MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

A note on the pseudo-compactness of the product of two spaces

By

Hisahiro TAMANO

(Received July 10, 1960)

As is well known, the Stone-Čech compactification of a product space is not generally identical (more precisely, homeomorphic) with the product of the Stone-Čech compactifications of coordinate spaces. M. Henriksen and J. R. Isbell [5] pointed out that the relation $\beta(X \times Y) = \beta X \times \beta Y^{1}$ implies the pseudo-compactness of the product $X \times Y^{2.3}$. Recently, the converse has been established by I. Glicksberg [4]. He proved more generally that the relation $\beta(\Pi X_{\alpha}) = \Pi \beta X_{\alpha}$ holds true if and only if ΠX_{α}^{4} is pseudo-compact.

In this note, we shall restrict ourselves to consider the product of two spaces, and give some conditions equivalent to that the relation $\beta(X \times Y) = \beta X \times \beta Y$ hold. We shall show that $\beta(X \times Y) =$ $\beta X \times \beta Y$ if and only if the tensor product $C^*(X) \otimes C^*(Y)$ is dense in $C^*(X \times Y)$.

The pseudo-compactness of the product $X \times Y$ implies the pseudo-compactness of each coordinate space. However, it is not true that the product of pseudo-compact spaces must be pseudo-compact⁵. Several additional conditions sufficient to insure the pseudo-compactness of the product of pseudo-compact spaces are given and discussed in [1], [4] and [5]. We shall generalize those results in somewhat unific form.

¹⁾ Throughout, we shall consider X as a subspace of βX .

²⁾ The trivial case that X or Y is a finite set will be excluded throughout. If X is a finite set, then $\beta(X \times Y) = \beta X \times \beta Y$ for any space Y.

³⁾ T. Ishiwata [7] has proved that if $\beta(X \times X) = \beta X \times \beta X$, then X is totally bounded for any uniform structure of X. (X is pseudo-compact if and only if it is totally bounded for any uniform structure of X. C. f. T. Ishiwata: On uniform spaces, Sugaku Kenkyuroku, Vol. 2 (1953) (in Japanese).)

⁴⁾ ΠX_{α} denotes the product of X_{α} .

⁵⁾ C.f. [9], [10].

All spaces mentioned here will be assumed to be infinite completely regular T_1 -spaces, and all functions to be real-valued.

A compactification of X is a compact Hausdorff space containing X as a dense subspace. The Stone-Čech compactification βX is characterized among compactifications of X by the property that every bounded continuous function on X has a continuous extension over βX^{6} .

Let $C^*(X)$ denote the Banach space of all bounded continuous functions on X with the usual nom $||f|| = \sup_{x \in X} |f(x)|$. We shall denote by Z(F) the set of zero points of $F \in C^*(X \times Y)$, that is, $Z(F) = \{(x, y) \in X \times Y; F(x, y) = 0\}.$

THEOREM 1. The following conditions on the product $X \times Y$ are equivalent.

(a) Both X and Y are pseudo-compact and $pr_{X}[Z(F)]^{\tau_{j}}$ is closed in X for each $F \in C^{*}(X \times Y)$.

(b) Both X and Y are pseudo-compact and $pr_{Y}[Z(F)]$ is closed in Y for each $F \in C^{*}(X \times Y)$.

(c) The tensor product $C^*(X) \otimes C^*(Y)$ is dense in $C^*(X \times Y)$.

(d) $\beta(X \times Y) = \beta X + BY$.

The pattern of proof is (a)(b) $(c) \rightarrow (d)$ (b).

Proof of $(a) \rightarrow (c)$: Let F be an element of $C^*(X \times Y)$ and let F_x denote the restriction of F on $x \times Y$. Then F_x defines a continuous function on Y. By assigning F_x to $x \in X$, we have a map \hat{F} of X into $C^*(Y)$. The map \hat{F} is continuous as we now verify: Put $H_{\mathfrak{e}}(x, y) = \mathfrak{E} - \min(\mathfrak{E}, |F(x, y) - 1 \otimes F_x(y)|)$, then $H_{\mathfrak{e}}(x, y)$ $= \mathfrak{E}$ on $x \times Y$ and $H_{\mathfrak{e}}(x, y) \neq 0$ implies that $|F(x, y) - 1 \otimes F_x(y)| < 2\mathfrak{E}$. Since $pr_X[Z(H_{\mathfrak{e}})]$ is closed in X by (a), there is a neighborhood $U_{\mathfrak{e}}(x)$ of x such that $U_{\mathfrak{e}}(x) \times Y \cap Z(H_{\mathfrak{e}}) = \phi$. If $x' \in U_{\mathfrak{e}}(x)$, then $|F_x(y) - F_{x'}(y)| < \mathfrak{E}$ for each $y \in Y$, and consequently $||F_x - F_{x'}|| < \mathfrak{E}$ for each $x' \in U(x)$. Therefore \hat{F} is continuous.

It follows that the image $\hat{F}(X) \subset C^*(Y)$ of X is compact, since the continuous image of a pseudo-compact space is pseudo-compact and since pseudo-compact metrizable space is compact⁸⁾. Therefore

⁶⁾ See [3], P. 831.

⁷⁾ $pr_{\mathcal{X}}[Z(F)]$ denotes the projection of Z(F) into X.

⁸⁾ Note that every metrizable space is paracompact (c.f. [8], P. 160) and that pseudo-compact paracompact space is compact (c.f. [6]).

A note on the pseudo-compactness of the product of two spaces 227

we have a finite number of functions, say F_1, \dots, F_m in $\hat{F}(X) \leq C^*(Y)$ such that $\bigcup_{i=1}^m V_n(F_i)$ covers $\hat{F}(X)$, where $V_n(F_i) = \{f \in C^*(Y); \|f - F_i\| < 1/n\}$. Put $f_i(x) = \max[0, 1/n - \|F_i - F_x\|]$, then $0 \leq f_i(x) \leq 1/n$ and $\sum_{i=1}^m f_i(x) > 0$ for each $x \in X$. Letting $\varphi_i(x) = f_i(x) / \sum_{i=1}^m f_i(x)$, we have a finite partition of unity $\sum_{i=1}^m \varphi_i(x) = 1$. Now, let us consider the function $F_n(x, y) = \sum_{i=1}^m \varphi_i(x) \otimes F_i(y)$ which is evidently an element of $C^*(X) \otimes C^*(Y)$. Obviously $\varphi_i(x) \neq 0$ implies that $|F(x, y) - 1 \otimes F_i(y)| < 1/n$ for each $y \in Y$, and therefore we have $\|F(x, y) - F_n(x, y)\| = \|(\sum_{i=1}^m \varphi_i(x) \otimes 1) \cdot F(x, y) - \sum_{i=1}^m (\varphi_i(x) \otimes 1) \cdot (1 \otimes F_i(y))\| = \sum_{i=1}^m \|\varphi_i(x) \otimes 1\| \cdot \|F(x, y) - 1 \otimes F_i(y)\| \leq 1/n$. It follows that $C^*(X) \otimes C^*(Y)$ is dense in $C^*(X \times Y)$.

Proof of $(c) \rightarrow (d)$: To prove (d), we have only to show that each $F \in C^*(X \times Y)$ has a continuous extension over $\beta X \times \beta Y$. Let F(x, y) be any element of $C^*(X \times Y)$. Then there is, regarding our hypothesis, a sequence $\{F_n(x, y)\}$ of elements of $C^*(X) \otimes C^*(Y)$ which converges to F(x, y). It is clear that each element of $C^*(X) \otimes C^*(Y)$ has a continuous extension over $\beta X \times \beta Y$, and we shall denote by $F_n^*(x, y)$ the extension of $F_n(x, y)$ over $\beta X \times \beta Y$. Then $\{F_n^*(x, y)\}$ forms a Cauchy sequence of $C^*(\beta X \times \beta Y)^{\text{so}}$, and since $C^*(\beta X \times \beta Y)$ in complete $\{F_n^*(x, y)\}$ converges to a function $F^* \in C^*(\beta X \times \beta Y)$, which is the desired extension of F over $\beta X \times \beta Y$.

Proof of $(d) \rightarrow (a)$: The first statement of (a) is an easy consequence of Stone-Čech's theorem (see [8], P. 153) which states that if *h* is a continuous map of *X* to a compact Hausdorff space *Y*, then *h* has a continuous extension *h*^{*} which carries βX to *Y*. Let *R*^{*} denote the one point compactification of real space *R* (i.e. $R^* = R \cup \infty$), then each continuous function $f \in C(X)$ (where C(X) denotes the set of all real-valued continuous functions on *X*) has a continuous extension $f^*(R^*$ -valued function) over βX , and *f* is unbounded if and only if $f^*(p) = \infty$ for some $p \in \beta X$. If *Y* is not pseudo-compact, then there is an unbounded continuous function $g(y) \in C(Y)$. Since *X* is assumed to be infinite, we can

⁹⁾ See [2], P. 17, Proposition 5.

see that there is a bounded function $h \in C(X)$ such that $Z(h^*)$ is not open in βX^{10} , where h^* denotes the extension of h over βX . Consider the function $G(x, y) = h(x) \otimes g(y)$, then it is easy to see that G(x, y) has no (R*-valued) extension over $\beta X \times \beta Y$. But this contradicts the assumption that $\beta(X \times Y) = \beta X \times \beta Y$. It follows that both X and Y are pseudo-compact. We now prove that $pr_{X}[Z(F)]$ is closed in X for each $F \in C^{*}(X \times Y)$. To this end, we first observe that $pr_{\beta X}[Z(F^*) \cap (X \times Y)] = pr_{\beta X}[Z(F^*) \cap (X \times \beta Y)],$ where F^* denotes the extension of F over $\beta X \times \beta Y$. Suppose not, then there is a point $x_0 \in X$ such that $F(x_0, y) \neq 0$ for each $y \in Y$ and $F(x_0, q) = 0$ for some $q \in \beta Y$. Let F_0 be the restriction of F^* on $x_0 \times Y$, then $F_0(y) \neq 0$ for each $y \in Y$ and $F_0^*(q) = 0$ for some $q \in \beta Y$. Evidently, $(1/F_0)^2$ is an unbounded continuous function on Y, and hence Y can not be pseudo-compact. This is contradictory, therefore we have $pr_{\beta X}[Z(F^*) \cap (X \times Y)] = pr_{\beta X}[Z(F^*) \cap (X \times \beta Y)]$. On the other hand, it is clear that $Z(F) = Z(F^*) \cap (X \times Y)$ and it follows that $pr_{X}[Z(F)] = pr_{\beta X}[Z(F^{*}) \cap (X \times Y)] = pr_{\beta X}[Z(F^{*}) \cap (X \times \beta Y)] =$ $pr_{\beta X}[Z(F^*)] \cap X$. Since $Z(F^*)$ is compact $pr_{\beta X}[Z(F^*)]$ is compact and consequently $pr_{\theta X}[Z(F^*)] \cap X = pr_{X}[Z(F)]$ is closed in X. The proof is completed.

The proof of $(b) \rightarrow (c)$ $((d) \rightarrow (b))$ is entirely similar to that of $(a) \rightarrow (c)$ $((d) \rightarrow (a))$.

We now discuss the pseudo-compactness of the product $X \times Y$. Throughout the sequel, both X and Y are assumed to be pseudocompact. By virtue of the theorem due to I. Glicksberg ([4], Theorem 1), the pseudo-compactness of the product $X \times Y$ is equivalent to that the relation $\beta(X \times Y) = \beta X \times \beta Y$ hold true. It follows from Theorem 1 that $X \times Y$ is pseudo-compact if and only

¹⁰⁾ Suppose that $Z(h^*)$ is open for each $h \in C^*(X)$ then Z(f) is open for each $f \in C^*(\beta X)$. It follows that every continuous function on βX assumes only finitely many values, since $\{x \in \beta X; f(x) = a, a \in R, f \in C^*(\beta X)\}$ is open (and closed) in βX . Take two points x, y of βX and let f be a continuous function on βX such that f(x)=0 and f(y)=1. Then both $\{x \in \beta X; f(x)=0\}$ and $\{x \in \beta X; f(x)=0\}$ are open and closed, and at least one of them must be infinite because βX is infinite. Consequently, there is an open and closed subset A_1 containing infinitely many points such that $\beta X - A_1 \neq \phi$. Similarly, A_1 contains an open and closed A_2 containing infinitely points such that $A_1 - A_2 \neq \phi$...It follows that there is a sequence $\{A_n\}$ of open and closed subset of βX such that $A_n \supseteq A_{n+1}$ and $A_n - A_{n+1} \neq \phi$ for each n. Let g_n be a characteristic function of A_n , then $g = \sum_{n=1}^{\infty} g_n/2^n$ is a continuous function of βX assuming infinitely many values. But this is a contradiction.

if $pr_{X}[Z(F)]$ is closed in X for each $F \in C^{*}(X \times Y)$ (or, equivalently, if and only if $pr_{Y}[Z(F)]$ is closed in Y for each $F \in C^{*}(X \times Y)$).

We first give a simple proof of the following proposition.

PROPOSITION 1. If X is compact, then $X \times Y$ is pseudo-compact for any pseudo-compact space Y.

Proof. We shall show that $pr_Y[Z(F)]$ is closed for each $F \in C^*(X \times Y)$, which will complete the proof. If $y \notin pr_Y[Z(F)]$, then $F(x, y) \neq 0$ for each $x \in X$. There is, for each point $(x, y) \in X \times y$, an open neighborhood $U(x) \times V(y)$ on which $F(x, y) \neq 0$. Since $X \times y$ is compact, $X \times y$ can be covered by a finite number of such neighborhoods, say $U_1(x_1) \times V_1(y)$, \cdots , $U_m(x_m) \times V_m(y)$. Put $W(y) = \bigcap_{i=1}^m V_i(y)$; then W(y) is open and $W(y) \cap pr_Y[Z(F)] = \phi$. It follows that $pr_Y[Z(F)]$ is closed in Y.

The next proposition shows that $X \times Y$ is pseudo-compact for any pseudo-compact space Y if X has a "rich" supply of compact sets, even if it is not compact. Recall that X is a k-space¹¹⁾ provided every subset of X intersects every compact subset of X in a closed set is itself closed. Every locally compact space, and every space satisfying the first axiom of countability is a k-space.

PROPOSITION 2. If X is a pseudo-compact k-space, then $X \times Y$ is pseudo-compact for any pseudo-compact space Y.

Proof. Suppose that $X \times Y$ is not pseudo-compact, then there is a function $F \in C^*(X \times Y)$ such that $pr_X[Z(F)]$ is not closed in X. Since X is assumed to be a k-space, there is a compact set C such that $C \cap pr_X[Z(F)]$ is not closed. Let F' be the restriction of F on $C \times Y$, then $F' \in C^*(C \times Y)$. Evidently $Z(F') = Z(F) \cap (C \times Y)$ and we can conclude without difficulty that $pr_C[Z(F')] = pr_C[Z(F) \cap (C \times Y)]$ $= pr_X[Z(F) \cap (C \times Y)] = pr_X[Z(F)] \cap C$. Therefore $pr_C[Z(F')]$ is not closed in C. On the other hand, it follows from Proposition 1 and Theorem 1 that $pr_C[Z(F')]$ is closed, since C is compact. This is contradictory, and hence $X \times Y$ is pseudo-compact.

The preceding proposition can be generalized, by utilizing the notion of P-point¹², and Glicksberg's technique on the equicontinuity

¹¹⁾ See [8], P. 231.

¹²⁾ $x \in X$ is said to be a P-point if every countable intersection of neighborhoods of x contains a neighborhood of x. C.f. L. Gillman and M. Henriksen: Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954) 340-362.

of $\{F_y(x)\}_{y \in Y}$, where $F_y(x)$ denotes the restriction of $F \in C^*(X \times Y)$ on $X \times y$.

Now, let us agree to call $x \in X$ as a k-point of X if x satisfies the following condition: If x is an accumulation point of a subset H of X, then there is a compact set C in X such that x is also an accumulation point of $C \cap H$. Every discrete point of X is a k-point, and X is a k-space if and only if every point of X is a k-point.

THEOREM 2. If X is pseudo-compact and if every non-P-point of X is a k-point, then $X \times Y$ is pseudo-compact for any pseudo-compact space Y.

Proof. Reviewing the proof of Prop. 2, we can see that $x \notin \overline{Pr_x[Z(F)]} - Pr_x[Z(F)]$ for each $F \in C^*(X \times Y)$ if x is a k-point of X. Consequently, $\{F_y(x)\}_{y \in Y}$ is equicontinuous at each k-point of X, because $\{F_y(x)\}_{y \in Y}$ is equicontinuous at x if and only if $x \notin \overline{A(\varepsilon)} - A(\varepsilon)$ for any $\varepsilon > 0$, where $A(\varepsilon) = Pr_x[Z(\varepsilon - \min(\varepsilon, |F(x, y) - 1 \otimes F_x(y)|))]$. On the other hand, equicontinuity of $\{F_y(x)\}_{y \in Y}$ is equivalent to the equicontinuity of each countable subset by virtue of the fact that Ascoli's theorem holds in a pseudo-compact space (c.f. [4], P. 370). Each countable subset of $\{F_y(x)\}_{y \in Y}$ is equicontinuous at each P-point, and consequently each countable subset of $\{F_y(x)\}_{y \in Y}$ is equicontinuous on X. It follows that $\{F_y(x)\}_{y \in Y}$ is equicontinuous on X, and hence $Pr_x[Z(F)]$ is closed for each $F \in C^*(X \times Y)$. Therefore $X \times Y$ is pseudo-compact.

REFERENCES

- [1] E. W. Bagley, E. H. Connell and J. D. Mcknight: On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958) 500-506.
- [2] N. Bourbaki: Topologie générale, Chap X, Paris (1949).
- [3] E. Čech: On bicompact spaces, Ann. of Math. 38 (1937) 823-844.
- [4] I. Glicksberg: Stone-Čech compactions of products, Trans. Amer. Math. Soc. 90 (1959) 369-382.
- [5] M. Henriksen and J. R. Isbell: On the Stone-Čech compactification of a product of to two spaces, Bull. Amer. Math. Soc. 63 (1957) P. 145.
- [6] K. Iseki and S. Kasahara: On pseudo-compact and countably comact spaces, Proc. Japan Acad. 33 (1957) 100-102.
- [7] T. Ishiwata: On uniform space with complete structure, Sugaku Kenkyuroku, vol. 1, no. 8-9 (1952) (in Japanese) 68-74.
- [8] J. L. Kelley: General topology, New York (1955).
- [9] J. Novák: On the cartesian product spaces, Fund. Math. 40 (1953) 106-112.
- [10] H. Terasaka: On the cartesian product of compact spaces, Osaka Math. J. 4 (1952) 11-15.

230