MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

The Bessel motion and a singular integral equation

By

H. P. MCKEAN, JR.¹⁾

(Received September 14, 1960)

(Communicated by Prof. K. Itô)

1. INTRODUCTION

Given a standard $n(\geq 2)$ dimensional Brownian motion with sample paths b(t) $(t\geq 0)$ and generator $\mathfrak{G} = \frac{1}{2} \left(\frac{\partial^2}{\partial b_1^2} + \dots + \frac{\partial^2}{\partial b_n^2} \right)$, its radial part $\mathfrak{r}(t) = |b(t)| (t\geq 0)$ is the Bessel motion with generator $\mathfrak{G}^+ = \frac{1}{2} \left(\frac{d^2}{d\mathfrak{r}^2} + \frac{n-1}{\mathfrak{r}} \frac{d}{d\mathfrak{r}} \right)$; in fact, if $P_{\mathfrak{G}}(B)$ is the *n*-dimensional Wiener measure of the event *B* as a function of the starting point $\mathfrak{a} = \mathfrak{b}(0)$ of the Brownian path and if $t_1 < t_2$, then

1.1

$$P \cdot [\mathfrak{r}(t_2) \leq l | \mathfrak{r}(s) : s \leq t_1]$$

$$= \int_{|\mathfrak{b} - \mathfrak{a}| \leq l} (2\pi t)^{-n/2} e^{-|\mathfrak{b} - \mathfrak{a}|^2/2t} d\mathfrak{b}$$

$$t = t_2 - t_1, \quad \mathfrak{a} = \mathfrak{b}(t_1)$$

depends upon $|\alpha| = \mathfrak{r}(t_1)$ alone, *i.e.*, [\mathfrak{r} , *P.*] is Markov, and the identification of its generator as \mathfrak{G}^+ (=the radial part of \mathfrak{G}) is immediate.

Because \mathfrak{G}^+ is the sum of the generator of the standard 1-dimensional Brownian motion and the generator of translation at speed $\dot{\mathfrak{r}} = \frac{n-1}{2}\mathfrak{r}^{-1}$, it is plausible that if b(t) $(t \ge 0)$ is a 1-dimensional Brownian motion with $b(0) \ge 0$, then the solution of

¹⁾ Fulbright grantee 1957-58, during which time section 2 of this paper was worked out.

H. P. McKean, Jr.

1.2
$$\mathfrak{r}(t) = b(t) + \frac{n-1}{2} \int_0^t \mathfrak{r}^{-1} ds \qquad t \ge 0$$

should be a Bessel motion starting at r(0)=b(0); this is not correct because, if b(0)=0, then 1.2 has both a non-positive and a non-negative solution, but it becomes correct, if, as will be understood below, *solution* means *non-negative solution*².

Given 2 non-negative solutions \mathbf{r}_1 and \mathbf{r}_2 of 1.2, their difference e satisfies $e = -\int_0^t e/\mathbf{r}_1\mathbf{r}_2 \, ds$, and, using $\int_0^t |e/\mathbf{r}_1\mathbf{r}_2| \, ds \leq \int_0^t (\mathbf{r}_1^{-1} + \mathbf{r}_2^{-1}) \, ds < +\infty$, it follows from $e\dot{e} = -e^2/\mathbf{r}_1\mathbf{r}_2 \leq 0$, that $e^2 \equiv 0$, *i.e.*, 2 has at most 1 non-negative solution.

Now the trick is to prove that if r is a Bessel motion, then $b \equiv r - \frac{n-1}{2} \int_{0}^{t} r^{-1} ds$ is a Brownian motion and to use the 1:1 nature of the map $b \rightarrow r$ to conclude that, neglecting a class of Brownian paths b of Wiener measure 0, 1.2 has a non-negative Bessel distributed solution r.

2. PROVING THAT $b \equiv r - \frac{n-1}{2} \int_0^t r^{-1} ds$ is brownian

Given a Bessel motion [r, P.] as described above, an application of

2.1
$$E \cdot \left[\int_{0}^{t} \mathfrak{r}^{-1} ds \right] = \int_{0}^{t} ds \int (2\pi s)^{-n/2} e^{-|\mathfrak{b}|^{2}/2s} |\mathfrak{b}|^{-1} d\mathfrak{b}$$
$$= \int_{0}^{t} \frac{ds}{\sqrt{s}} (2\pi)^{-n/2} e^{-|\mathfrak{b}|^{2}/2} |\mathfrak{b}|^{-1} d\mathfrak{b}$$
$$< +\infty$$

shows that $b \equiv r - \frac{n-1}{2} \int_{0}^{t} r^{-1} ds$ is well defined, and, using the Markovian nature of the Bessel motion, it is found that, if $t_2 > t_1$, then

2.2
$$E \cdot [e^{i\alpha b(t_{2})} | \mathfrak{r}(s) : s \leq t_{1}]$$

$$= e^{i\alpha b(t_{1})} e^{-i\alpha \mathfrak{r}(t_{1})} E \cdot [e^{i\alpha \mathfrak{r}(t_{2}) - \frac{n-1}{2}}]_{t_{1}}^{t_{2}} \mathfrak{r}^{-1} ds | \mathfrak{r}(s) : s \leq t_{1}]$$

$$= e^{i\alpha b(t_{1})} e^{-i\alpha \mathfrak{r}(t_{1})} E_{i} [e^{i\alpha (\mathfrak{r}(t) - \frac{n-1}{2}}]_{0}^{t_{1}} \mathfrak{r}^{-1} ds]$$

$$t = t_{2} - t_{1}, \quad |\mathfrak{a}| = \mathfrak{r}(t_{1}).$$

2) See K. Itô [3] for the ideas behind this.

Now the evaluation of such Bessel expectations is routine:³⁾

2.3
$$u(t, \mathfrak{r}) = E_{\mathfrak{r}} \left[e^{i\alpha (\mathfrak{r}(t) - \frac{n-1}{2})_0^t \mathfrak{r}^{-1} ds} \right] \qquad \mathfrak{r} = |a|$$

is the bounded solution

2.4
$$e^{i\alpha r}e^{-\alpha^2 t/2}$$

of

2.5 a
$$\frac{\partial u}{\partial t} = \mathfrak{G}^+ u - \frac{i\alpha(n-1)}{2\mathfrak{r}}u = \frac{1}{2} \left[\frac{\partial^2}{\partial \mathfrak{r}^2} + \frac{n-1}{\mathfrak{r}} \frac{\partial}{\partial \mathfrak{r}} - \frac{i\alpha(n-1)}{\mathfrak{r}} \right] u$$

2.5 b $u(0+,\mathfrak{r}) = e^{i\alpha\mathfrak{r}},$

and, using the fact that $b(s): s \le t_1$ is a Borel function of $r(s): s \le t_1$ and inserting 2.4 into 2.2, it is seen that

2.6 a
$$E \cdot [e^{i\alpha b(t_2)} | b(s) : s \le t_1] = e^{i\alpha b(t_1)} e^{-\alpha^2 t/2} \qquad t = t_2 - t_1,$$

or, what is the same,

2.6 b

$$P \cdot [b(t_2) \in db | b(s) : s \leq t_1]$$

$$= \frac{e^{-(b-a)^2/2t}}{\sqrt{2\pi t}}$$

$$t = t_2 - t_1, \quad a = b(t_1),$$

i.e., that b is Brownian.

3. $r = b + \frac{n-1}{2} \int_0^t r^{-1} ds$ IS SOLVABLE FOR EACH CONTINUOUS $b \ (b(0) \ge 0)$

Because $\mathfrak{r}=b+\frac{n-1}{2}\int_{0}^{t}\mathfrak{r}^{-1}ds$ is singular (at $\mathfrak{r}=0$), it is not clear that it has a non-negative solution for *each* continuous b ($b(0) \ge 0$). Consideration of the map $j: \mathfrak{r} \to b + \frac{n-1}{2}\int_{0}^{t}\mathfrak{r}^{-1}ds$ defined on the class of non-negative continuous \mathfrak{r} such that $\int_{0}^{t}\mathfrak{r}^{-1}ds < +\infty$ ($t\ge 0$) converts the problem into showing that j has a fix point; the method of Leray-Schauder should be able to decide this, but I had no success with it. Here, I shall present another method, putting n=3to eliminate the nuisance factor (n-1)/2.

b(0) > 0 implies the existence of a positive solution for $t < t_{z} = \min(t: b(t)=0)$ because, if $t \le t_{z} < t_{1}$, if $\mathcal{E} = \min_{t \le t_{2}} b(t)$, and if

³⁾ See, for example, R. Hasminskii [2].

H. P. McKean, Jr.

3.1
$$\mathbf{r}_{n+1} = b + \int_0^t \mathbf{r}_n^{-1} ds \quad n \ge 1, \quad \mathbf{r}_1 \equiv b,$$

then

3.2
$$r_1 \leq r_3 < r_5 < etc.$$

$$\begin{aligned} & \langle \mathbf{r}_{\pm} = \lim_{\substack{n \uparrow + \infty \\ n \uparrow \pm \infty}} \mathbf{r}_{2n-1} \\ & \leq \mathbf{r}_{\pm} = \lim_{\substack{n \uparrow \pm \infty \\ n \uparrow \pm \infty}} \mathbf{r}_{2n} \\ & \langle etc. \langle \mathbf{r}_{6} \langle \mathbf{r}_{4} \langle \mathbf{r}_{2}, \\ \mathbf{r}_{\pm} = b + \int_{0}^{t} \mathbf{r}_{\pm}^{-1} ds, \end{aligned}$$

$$\begin{aligned} & \mathbf{r}_{\pm} = b + \int_{0}^{t} \mathbf{r}_{\pm}^{-1} ds, \end{aligned}$$

3.4 $\cdot e = -\int_0^t (e/\mathfrak{r}_-\mathfrak{r}_+) ds \leq \varepsilon^{-2} \int_0^t e ds \qquad t \leq t_2, \quad e = \mathfrak{r}_+ - \mathfrak{r}_- \geq 0,$

and, iterating 3.4 and letting $t_2 \uparrow t_1$, $\mathfrak{r}_- \equiv \mathfrak{r}_+$ is found to be the desired solution.

Given a solution r that cannot be continued past $t_1 > 0$, it must be that

3.5
$$b^{-}(t_1) \equiv \lim_{t \uparrow t_1} (t_1 - t)^{-1} [b(t_1) - b(t)] = -\infty;$$

indeed, $\int_0^t \mathfrak{r}^{-1} ds \in \uparrow (t < t_1)$ implies $\mathfrak{r}(t_1 -) = b(t_1) + \int_0^{t_1} \mathfrak{r}^{-1} ds$; here, $\mathfrak{r}(t_1 -)$ cannot be $= +\infty$ because $\int_0^{t_1} \mathfrak{r}^{-1} ds$ would then be $< +\infty$, and $\mathfrak{r}(t_1 -)$ cannot be > 0 because then the solution of $\mathfrak{r}_1 = [b(t+t_1) - b(t_1) + \mathfrak{r}(t_1 -)] + \int_0^t \mathfrak{r}_1^{-1} ds$ would effect a continuation of \mathfrak{r} past t_1 ; thus, $\mathfrak{r}(t_1 -)$ has to be 0, and so

3.6
$$(t_1-t)^{-1}[b(t_1)-b(t)] = (t_1-t)^{-1}[-\mathfrak{r}(t)-\int_t^{t_1}\mathfrak{r}^{-1}ds] \\ \leq -(t_1-t)\int_t^{t_1}\mathfrak{r}^{-1}ds \sim -\infty \qquad t \uparrow t_1.$$

Consider the case b(0) > 0 and let t_{∞} be the supremum of positive times t_1 such that, for some continuous perturbation $h \in \uparrow (0 < h \le 1), \ \mathfrak{r} = b + \varepsilon h + \int_0^t \mathfrak{r}^{-1} ds \ (t < t_1)$ has a *positive* solution for each $0 < \varepsilon \le 1$.

 $t_{\infty} > 0$ because b(0) > 0; in fact, $t_{\infty} \ge \min(t: b(t) = 0)$.

 $t_{\infty} = +\infty$ because, if $t_1 < t_2 < etc. \uparrow t_{\infty} < +\infty$, if h_1, h_2 , etc. are the corresponding perturbations, and if $h \equiv \sum_{n \ge 1} 2^{-n-1} h_n + \frac{1}{2} h_{\infty}$ with some continuous $h_{\infty} \in \uparrow (0 < h_{\infty} \le 1)$ such that $(b + \varepsilon h_{\infty})^{-}(t_{\infty}) > 0$

320

 $-\infty(0 < \varepsilon \le 1)^{4}$, then $\mathfrak{r} = b + \varepsilon h_{\infty} + \int_{0}^{t} \mathfrak{r}^{-1} ds$ is solvable up to time $t_{0} = \min(t: b(t) = 0)$ at least; the solution $\mathfrak{r}_{\varepsilon}$ lies above the solution \mathfrak{r}_{n} of $\mathfrak{r} = b + \varepsilon 2^{-n-1}h_{n} + \int_{0}^{t} \mathfrak{r}^{-1} ds$ because the difference $e = \mathfrak{r}_{\varepsilon} - \mathfrak{r}_{n}$ satisfies

3.7
$$\lim_{t\uparrow s} \frac{e(s)-e(t)}{s-t} \ge -e/\mathfrak{r}_{\varepsilon}\mathfrak{r}_{n}$$

causing *e* to turn upwards as soon as it crosses e=0; $\mathfrak{r}_{\varepsilon}$ is then positive and continuable up to $t=t_n$, and, making $n \uparrow +\infty$ and using $(b+\varepsilon h_{\infty})^{-}(t_{\infty}) > -\infty$, it is seen that $\mathfrak{r}_{\varepsilon}$ can be continued up to $t=t_{\infty}$ and past, contradicting the definition of t_{∞} .

But now the same proof shows that if $t_1 < t_2 < etc. \uparrow t_{\infty} = +\infty$, if h_1, h_2 , etc. are the corresponding perturbations, and if $h = \sum_{n \ge 1} 2^{-n} h_n$, then the solution $\mathfrak{r}_{\mathfrak{e}}$ of $\mathfrak{r} = b + \mathcal{E}h + \int_0^t \mathfrak{r}^{-1} ds$ is continuable over $[0, +\infty)$ for each $0 < \mathcal{E} \le 1$; in addition, $\mathfrak{r}_{\mathfrak{e}_1} < \mathfrak{r}_{\mathfrak{e}_2}$ ($\mathcal{E}_1 < \mathcal{E}_2$), and, using monotone convergence, $\mathfrak{r}_{0+} = \lim_{\mathfrak{e}_{\downarrow 0}} \mathfrak{r}_{\mathfrak{e}}$ is found to be a solution of $\mathfrak{r} = b + \int_0^t \mathfrak{r}^{-1} ds$ ($t < +\infty$).

As to the case b(0)=0, it suffices to put h=1 above, to solve $\mathfrak{r}=b+\mathfrak{E}+\int_{0}^{t}\mathfrak{r}^{-1}ds$ for each $\mathfrak{E}>0$, and to make $\mathfrak{E}\downarrow 0$ as before.

Given b_1 , b_2 as above, if \mathfrak{r}_1 , \mathfrak{r}_2 are the corresponding solutions of $\mathfrak{r} = b + \int_0^t \mathfrak{r}^{-1} ds$, then

3.8
$$|\mathfrak{r}_{2}(t)-\mathfrak{r}_{1}(t)| \leq 2 \max_{s \leq t} |b_{2}-b_{1}|,$$

as will now be proved; it can be supposed that r_1 and r_2 are positive because a small perturbation ($\mathcal{E}h$) will make them so.

But, in that case, if $e = \mathfrak{r}_2 - \mathfrak{r}_1$, if $\sigma = \int_0^t ds/\mathfrak{r}_1\mathfrak{r}_2$, and if $a = b_2 - b_1$, then

3.9
$$e(t) = a(t) - e^{-\sigma(t)} \int_0^t a e^{\sigma} d\sigma,$$

and so

3.10
$$|e(t)| \leq [2 - e^{-\sigma}] \max_{s \leq t} |a|.$$

$$\frac{a(t_{\infty})-a(t)}{t_{\infty}-t} \ge (t_{\infty}-t)^{-1}\sqrt{e} \quad [\operatorname{constant} \times \varepsilon - \sqrt{e} \;] \ge 0.$$

⁴⁾ h_{∞} can be constructed as follows: define $h_{\infty}(0)=0$, let $h_{\infty}(t_{\infty})-h_{\infty}(t)=\text{constant}\times\sqrt{e(t)}$, where $e(t)\equiv \max_{\substack{t_{\infty}\geq s\geq t}} |b(t_{\infty})-b(s)|$ for $t< t_{\infty}$, and, adjusting the constant (>0), fill in h_{∞} on the rest of $[0, +\infty)$ so as to have $0 < h_{\infty} \le 1$ continuous and increasing; then, as $t \uparrow t_{\infty}$, $a=b+\varepsilon h_{\infty}$ satisfies

4. OTHER SINGULAR EQUATIONS

Given $\alpha > 0$, the problem $\mathfrak{r} = b + \int_0^t ds/\mathfrak{r}^{\alpha}$ is amenable to the method of section 3, the point being that the \mathfrak{r} on the left and the $1/\mathfrak{r}^{\alpha}$ under the integral sign balance, preventing the solution from getting too small or too big.

I do not know of any integral equation $r = b + \int_{0}^{t} k(r, s) ds$ that can be solved for *almost all* Brownian paths b but not for *all* continuous paths; it would be interesting to have such an example (see R. Cameron [1] and D. Woodward [4] for additional information on this point).

Massachusetts Institute of Technology

REFERENCES

- R. Cameron. Nonlinear Volterra functional equations and linear parabolic systems. J. Analyse Math. 5 (1956/57), 136-182.
- [2] R. Hasminskii. Probability distribution of functionals of trajectories of a random process of diffusion type. Dokl. Akad. Nauk SSSR 104 (1955), 22-25.
- [3] K. Itô. On a stochastic integral equation. Proc. Japan Acad. 22 (1946), 32-35.
- [4] D. Woodward. On a special integral equation. Proc. Amer. Math. Soc. 10 (1959), 853-854.