
M E M O IR S  O F  T H E  C O L L E G E  O F  SCIENCE, U N IV E R S IT Y  O F  K Y O T O , S E R IE S  A
Vol. XXXIII, Mathematics No. 2, 1960.

On P. J. Myrberg's approximation theorem
on Fuchsian groups

By

Saburo SHIMADA

(Received August 15, 1960)

1. Introduction.

P . J .  M y rb e rg  [3 ]  proved an approximation theorem for
Fuchsian groups having fundamental domain of finite non-euclidean
area. The purpose of the present paper is to extend it for Fuchsian
groups of divergence type and, further, show that the validity of
his approximation theorem implies conversely the divergence type
o f Fuchsian groups. As is known ([10 ]), a Fuchsian group is of
divergence type if and only if the corresponding Riemann surface
is o f class O G . Finally in  5  and 6  we shall state some related
results and problems.

The author wishes to dedicate this paper to the late Professor
M. Tsuji who gave him kind suggestions, and express his hearty
thanks to Professors A. Kobori and Y. Komatu for their constant
encouragement during this research.

2. Main Theorem.

We begin with stating our main result. Let G be a Fuchsian
group o f linear transformations :

S„: z ' e"'n • z —  a " (  anl < 1 )  (n ---- 0,1, 2, •••)
1— a„z

which leave I zl < 1  invariant and let Do be its normal fundamental
domain which contains z = 0 .  The quantity

Œ (D o )  =  4 Ç f  
(

r
1

d
— r 2 ) 2 z

"re

is called its non-euclidean area. The boundary o f Do consists of



232 Saburo Shimada

arcs on circles which are orthogonal to lz I =1 and a closed set
A o on lz I =1, which may be empty. I f  we identify the equivalent
points on the sides of Do , then Do can be considered as a Riemann
surface F .  If c r (D 0)< 0 0 , then either Do lies entirely in  z  I < 1
with its boundary, or D , has a  finite number o f sides in lz I < 1
and a finite number o f vertices on  I z1 =1 where two sides o f D,
touch each other. Hence the corresponding Riemann surface FG
is  a  closed Riemann surface or a Riemann surface which is
obtained from a  closed Riemann surface by taking o f f  a  finite
number of points (D i [7 ], [10 ]).

Let an (n=0, 1, 2, ••.) be equivalent points of z = 0 under G,
then either i) /(1— la1)= co, or ii) I an ' )<00. W e call G
a Fuchsian group of divergence type or of convergence type accord-
ing to the case i) or ii), respectively. It is well known that there
exists Green's function on F , when and only when G is o f conver-
gence type. If 0-(4)<00, then G is of divergence type.

Main Theorem . L et G  be a  Fuchsian group, let 7(ei9)  be the
radius o f  IzI = 1  term inating at e19, and  le t {ry„(e")} be the set o f
arcs which are equivalent to 7(e19)  under G.

(I) If  G  is  of  divergence type, then there ex ists a  measurable
set E  of  measure 2n-  o n  IzI = 1  satisfy ing the following property:
For any  ei° E E  and  an  arbitrarily  giv en circular arc  C  i n  IzI < 1
which intersects IzI =1 orthogonally  at its two end points on IzI=1,
it  is  possible to f ind { n }  such that

7„,,(ei°) C (1) ---> 00) , uniformly in  euclidean metric.'."

(II) If  G is of convergence type, then there is no measurable set
E  o f  measure 27r on IzI =1 satisfy ing the above mentioned property.

3 .  Preliminary lemmas.

For the proof of Main Theorem, we need several lemmas.
If G is of divergence type, the corresponding Riemann surface

FG belongs to OG, so that as known well, FGEOHB, hence follows
Lemma 1. I f  G  i s  of  divergence type, then  there  ex ists  no

measurable set E  o n  IzI = 1  w hich is invariant under G and 0<m E
< 2 7 z . Therefore, i f  m E>0, then mE=27r.

1) Exactly speaking, the convergence is in  the sense o f Fréchet.
2) In other words, ' almost all geodesic lines on a Riemann surface F  E OG o f con-

stant negative curvature are quasi-ergodic.'
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Lemma 2  ([1 2 ]).  I f  G is  o f  divergence type, then f o r any  ei°
o n  Iz i =1 , th e  s e t  { S„(e")}  (n=0,1, 2, is everywhere dense on

z  —1 .
Lem m a 3  ([6 ], [1 3 ]). Let z  be any point of  IzI < 1 .  We denote

its equivalent in  D , by  t" 0(z). L et l(e", 0)) (— z 12<w <7r12) be a
segment through e10 , contained in  IzI <1 ,  making an angle a) w ith the
radius of  Iz I =1 through e°. T h e  equivalent of  40%0)) in Do consists
o f  at m ost a  countable number of  arcs which we denote by 10(e10 , 0)).

Then there ex ists a  measurable set E  o f  measure 27/-  o n  IzI =1
which satisf ies either of  the following conditions:

i) I f  G  i s  of  div ergence ty pe an d  0 ' E E , then  l e (e", 0)) is
everywhere dense in D, f o r any  0) (-71- 12<0)<7 r12);

ii) I f  G  i s  of  conv ergence ty pe, th e n  lirn1 0(z) j = 1 ,  when
z— >e"EE f rom  the inside o f  any  S tolz  dom ain w ith v ertex  at  e".

From Lemma 3 we have easily the following
Lemma 4 .  I f  G is  o f  divergence type, then there ex ists a set

E  o f  measure 27r o n  Iz I =1 which satisf ies the following condition.
L et A o : 12'1 p  be a  sm all disc contained in  Do a n d  A n b e  its

equiv alents under G. L et l(ei° , 0)) (-7 .12<0)<7 z - 12) be a segment
through 64 '  making an angle 0) w ith th e  rad iu s  o f  Iz I  =1  through
ei°. I f  ei° EE, then l(e", 0)) intersects inf initely  m any A n f o r  any
sm all p >0 .

Let A 0 =-S (A ), where S„: z' = eo}.•  z  a
s E G, then A n : 

z— an

1— an z 1— ein z
‹ p ,  and we can easily see that the radius r n o f A „ is equal to
p (1  

—  
la n I2 )

. I f  A n  a n d  l(ei° , 0)) intersect each other, we have
1— lan l2p2

lei ° — a .1 = 0(1—  I a .1 ), so that r n = I e10 — a .1 • 0 (P).
Hence, if  we choose p, > p , > • ,  p, —> 0, for p , then by Lemma

4, for any e''' E E , there exist infinitely many a n -->e", such that
1— an e - 1 0

—>e1. '( - 7 c < 0 1 < z ) .  Hence, writing w  instead of (0', we
1—d n eie
have

Lemma 5 .  I f  G is  of divergence type, then there ex ists a set
E  of  measure 27r on Iz I =1  which satisfies the following condition:
I f  e"E  E , then f o r any  0.) (-71 - <0 K 7 r) ,  there exist infinitely many
an — e " , such that

1— (In c "— > ,
1 — ãe° z < w < 7 r )  •
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Lemma 6 .  L e t G  be of  div ergence ty pe and E  be a se t o f
measure 27r on l z !  =1  which is defined in Lemma 5. L et e" E E  and
le t  S = e k  Eeilk• z G  (k =1 , 2, 3, • •), such that c k --).ei° in  ak

1 - -e k z
Stolz domain 1-2(eio, 

o s ) :
arg (1 — z e -" )

1 - 2 e "
<0.,0(< 71-)  and  7 k -->7. We

denote th e  se t o f  such 7  by M(6)0 , 0). Then f o r any 6>C 1, we can
choose (00 —(00(8,61)<71-,  such that f o r any q , in  [0, 27r], the inequality

I p—  71‹  8 holds f o r a suitable 7 E

Proof. We may assume that 0 =0 . Let

S m : = m • z a "' (m = 1 ,  2,...),z '

Mco o
 0 ) .

( 1 )
1—a,„z

: z ' =  en  • z — b n ( n = 1 ,  2, •••) ( 2 )
1— b„z

belong to G, then S S „, belongs to G, where

S„, • z c k (k  =1 ,2 ,: z ' ei/k •-•) , ( 3 ) 
1— -e k z

.elk ei(0„, a , n+13„). 1 + b „ e - i . . a
c k

 —  "'
+ b

" ( 3')
1+a„,b„ei'm 1+a„,b„e-tcôm

By Lemma 5, we may assume that an , —>1, 
1 — a

m—>1 00)
1— a m

and a m --->cf. I f  we fix b„ and let co, then by (3 '), ck —> 1 and
7 k  7 .  Suppose that

1  C  k ( I c o l < 7
)

,
1—ek

then since

(1—a,n ) —(1—d„,)b n c i ' m a„,b„ei". .1+ bne" 
1— 6" k ( 1 —  a k i ) — (1 —  a ,k )b k e" 'n 1 +  a m b n e -1 - - b „ e "

we have easily
bn e - "— b n e" = (1—  lb,,12)•1—

. ( 5 )1+e 1'
I f  bn = p e n ,  then (5) becomes

2p„ sin (0 „— cc) = —  (1—  pz) tan (w/2) . ( 6 )

Now,
2p sin (û —ce)cY) = —(1— p2) tan (w/2) , z  = p e "  , ( 7 )

represents a circular arc through e " ' and e a - 0 ,  making an angle

( 4 )
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(0/2 with the diameter through ei°3 and e " '" ) . This can be proved
as follows :  We may assume that a = 0, then i f  we put z =x +iy ,
(7) becomes

x 2 +.372 — 2y cot (co/ 2) =  1, i.e. x 2 + (y — cot (0)12)) 2 =  cosec 2 (co/ 2) ,

which is a  circular arc that passes through z=1 and z = —1 and
makes an angle a7/2 with the real axis.

Hence, it is necessary for (4) that b„ lies on the circular arc
1(7 )  and conversely, i f  b„ lies on (7), then we have  —ck
1—ekFrom (3 '), we have

e iy  _  e iccol-on ). 1  + b n e '  _  e i pn . e " 3+1),,_ e i g n . e " + ' ) —b„
1+b„ei' 1+b„eias 1—b„ei(c6±')

= — S (ei ) ,
so that

e i 7 — S (e"°" ) ) . ( 8 )

L e t ck  —> 1 in  a  Stolz domain n(c00) : a r g  (
1 — z

)  < ( 0 0 < z
1—

with vertex a t  z =  1  and let 7,, — >7. Let M(0)0)  be the set {7}.
Then by (8), M(0)0)  contains the set { —S,',(ei(''') ) ) .  where b„ lies in
a  domain D((00)  which is bounded by two circular arcs, passing
through e1 0  and e " '" ) , and making an angle coo/2 and —w0/2 with the
diameter connecting e1'  and O a '',  respectively. Now, by Lemma
2 ,  i f  b,, run through all equivalent points of z = 0 ,  then the set
{ — S ( e " ) }  is everywhere dense on { z i = 1 .  While, i f  (0,—.7r,
D(coo)  tends to the interior o f I z I = 1 .  Therefore, fo r any & > 0 , if
we choose (00 =0),(& )<7r sufficiently near to 7r, then for any (p in
[0, 277 ] ,  we can find 7 E M(6)0)  such that the inequality Ip-71<8
holds, q. e. d.

Remark. Since S k (0) = = c k e"k ± "), w e see that, for
any 9>0, we can choose a suitable w0 < 7 r ,  for which there exist
ck  E S-2(e 19 ,  coo) ,  ck --> ei e , 7k ---> 7, such that arg S k (0)1 <& .

Lemma 7. L et n ((0 ) : arg
(1  — z )

 < c o < n -  be a  Stolz domain
1 - 2

z —awhose vertex lies at z =1 , and let A :   <  p ( < -
1

)  be  a  disc
1— az —  2

such that a E 12(w), 1/2 <Ial<1, la-11< cos (0/2. We project A
from  z = 0  o n  Iz1 =1  and let J  be the projection.

Then J  is contained in  an  arc  I  on z  I = 1  whose middle point
is z =1 , such that
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I JI / I II ir±-cos (c0/2)> 0 ,
— 6

w here I JI denotes the arc length of J. T h e re f o re  the parameter of
regularity  of J  w ith respect to  z =1  is '•cos (c0/2) (>0).

— 3
2 - rPro o f . Let A , :   p,

2
 r < 1 ) ,  be a disc and c  be

its center a n d  be its radius, then

= r(1-19 2)8 p ( 1 — r 2)c (1 )1—r2p21 — r 2 p 2 .

Hence, if J o be the projection of A , from z =0 o n  I z I = 1 , then

I Jo I = 2 sin ' —8  =  2 sin-
,  

p ( 1 — r 2 ) > 2 p ( 1 — r ' ) >
 4p(1— r),

r (1— p2) r (1— p2)  —

so that, if a=rei", then

I JI> 41) (1 — ( 2 )

I f  p > 0 ,  then we can prove that J  is contained in an arc

=  {e"; 101<p+ 4(1 — r)} • ( 3  )
For,

P + sin -1 -
8  =

— r2 )  < . p ( 1
—

r2) 

r (1— 102) 2  r (1— p2)
< p +  7r (1+1/r)(1-6 < p ± (1+2)(1—r) _

4 1—Ps 1 - (1/2)2
p+ 4 (1 — r ) .  ( 3')

If a E (2(w), a - 1 cos (w/2), 1/2 < la 1 <1, then we have easily
the following inequality :

2(1— 1 a I ) 11—al< 
c o s  ( . / 2 )  

.

On the other hand,

I1—a 1 2 = 1+r 2
- 2rcos q= (1— r)2+4r sin2 (p/2) 4r sin2 (p/2)_sin 2 (P/2),

11— al sin (p/2) —
ir 2 7r

Hence, we have

cp < v i l — a l <
27r(1-1a1) _27r(1—r)

cos (co 12) cos (6)12) .

Therefore, by (3), J  is contained in an arc
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I()  =  le" ;101 ‹ ( 2 7 r +  4 ) ( 1 —  r)} . ( 4)
cos (co/ 2)

By (2) and (4), we have

I/1/1/1>p  cos (0)/2) > -e--•cos (co/ 2) > 0
7r+ 2cos (co/2) 6 q. e. d.

Using Lemma 6 and 7, we can prove the following
Lemma 8. L et G be a  Fuchsian group of divergence type and

03(00 , &) be a  sector domain contained i n  z1< 1 , such that

O(O, &) = ;  arg z— 0 0 1< &, 1 z1<11

and {4 }  be the set of  equivalent points of  z=0 contained in  0(00 , &),
r „ an d  le t S: z' = e i a . z— a E G .

1— (2,Tz
L et A  1z1< p  be a small disc contained in D, and put A:=S,T(A).

W e project A.? f rom  z=0  on 1z1 =1  and let J7? be the projection on
Iz1=1.

Then \JJe® is  a  measurable set of  measure 27c o n  1z1 =1.
Pro o f . By Lemma 6, there exists a set E o f measure 27c on

zl = 1  satisfying the following condition : For any point e" G E
and for a suitable Stolz domain 12(e'°, (00) (coo < z )  whose vertex lies
at e", there exist infinitely many points S(0) (—>e") in (2(e 19, (00 ).

Then by Lemma 7, the corresponding {Jc)„ ,}  i s  a  regular
sequence tending to e " in  Vitali's sense ." Therefore, E  is covered
by {J} in  Vitali's sense, and the lemma follows immediately from
Vitali's covering theorem ([4]), q. e. d.

We shall denote the intersection of E and UN by T(6(0 0 , &), p)

T(®(00 , E), p) E  ( V  J )  . ( * )

4. Proof of Main Theorem.

( I )  Let G be of  div ergence ty pe. In  (*) we put e"o=ek1"/2 n - i

(k =0, 1, 2, ••• , 2" — 1), 6— 7 r a n d  denote briefly T(n, k, p) instead

o f T (6
2"

( 
2

k 7 r p )  7 r ) .  Put
"-

3 )  Strictly speaking, {(g v +el9 )}  is a regular sequence in Vitali's sense and E is
covered by { (I 7T - Fele)}(eie e E )  in Vitali's sense. Therefore we may conclude from
Vitali's covering theorem that we can choose at most a  countable number o f closed
sets {(4 , -keiev)} (v =1, 2, • ••) which cover E except a set of measure zero . Then { J 77,.}
also cover E  except a set of measure zero.
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- 1

T(n, p) = T(n, k, p) , ( 1)
14=0

then T(n, p) is  a  set o f measure 27r on Iz I = 1 . I f  n---> co, then
T(n, p) tends decreasingly to a set T (p ) o f measure 27r;

T(1, p) T(2, p) • • • T(n, p) • • • , T(n, p) --> T(p), (n—). 00) . ( 2 )

We take pi >p,>••• , p„—> 0, for p, then T (p )  tends decreasingly
to a set T *  o f measure 27r;

T(Pi) T(P2) T (p ) T(Pv)—*T* c>9) • (  3  )
We shall prove that one may take T *  for E  in Main Theorem.
First, we assume that C  is a given diameter o f  I z I =1.
Then, by the definition o f T * ,  fo r any e" E T *  we can find

{n }  such that 7 (e 0 )- - .0 00), uniformly.
This can be proved as follows. If e" E T *, e " belongs to T(n, p)

fo r  arbitrary n  and p. So that, by the definition o f T(n, p), we
can find a set of am  which are equivalent to z = 0 under G  satis-
fying the following conditions :

i) L e t S m : z'=ei'm•  Z - - am  E G  an d  A o :
1— dm z

then  S,;1(A0) n7(e 10) + 4).
ii) I f  we assume that ere and e" 70+' ) are two end points of C,

then the following inequality holds :

IEm arg S(0)— 7-01 n/21.

Let S„,(7) be the image curve o f  7 (e ") by Sm , then Sm (7) is
a  circular arc orthogonal t o  z1 =1 which starts from S„,(0), in-
tersects Ao , and terminates on  z I = 1 .  Since n and p are arbitrary,
we can get the desired conclusion.

Next, we consider the case where C is  an arbitrarily given
circular arc in I z I< 1  which intersects z I = 1  orthogonally. We
can find such a  sequence o f  circular arcs Cm in  z < 1  that
satisfies the following conditions :

i) C„,—>C, uniform ly , when 00;
ii) Each Cm intersects z  = 1  orthogonally at its two end

points on i z  =1 ;
iii) Each C„, contains at least one point am  which is equivalent

to z= 0 under an element S„, o f G : S „,(0 )= a m , a m  ECm , Sm  E G.
We can approximate C m b y  a  sequence from {7,,(e10)}. For,
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since S;,-,1(Cm) is a diameter o f I z  =1, there exist ,-y (ei°) (1) =1, 2, • • •)
such that

S,T,,i(Cm) cc), uniform ly , ( 4 )

consequently

FiZ)S m (7Z ) (e"))C m  (1 , o c ) ,  unif orm ly . ( 5 )

By the above considerations, we can prove by means o f a  well
known diagonal process that C  can be approximated by a sequence
from {7„(e")}.

(II) I f  G is  of convergence type, then it is an immediate con-
sequence o f Lemma 3  that there exists no measurable set E  of
measure 27r o n  121 = 1  w ith  the property mentioned in Main
Theorem.

Thus we have proved the theorem completely.

5 .  An application.

As a corollary of Main Theorem, we have the following theorem
which can be considered as a precision of the theorem in [12].

Theorem  2 .  I f  G  is  o f divergence type, then there exists a set
E o f measure 27r on 1z1 = 1  which satisfies the following condition.
Let

S: z ' =  e"'n •  z —  a n E G (n = 0, 1, 2, •••) .
1— z

I f  we consider the totality  of the set {an}  where a n lies  in  a  Stolz

d o m a i n  n ( e " ,  8 ) :  a r g
 (1_  ze - " < 8  whose vertex lies at ea EE, then

1— ei9 )1
the corresponding set of a n is everywhere dense in [0, 27r], fo r  any
sm all a>o.

Pro o f . Let L , be a diameter o f 12'1 = 1  through e "E E  and L
be any diam eter o f  l z  = 1 .  Then, b y  Main Theorem, we can
find n, (2)=1, 2, 3, • •-), such that S„,(L o )--> L 0 0 ) ,  so that

S "(e ") —  S.,( — 2 ( o c ) (  1  )

While if a„,=r„,e"nv, we have
2(1—r, )

4,)2 +4 r;, sin 2 (0,— 0)
Hence by (1), one sees

=  o(1— „,)
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This means that

lim  arg (1  a,,,,en 0 . (  2  )

I f  we assume that L  is  a diameter through e"', then since

1 —
Sn j e " ) e""1(+"• eiV

'
we have

— 61 . ( 3 )

Since (73 i s  an arbitrary point in [0, 27r], the set Icie„,} is every-
where dense in [0, 27r], which proves the theorem.

6. Related results and problems.

Let m = e ,  972 =e 1 P̀ be two points on 12. 1 = 1, then  the pair
(ni , 12 ) can be considered as a point on a torus ;

0 :  0  <  0 < 2 7 r ,  0  < p < 2 7 r

For a measurable set E  on 0 , we define its measure ,a(E) by

,a(E) = 5 d & d p , so that ,a(0)= 47r2

Let S , be any substitution of a Fuchsian group G and

: 97( = S 1) , 9 / 2 Sv(n2),

then the totality o f  { T ,} constitutes a group g = G x a
E. H op f ([1 ], [2 ]) proved the following ergodic theorem :
Hopf's ergodic theorem ([1 ], [2 ], [9 ], [10 ]). I f  o-(Do )<0 0 , then

there exists no measurable set E  on 13  which is invariant under g
and 0<p (E )<47r 2 . Hence, i f  it (E )> O , then p(E)=47v 2 .

B y  the same method in  [ 8 ] ,  we can prove the following
proposition.

Proposition. I f  H opf 's  ergodic theorem holds f o r  a  given
Fuchsian group G, then Myrberg's approximation theorem also holds
fo r  this G.

By the above proposition and Main Theorem, we have
Theorem 3 .  I f  G  i s  o f  convergence type, then there exists

always a  measurable set E  on 6 , which is invariant under g  and
0<p(E)<471-2.
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Pro o f . When G  i s  of convergence type, w e  see  b y  Main
Theorem that M yrberg's approximation theorem does not hold for
this G .  So that, this theorem follows from the above proposition.

R em ark . The late Prof. M. Tsuji gave a direct proof of this
theorem, but his proof is yet unpublished.

In conclusion, we propose an unsolved problem :
Problem (M . T suji's conjecture). Does Hopf's ergodic theorem

hold for G of  divergence type?

Mathematical Institute,
Nihon University, Tokyo.
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