MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

The Bessel motion and a singular integral equation

By

H. P. McKean, Jr.¹³

(Received September 14, 1960)

(Communicated by Prof. K. Itô)

1. INTRODUCTION

Given a standard $n(>=2)$ dimensional Brownian motion with $\overline{1}$ / $\overline{2}^2$ sample paths $b(t)$ $(t \ge 0)$ and generator $\mathcal{B} = \frac{1}{2} \Big(\frac{\partial}{\partial b_1^2} + \dots + \frac{\partial}{\partial b_n^2} \Big)$, its radial part $\mathfrak{r}(t) = |b(t)| (t \ge 0)$ is the Bessel motion with generator $=\frac{1}{2}\left(\frac{d^2}{dt^2}+\frac{n-1}{\mathfrak{r}}\frac{d}{dt}\right);$ in fact, if $P_{\mathfrak{l}}(B)$ is the *n*-dimensional Wiener measure of the event *B* as a function of the starting point $a = b(0)$ of the Brownian path and if $t_1 \leq t_2$, then

1. 1
\n
$$
P.\lbrack \mathfrak{x}(t_2) \leq l \rbrack \mathfrak{x}(s): s \leq t_1 \rbrack
$$
\n
$$
= \int_{\lbrack t_0 - \mathfrak{a} \rbrack \leq l} (2\pi t)^{-n/2} e^{-\lbrack \mathfrak{b} - \mathfrak{a} \rbrack^2/2t} d\mathfrak{b}
$$
\n
$$
t = t_2 - t_1, \quad \mathfrak{a} = \mathfrak{b}(t_1)
$$

depends upon $|a| = r(t_1)$ alone, *i.e.*, [r, *P.*] is Markov, and the identification of its generator as \mathbb{S}^+ (=the radial part of \mathbb{S}) is immediate.

Because \mathfrak{G}^+ is the sum of the generator of the standard 1-dimensional Brownian motion and the generator of translation at speed $\dot{\mathbf{r}} = \frac{n-1}{2} \mathbf{r}^{-1}$, it is plausible that if $b(t)$ ($t \ge 0$) is a 1-dimen- \overline{a} sional Brownian motion with $b(0) \geq 0$, then the solution of

¹⁾ Fulbright grantee 1957-58, during which time section 2 of this paper was worked out.

318 *H. P. McKean, Jr.*

1.2
$$
\qquad \qquad \mathfrak{r}(t) = b(t) + \frac{n-1}{2} \int_0^t \mathfrak{r}^{-1} ds \qquad t \ge 0
$$

should be a Bessel motion starting at $\mathfrak{r}(0) = b(0)$; this is not correct because, if $b(0)=0$, then 1.2 has both a non-positive and a nonnegative solution, but it becomes correct, if, as will be understood below, *solution* means *non-negative solution*².

Given 2 non-negative solutions r_1 and r_2 of 1.2, their difference *e* satisfies $e = -\int_{0}^{1} e^{f} x_{1}x_{2} dx_{3}$, and, using $\int_{0}^{1} |e^{f} x_{1}x_{2}| dx_{3} \leq \int_{0}^{1} (r_{1}^{-1} + r_{2}^{-1}) dx_{3}$ $+ \infty$, it follows from $e\dot{e} = -e^2/\mathfrak{r}_{\mathfrak{r}}\mathfrak{r}_{\mathfrak{z}}{\leq} 0$, that $e^{\mathfrak{z}}{\equiv} 0$, $i.e.,$ 2 has at most 1 non-negative solution.

Now the trick is to prove that if r is a Bessel motion, then $\displaystyle b\!\equiv\! \mathrm{r}\!-\!\frac{n\!-\!1}{2}\!\!\int_{\scriptscriptstyle{0}}^{\scriptscriptstyle{t}}\! \mathrm{r}^{\scriptscriptstyle{-1}} ds$ is a Brownian motion and to use the $\displaystyle{1\!:\!1\,}$ nature of the map $b \rightarrow r$ to conclude that, neglecting a class of Brownian paths *b* of Wiener measure 0, 1.2 has a non-negative Bessel distributed solution r .

2. PROVING THAT $b \equiv \mathrm{r} - \frac{n-1}{2}$ $\frac{1}{2}$, $r^{-1}ds$ IS BROWNIAN

Given a Bessel motion [r, *P.]* as described above, an application of

2.1
$$
E\left[\int_{0}^{t} \mathbf{r}^{-1} ds\right] = \int_{0}^{t} ds \int (2\pi s)^{-n/2} e^{-\left|\tilde{b}\right|^{2}/2s} |\mathbf{b}|^{-1} d\mathbf{t}
$$

$$
= \int_{0}^{t} \frac{ds}{\sqrt{s}} (2\pi)^{-n/2} e^{-\left|\tilde{b}\right|^{2}/2} |\mathbf{b}|^{-1} d\mathbf{b}
$$

$$
< +\infty
$$

shows that $b = \mathfrak{x} - \frac{n-1}{2} \int_0^t \mathfrak{x}^{-1} ds$ is well defined, and, using the Markovian nature of the Bessel motion, it is found that, if $t_2 \geq t_1$, then

2.2
$$
E.\left[e^{iab(t_2)} | \mathbf{r}(s) : s \le t_1\right] = e^{iab(t_1)}e^{-ia\mathbf{r}(t_1)}E.\left[e^{ia\mathbf{r}(t_2) - \frac{n-1}{2}\int_{t_1}^{t_2} \mathbf{r}^{-1}ds} | \mathbf{r}(s) : s \le t_1\right]
$$

$$
= e^{iab(t_1)}e^{-ia\mathbf{r}(t_1)}E_c\left[e^{ia\left(\mathbf{r}(t) - \frac{n-1}{2}\int_{0}^{t_1} \mathbf{r}^{-1}ds\right)}\right]
$$

$$
t = t_2 - t_1, \quad |\mathbf{a}| = \mathbf{r}(t_1).
$$

2) See K. Itô $[3]$ for the ideas behind this.

Now the evaluation of such Bessel expectations is routine : $^{\text{3}}$

2.3
$$
u(t, \mathbf{r}) \equiv E \left[e^{i\alpha (\mathbf{r}(t) - \frac{n-1}{2})} \right]^t \mathbf{r}^{-1} ds} \mathbf{r} = |a|
$$

is the bounded solution

$$
e^{i\alpha t}e^{-\alpha^2t/2}
$$

of

2.5 a
$$
\frac{\partial u}{\partial t} = \mathcal{L}^+ u - \frac{i\alpha(n-1)}{2\tau} u = \frac{1}{2} \left[\frac{\partial^2}{\partial \tau^2} + \frac{n-1}{\tau} \frac{\partial}{\partial \tau} - \frac{i\alpha(n-1)}{\tau} \right] u
$$

2.5 b
$$
u(0+,\tau) = e^{i\alpha \tau},
$$

and, using the fact that $b(s)$: $s \leq t_1$ is a Borel function of $r(s)$: $s \leq t_1$ and inserting 2. 4 into 2. 2, it is seen that

2.6 a $E\left[e^{i\alpha b(t_2)}|b(s): s \leq t_1\right] = e^{i\alpha b(t_1)}e^{-\alpha^2t/2}$ $t = t_2 - t_1$

or, what is the same,

2.6 b
\n
$$
P\left[b(t_2) \in db | b(s): s \leq t_1\right]
$$
\n
$$
= \frac{e^{-(b-a)^2/2t}}{\sqrt{2\pi t}}
$$
\n
$$
t = t_2 - t_1, \quad a = b(t_1),
$$

i.e., that *b* is Brownian.

$3 \t r-h+$ $\left(\frac{1}{2}\right)$ _s $r^{-1}ds$ IS SOLVABLE FOR EACH CONTINUOUS *b* $(b(0) > 0)$

Because $r = b + \frac{n-1}{2} \int_0^b r^{-1} ds$ is singular (at $r = 0$), it is not clear that it has a non-negative solution for *each* continuous *b* $(b(0) > 0)$. Consideration of the map $j: \mathfrak{r} \to b + \frac{n-1}{2} \int_0^t \mathfrak{r}^{-1} ds$ defined on the class of non-negative continuous r such that $\int_a^t r^{-1} ds < +\infty$ $(t \ge 0)$ converts the problem into showing that *j* has a fix point ; the method of Leray-Schauder should be able to decide this, but I had no success with it. Here, I shall present another method, putting $n=3$ to eliminate the nuisance factor $(n-1)/2$.

 $b(0)$ implies the existence of a positive solution for $t \leq t$, $=\min(t : b(t)=0)$ because, if $t \le t_2 < t_1$, if $\varepsilon = \min_{t \le t_2} b(t)$, and if

³⁾ See, for example, R. Hasminskii [2].

320 *H. P. McKean, Jr.*

3.1
$$
x_{n+1} = b + \int_0^t r_n^{-1} ds \qquad n \ge 1, \quad x_1 = b,
$$

then

3.2
$$
r_1 \leq r_3 < r_5 < \text{etc.}
$$

$$
\begin{aligned}\n &\sum_{r_{-}} \sum_{i=1}^{m_{1}+1} \mathbf{1}_{2n-1} \\
&\leq \mathbf{r}_{+} = \lim_{n_{1}+ \infty} \mathbf{r}_{2n} \\
&< \text{etc.} < \mathbf{r}_{6} < \mathbf{r}_{4} < \mathbf{r}_{2}, \\
&\mathbf{r}_{\pm} = b + \int_{0}^{t} \mathbf{r}_{+}^{-1} ds \,,\n \end{aligned}
$$
\n3.3

 $3.4 \, . \, e = -\int_{0}^{t} (e/\mathfrak{r}_{-} \mathfrak{r}_{+}) ds \leq \varepsilon^{-2} \int_{0}^{t} e ds \, \qquad t \leq t_{2} \, , \quad e = \mathfrak{r}_{+} - \mathfrak{r}_{-} \geq 0 \, ,$

and, iterating 3.4 and letting $t_2 \uparrow t_1$, $r_1 = r_+$ is found to be the desired solution.

Given a solution r that cannot be continued past $t_1 > 0$, it must be that

3.5
$$
b^{-}(t_{1}) \equiv \lim_{t \uparrow t_{1}} (t_{1} - t)^{-1} [b(t_{1}) - b(t)] = -\infty ;
$$

 ${\rm indeed, } \int_0^t r^{-1} ds \in \uparrow (t \leq t_1) \text{ implies } r(t_1-) = b(t_1) + \int_0^{t_1} r^{-1} ds; \text{ here, } r(t_1-)$ cannot be $= +\infty$ because $\int_{0}^{t_1} r^{-1} ds$ would then be $\lt +\infty$, and $r(t_1)$ $\frac{0}{2}$ cannot be >0 because then the solution of $r_1 = [b(t + t_1) - b(t_1)]$ $+ \tau(t_1 - t_1) + \tau_1^{-1}ds$ would effect a continuation of τ past t_1 ; thus, $r(t₁)-$ has to be 0, and so

3. 6
$$
(t_1-t)^{-1}[b(t_1)-b(t)] = (t_1-t)^{-1}[-\mathfrak{r}(t)-\int_t^{t_1}\mathfrak{r}^{-1}ds] \leq -(t_1-t)\int_t^{t_1}\mathfrak{r}^{-1}ds \sim -\infty \qquad t \uparrow t_1.
$$

Consider the case $b(0) > 0$ and let t_{∞} be the supremum of positive times t_1 such that, for some continuous perturbation $h \in \uparrow (0 \leq h \leq 1), \quad \mathbf{r} = b + \varepsilon h + \int_{0}^{\infty} \mathbf{r}^{-1} ds \quad (t \leq t_1)$ has a *positive* solution for *each* $0 < \varepsilon < 1$.

 t_{∞} > 0 because $b(0)$ > 0; in fact, t_{∞} > min(t *i* $b(t)=0$).

 $t_{\infty} = +\infty$ because, if $t_1 \leq t_2 \leq \text{etc.} \uparrow t_{\infty} \leq +\infty$, if $h_1, h_2, \text{etc.}$ are the corresponding perturbations, and if $h = \sum_{n \geq 1} 2^{-n-1} h_n + \frac{1}{2} h_{\infty}$ with some continuous $h_{\infty} \in \uparrow (0 \leq h_{\infty} \leq 1)$ such that $(b + \varepsilon h_{\infty})^-(t_{\infty})$

 $-\infty(0<\epsilon\leq 1)^{4}$, then $\mathfrak{r}=b+\epsilon h_{\infty}+\int_{0}^{\infty}\mathfrak{r}^{-1}ds$ is solvable up to time $t_0 = \min(t : b(t) = 0)$ at least; the solution r_e lies above the solution r_n of $\mathfrak{r} = b + \varepsilon 2^{-n-1} h_n + \int \mathfrak{r}^{-1} ds$ because the difference $e = \mathfrak{r}_e - \mathfrak{r}_n$ satisfies

3.7
$$
\lim_{t \uparrow s} \frac{e(s) - e(t)}{s - t} \geq -e/\mathfrak{r}_{s}\mathfrak{r}_{n}
$$

causing *e* to turn upwards as soon as it crosses $e=0$; r_{ϵ} is then positive and continuable up to $t = t_n$, and, making $n \uparrow +\infty$ and using $(b+\varepsilon h_{\scriptscriptstyle \infty})^-(t_{\scriptscriptstyle \infty})>-\infty,$ it is seen that $\mathfrak r_{\scriptscriptstyle \rm E}$ can be continued $u p$ *to* $t = t_0$ and *past,* contradicting the definition of t_0 .

But now the same proof shows that if $t_1 \leq t_2 \leq \text{etc.} \uparrow t_{\infty} = +\infty$, if h_1 , h_2 , *etc.* are the corresponding perturbations, and if $h = \sum_{n>1} 2^{-n}h_n$, then the solution \mathfrak{r}_{ϵ} of $\mathfrak{r} = b + \epsilon h + \int_{0}^{\infty} \mathfrak{r}^{-1} ds$ is continuable over $[0, +\infty)$ for each $0<\varepsilon\leq 1$; in addition, $\mathfrak{r}_{\varepsilon_1}\langle\mathfrak{r}_{\varepsilon_2}(\varepsilon_1\langle\mathfrak{E}_2),$ and, using monotone convergence, $r_{0+} = \lim_{\varepsilon \downarrow 0} r_{\varepsilon}$ is found to be a solution of $r = b +$ $r^{-1}ds$ $(t<+\infty)$.

As to the case $b(0)=0$, it suffices to put $h=1$ above, to solve $\{b+\varepsilon+\}$ $\mathfrak{r}^{-1}ds$ for each $\varepsilon\!\!\searrow\!\!0,$ and to make $\varepsilon\downarrow\!\!0$ as before.

Given b_1, b_2 as above, if $\mathfrak{r}_1, \mathfrak{r}_2$ are the corresponding solutions of $\mathfrak{r} = b + \sqrt{\mathfrak{r}^{-1}ds}$, then

3.8
$$
|\mathbf{r}_2(t) - \mathbf{r}_1(t)| \leq 2 \max_{s \leq t} |b_2 - b_1|,
$$

as will now be proved; it can be supposed that r_1 and r_2 are positive because a small perturbation *(Eh)* will make them so.

But, in that case, if $e=r_2-r_1$, if $\sigma=\int_0^1 ds/r_1r_2$, and if $a=b_2-b_1$, then

$$
3.9 \t\t e(t) = a(t) - e^{-\sigma(t)} \int_0^t a e^{\sigma} d\sigma,
$$

and so

3. 10
$$
|e(t)| \leq [2 - e^{-\sigma}] \max_{s \leq t} |a|.
$$

$$
\frac{a(t_\infty)-a(t)}{t_\infty-t}\!\geq\!(t_\infty-t)^{-1}\sqrt{e}\quad\text{Constant}\times\varepsilon-\sqrt{e}\,\,\text{]}\geq 0\,.
$$

⁴⁾ h_{∞} can be constructed as follows: define $h_{\infty}(0)=0$, let $h_{\infty}(t_{\infty})-h_{\infty}(t) = \text{constant} \times \sqrt{e(t)}$, where $e(t) \equiv \max_{t_{\infty} \ge s \ge t} |b(t_{\infty})-b(s)|$ for $t < t_{\infty}$, and, adjusting the constant (>0), fill in h_∞ on the rest of $[0, +\infty)$ so as to have $0 \leq h_\infty \leq 1$ continuous and increasing; then, as $t \uparrow t_\infty$, $a = b + \varepsilon h_\infty$ satisfies

4. OTHER SINGULAR EQUATIONS

Given $\alpha > 0$, the problem $r = b + \int_0^b ds / r^{\alpha}$ is amenable to the method of section 3, the point being that the r on the left and the $1/r^*$ under the integral sign balance, preventing the solution from getting too small or too big.

I do not know of any integral equation $r = b + \int_{0}^{b} k(r, s) ds$ that can be solved for *almost all* Brownian paths *b* but not for *all* continuous paths ; it would be interesting to have such an example (see R. Cameron $\lceil 1 \rceil$ and D. Woodward $\lceil 4 \rceil$ for additional information on this point).

Massachusetts Institute of Technology

REFERENCES

- [1] R. Cameron. Nonlinear Volterra functional equations and linear parabolic systems. J. Analyse Math. 5 (1956/57), 136-182.
- [2] R. Hasminskii. Probability distribution of functionals of trajectories of a random process of diffusion type. Dokl. Akad. Nauk SSSR 104 (1955), 22-25.
- [3] K. Itô. On a stochastic integral equation. Proc. Japan Acad. 22 (1946), 32-35.
- [4] D. Woodward. On a special integral equation. Proc. Amer. Math. Soc. 10 (1959), 853-854.