO (3 ) such that, fo r g E SO (3), h(a)—f(ge[ce i e, + a,e, + a 3 e ,])  is  of
class C, near a  0  and define

2. 7 (e,f)(g) = h,(0) , f  ) (g )  =  1 1 2 (0) , ((. 3f)(g) = 113 (0)

where the subscripts stand for partials.
Writing out the power series for f  at g = e up to terms of

degree 2 , it develops that, with the commutator product 2. 2,

2.8 E e i ,  =  e 3 ,  E e 3 ,  e „  [ e 3 ,  e i ]  =  e ,  ,
so that the algebra o f differential operators

2.9 e  =  c r 1 e 3 +  C e 2 e 2 +  a3 2 a  =  (a„ a 2 , a3 ) ER'

under the commutator product is isomorphic to the Lie algebra ;
under the usual product, e„ e2 , e, generate the algebra o f dif-
ferential operators on SO (3) commuting with left translations.

Contracting e„ e 2 , e, to the class o f functions f  E C2 [S0 (3)]
such that f (g 1)= f (g 2), , ,  i

, f  ",e, = g2e3 (e3 — (0, 0, 1)) and viewing them
as differential operators on the co se t space SO (3)/S0 (2)= S 2 o f
points ge,, one gets the following 3  operators :

a c o s   cos   a2. 10 s in  — sin
a  c o s  sin 95 a acos oa ,k - sin
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where 0< lir< 7r is the colatitude and 0<q)<27 -r  the longitude of
ge,.

The reader is referred to W. Maak [1950: 161-179, 209-210]
and to I. Gelfand and Z. Ya. Sapiro [1956; 207-245] for proofs
and more information.

3 .  BROWNIAN MOTIONS ON SO (3).

Consider th e  space o f  all continuous (sample) paths w
t E [0, + co ) g(t) E SO (3 ) , le t  B , be th e  smallest Borel algebra
of subsets of the path space measuring the entries of g(s) for each
s < t ,  let B  be the smallest Borel algebra containing all of these,
and take non-negative Borel measures P  on B  of total
m ass + 1, one to each g E SO (3 ) , such that P [g (0 )= g ]= 1  for
each g E SO (3) and P (B )  is Borel on SO (3) for each B E B.

[W, B, P çl : g E SO (3 )] is said to be a  (left) Brownian motion
on SO (3) if  it is Markov :

3.1P . [ g ( t  +  s) E dg Pb[g(t) E dg] 1 1)= K s ) t ,  s > 0

and if it is also (left) group-invariant :

3.2P ( B )  P e (g 'B ) g E SO (3 ), B E B ,

where g- lB  is  the set o f sample paths such that the translated
path g- ig(t): t > 0  lies in  B.

Given such a  Brownian motion, its generator is defined
as
3. 3 (6f)(g) =  lim  t 'E n [f(g (t))— f(g )]

t4o
g E SO (3), E .(f )--- fP .(d w )

for the class C(0,3) of functions f  E C[SO  (3)] such that the limit
exists (pointwise) and the resulting 6 f  lies again in  C [S0(3 )].

Because C (0 ) is a  (left) ideal in  C under the convolution

3.4( f i g f 2 ) ( b ) .f.,(flg-l)f2(g)dg

where dg is Haar measure for SO (3), it is clear from the inclusion
C2 0C(65) C2 tha t C(63)/-\ C2 is well-populated, and it is possible
to conclude that M is an  elliptic differental operator of degree 2
commuting with (left) translations :
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3.5 = 1
, , , /i g g i + ,

where
111 12 113

3. 6 = 121 122 123 = lim t - R e [g(t)— e]2

t4.0
131 /32 133

is symmetric (I =*1 ) and non-negative definite (1> 0 ),  and

3. 7r u  = m 1c, +m2e2 +m 3e2 = lim t 'E c [g(t)— e] .
t 4.0

On the other hand, an elliptic differential operator such as 3.5
w ith  = *IC>  0 generates a  (left) Brownian motion ; for the proofs,
the reader is referred to the articles of K. Itô [1950] and K. Yosida
[1952].

4. INJECTION

Consider, now, the standard Brownian motion on R 3 with
2 2

generator 1  ( 
o 2 a o

2 ax?
and

write P  for the W iener measure fo r paths starting at 0 , let
E ( f ) = f P ( d w ) ,  se lec t an  SO (3 )  Brownian generator as in
3.5, introduce the (skew) IT  Brownian motion

4. 1 z(t) =  1Y2 x(t)+m t t >0 ,

where Iv2 is  the non-negative definite root of I and m= (m„ m2 , m3),
and, making the identification of R 3 and A  (e,—. el , e2 e 2 , e3 —>e3 ),
think o f 4. 1 a s  a  Brownian motion 5 = z i e, + z 2e2 +  z,e, in the
Lie algebra itself.

We inject 5 into SO (3 ) via the exponental, thus :

4.2g ( t )  =  g ( 0 )  E SO (3) t  = 0
= g.(:12 - ")45(A)] t >  0

A = [ j2 - ", t) , j  =  [2 "  t ]  ,  i(A) 5(t)— 5( j2')

and assert that gn  converges to a  lim it g , th a t the convergence
is uniform on compacts, and that g o o i s  the Brownian motion on
SO (3 ) with generator

With the help of P. Lévy's Hôlder condition [1937 : 168-172]

sample paths w:x ( t ) E



30 H. P. McKean, Jr.

4.3 lim sup
1=t2- ti  + 0

0<_1„..<12 :<1

I x(t2)— x(t,) I1
N /2t 1101

and the multiplication table

0 0 0 ' -1 0 0 — 1 0 0'
4.4 e = —1 0 fa 0 0 0 o - 1 0

.0 0 —1 0 0 —1, 0 0 0
0 0 0

'

o 0 0 0 0 0
ei e2 1 0 0 , e,e, = 0 0 0 , e3e, 0 0 0

.0 0 0 .0 1 0 1 0 0

it is clear that, up to terms involving 5(A) 3 (of magnitude

4.5 gn (t) - 9.(./2 - " ) =  g (j2 ) ( 61 5 (A )] e ) g n (j 2 - ") (5(A) +1 '1  a(A)2),
where

0 —z,(A) z2(A)'
4.6 5(A) z,(A)e,+ z 2(A)e2 +z 3(A)e3 = z,(A) 0 —z1()

—z2(A) z,(A) 0
and

14.7 5(A)22
— D 2 (A)2 + z 3 (A)2 ] z 1 (L )z ,( ) z,(A),z,(A)

z 2 (A )z 1 ( A ) —Ez3( A )2+z1 (A )2] z2(A)z3(A)

z3 (A)z 1 (A) z3(A)z2(A) — Ez1(A)2 +z2(A) 2]

and the reader who knows stochastic integrals will at once con-
jecture that g_ lim g„ is the solution of

4. 8

where

4. 9

 

g(t) = g(0)+ g(s)1(ds) t > 0  ,

 

1i(ds) = 5(ds)+ 
2  

f ds

[122 + 1 3 3 ] 1 1 2 1 1 3

1
21 —E133+1,11 123

1
31 132 [ 1 1 1 + 12 2 ]

  

2

    

is computed from 4. 7 using the multiplication table

1
2
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dt x,(dt) x 2 (dt) x,(dt)

dt 0 0 0 0

x i (dt) 0 dt 0 0

x 2 (dt) 0 0 dt 0

x,(ds) 0 0 0 dt

and the resulting

dt z i (dt) z 2 (dt) z,(dt)

dt 0 0 0 0

z,(dt) 0 11 1 dt 11 2 dt 11 3 dt

z 2 (dt) 0 1 dt 12 2 dt 12 3 dt

z,(dt) 0 13 1 dt 13 2 dt 133dt

and ,1 gdj means perform the matrix multiplication g dj and compute

the 9 resulting stochastic integrals.
The program is to solve 4. 8 for g and to compare g and g„ :

the result will be that lim g,,= g, permitting the identification of
111,  c o

the product integral A e [i(d s)] with g and, a t  the same time,
s< t

proving its existence.

5. SOLVING THE INTEGRAL EQUATION

Given (constant) g(0) E SO (3), consider the continuous SO (3)
solutions g = g(t) of 4. 8 such that, fo r  each t > 0, g(t) depends
upon i(s) : s < t  alone.

Given 2 such solutions g, and g 2 , their difference g = g,— g,
satisfies

5.1 g(t) = g(s)j(ds)t > 0
0

and, using a formula of K. Itô [1951: 60], it develops that

4. 10

4. 11
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5.2q ( t ) * ( t )

gdj*g + g*d j*g  +  gd j*d j*g
0 0

= g(dj+*dj+dj*dj)*g
0

But, according to the multiplication table 4. 11,

5.3 di + *dj = f ds , dj *dj = *di = —f ds ,

and therefore g*g= 0, which is impossible unless 2 =ç 1 .
Consider, next, the presumptive solution

5.4 g = E ln
n -2-0

L (t) =  I „ , d j n > 1  ,  10= (0 )

and let us check that the sum is convergent using the following
trick of K. Itô.

Given f, i f  ryi ( 1f1 2 ) > 7 2 > 7, are the eigenvalues of f*f, i f  p i ,
132 ,  13

3
 are the corresponding projections (rv b + b Y, 2 2 4 , 3 3 — f*f), and

if do is the arithmetical average over the spherical surface S2,
,s2

then

and
15. 62  o f  *fo do >  1

S2 p i o 'do
3

1 fl
2

s —  
where of *fo is the inner product o f o E S2 and f *fo E /23.

Viewing I1i2x(t) : t > 0 as a Brownian motion » in the Lie algebra,

5. 7 j ( t )  = 1 jn ,ids+° j,2_,b(ds)

and using 5. 6 to check
2

5.8E in _i b(ds)0
< 3 E L 2 0[S o in-11)(ds) in_11)(ds)]odo0
= 3 E L 2 oh o in_ii)(ds)*rAdsrin_do do

—3E L 2 0 [ D n - i f * i n - i d d o  do <31fIE

1 i = f+m,2

I ds
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it is seen that
5. 9 (El j(t)1 2)1/2

( t
2 1/2 2)1/2

E  So j„_ l id s )  + (E 1 ,1)(ds)

<  ( iltv 2 + (3 I f1) 1/2 ) ( E l i I 2 ds) 1/2 .
0

As to E  1„, since bn = j„ — E(in) is a martingale, I b.' is a semi-
n 0

martingale, so that, using a  result of Doob [1953: 314-315] in
conjunction with 5. 9,

5.10P ( m a x 1 f ) ( s ) 1 >  2-n)
s t

< 2 2 n EIV 2

< 3 2' E1 s , obn* bno do

< 3  2 ' E o [1n*in — E(j„)*E00]odo52

< 3 2' E
2

 oi n *j n odo
s

< 3 2 2 " Eli.1 2

is  th e  general term of a convergent sum, and now th e  Borel-
Cantelli lemma implies that the convergence of

5. 11 E j,, = E bn+ E E(1.) = E f),,+e(it)
n 2 0 n 2 .0 n s2 0 n -2 0

is uniform on compacts.
g is therefore well-defined and continuous ; that it solves 4. 8

is clear ; and that it lies in  SO (3) follows from

5.12 g(t)*g(t)

= g(0)*g(0)+ g [d j +  *di + dj*di]*g

= e t 0

and from the fact that det (g) ( = ± 1) is continuous and  = + 1 at
t= O.

6. CONVERGENCE PROOF

Coming to the proof that lim g„ = (== E  j„), take t<1 , j=  [2 t],
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and let us estimate

6.1g n ( t ) —  g ( 0 )  — gn (s)j(ds)
0

=  f ( t ) —  o f „(s)j(ds)

+ gn(12 - n ) — 1;1(0 ) — E gn((i —1)2 ') i(Ai) ,

f„(s) = g n (s)—g — 1)2') s E
i < 2" .i2 œ n )

P. Lévy's 4. 3 implies that

6.3m a x j  f n (t) I < -\/3 2 - " lg 2" n  co
t :G 1

and that, up to terms of magnitude 2"[ N/32' /g2"] 3 < 2 ,

6. 4 — g(0)— E g„((i —1)2 - ")1(A i )

= — 1)2- ") (e[i(A i)] e i ( A in
=  E  g n (( i-

 1)2- n)voi

i 5 j

= -21- Ei(Ai)2 — i G  2 .

Itô 's  trick (5. 6) and the semi-martingale method of 5. 11 give

6. 5 P [m a x  E gn((i-1)2 — )tvi > 2 - "o]

( 2 2 ' 3 E E  g„((i-1)2 - ")Iv i  I 2

< 3  22"  E  9 oE E  &to, *E ga hijo  do
S-

= 3 2 2"  E  2  oE E gn tili *tpi *Mo do
s

= 3 22 n I 3  E  2 E g.(122- 2 n + {32 ' +  i 4 2 - ')*g,Jo do
s 

<  3 ( I i2 I ± 1 131 +  14 1 )2- "/3

with constant i2 1 3 , j 4 ,  so  that, thanks to  th e  Borel-Cantelli
lemma,

6. 6 gn(:12-")— 00 — — 1 ) 2 - " ) 1 ( z 1  i )  <  2 - n / 3 n  f .

where
6.2
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As to S f„di , i f  & „ = ( t )  is the indicator of the sphere I f.(010
< 2 - " ,  then, as is clear from 6. 3,

6. 7

and now

6.8

(t) fn dj -= So fn8„di t < 1 , n f 0 0 ,

,f t
o f n dj = fn ids+ f„tAds)

0 0
in conjunction with

f

6.9 )0 fni ds

6.10P [ m a x  fnantAds) > 2 ]Ç
< 3  2"/2E o f (ds)*

.Ç1
0 f 6,,t)(ds)]o do

= — 3 2'v2E  o f„f*fn d do do

<32"/ 2 1r12- 2 "1 3  =  3 2_f16,

and the Borel-Cantelli lemma justifies

< W 2 3t < 1 ,  n t 0 0 ,

o fndj

Collecting all this, if o„ = g„— g(0) —

6. 12 max jo n (t) I < 3 • 2 - ' "t_< 1

and using K. Itô's method o f stochastic
with di +*di +di*di =0 to check

6.11 maxt..< 1

 

ntoo .

gn dj, then
0

n t 00

differential in  conjunction

6.13 g„* g = on*g + e — on*dj*g
0

and estimating on*d i*g as  we estimated f„d i justifies
0 0

6.14 maxIg — 9„1 =max I gn*g— el<2 - "15 n t 00 ,

completing the proof.

7 .  COMPUTING THE GENERATOR

go, = g = EL, is a Brownian motion on SO (3) : in fact, it is con-
n-20
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tinuous an d  its Markovian an d  (le ft) group-invariant character
is clear from the product integral

7. 1 g..(t2) = g,„(t 1 ) i2 e[5(ds)] t, ›  t, .

Coming to its generator, we adapt th e  stochastic differential
of K. Itô [1951 ; 59-65] to  th e  present setting and  find that for
f  E C2 [S0 (3)],
7.2f  ( g ( t ) )

f ( (0 ) )+  ,Vo [z(ds) • grad]f(g)

+  Ç  21  [z (ds) • gr ad] 2 f (g)

f  (9(0 )) + [P/2.x(ds) • grad]f(g)

+ )(9)ds

where grad is short for (ei , 01' 2 .

But now it is clear that

7.3 lirn t'EL f  (g(t))—  f  (b)]
t 4.0

lim t - lE (( f  ) (g)ds]

= ( ( f )(b) = 9(0) ,
and this completes the identification of goo=  g=  E j„ as the SO (3)

n -2 0

BROWNian motion with generator 0.

8. ROLLING WITHOUT SLIPPING

Consider the standard Brownian motion on the plane R 2 x 0 R3

with generator 1
(  + )  and sample path w: t  x (t)=(x i(t) ,2  ax?

x p), 0) a n d  le t  a  sphere o f diameter 2 ro ll without slipping on
the p lane R 2 x —1 R3 while its center traces out the polygonal
line joining the points x( j2 - ") : j > 0  of the plane R 2 x O.

Concentrating on times t <  1, select m=m(w) such that

8.1 jx(t2)— x(t,) <(t2 — t1)1 / 30  <  <  t, ‹  1, t 2 — t, < 2 - 'n

and 2- n o <  g 2, so that, for 2-"v3, e[t;ei +"2e2+cf3e3] is the
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counterclockwise rotation of angle I a  about the axis a.

e Xx(A) Given n >m  and i< 2, it is clear from
the DIAGRAM that as t  grows from t, =
(i — 1)2' to  t2 <i2 - n  the sphere suffers a
rotation

8.2e [ —  x,(A)e, + xi (A)e,] A

of angle  x ( )  < 2 ' 1  counterclockwise
about the axis e, cross x ( A ) .

One sees at once that the total rotation
up to time t  is identical in law to the gn (t) of 4 computed for

8.3 1
1
0
0

0
1
0

0 •
0
o ,

, m1=n 2 =m 3 =0 , g(0) =  e,

and one concludes that lim gn = g„o is the SO (3) Brownian motion

with generator 63= —

1  

(e+ e!), permitting the identification of that2
motion with the total rotation up  to  tim e  t o f  a sphere o f  diameter
2 rolling w ithout slipping on the plane R 2 x  — 1 as its center per-
f orm s a s tan d ard  B row nian m otion on the Plane R 2 x 0 .  C. D.
Gorman [1958] also got a proof that lim g„ exists in the present

11 t o o

case.
Consider, now, the path go o e, of the north pole e3 = (0, 0, 1) : this

motion is Markov ; its generator (8, is  1- (LqH- Lq) cut down to2
the coset space SO (3)/S0 (2) S2 :

i i i a az
'8.40 3 3  _ sin* aq, + cot  a v )

where Jr is colatitude and (J) is longitude on S ' (see 2. 10).
a a6 3 sp lits in to the Legendre operator (2 sin * ) -1s i n *aq,

2
1

a2
plus cot2 * and this splitting is reflected in the sample

°V
path ; in fact, colat (go o e3 ) is the process attached to the Legendre
operator o n  [0, 71] a n d  longitude (g_e,) is  a standard circular
Brownian motion independent o f colat (g_e 3 )  run with the clock
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cor[colat(g o c eA ds
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