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As is well known, the Stone-tech compactification of a product
space is not generally identical (more precisely, homeomorphic)
with the product of the Stone-tech compactifications of coordinate
spaces. M . Henriksen and J. R. Isbell [5 ] pointed out that the
relation R(X x Y )=R X x R Y" implies the pseudo-compactness of
the product X x Y 2

3). Recently, the converse has been established
by I. Glicksberg [4]. He proved more generally that the relation
$ (HX )=11. i3X„ holds true if and only i f  HX,„4 ) is pseudo-compact.

In this note, we shall restrict ourselves to consider the product
o f  two spaces, and give some conditions equivalent to that the
relation R(X x Y)=RXx R Y  hold. We shall show that R(Xx Y)=
13X x 3Y  if and only if the tensor product C * (X )  C*(Y ) is dense
in C*(Xx Y).

The pseudo-compactness o f th e  product X x  Y  implies the
pseudo-compactness o f each coordinate space. However, it is not
true that the product of pseudo-compact spaces must be pseudo-
compacts'. Several additional conditions sufficient to insure the
pseudo-compactness of the product of pseudo-compact spaces are
given and discussed in [ I ] ,  [4] and [5 ] .  We shall generalize those
results in somewhat unific form.

1) Throughout, we shall consider X  as a subspace o f ox.
2) The trivial case that X  or Y  is  a  finite set will be excluded throughout. If

X is a finite set, then 6(Xx Y)=0Xx BY for any space Y.
3) T . Ish iw ata  [7 ] has proved that if /3(XX X)--- fa x  fa , th en  X  is totally

bounded fo r  any uniform structure of X .  ( X  is  pseudo-compact if and only i f  it is
totally bounded for any uniform structure of X .  C. f. T . Ishiwata: O n uniform spaces,
Sugaku Kenkyuroku, Vol. 2 (1953) ( in  Japanese).)

4) II X . denotes the product of X .
5 )  C.f. [9], [10].
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All spaces mentioned here will be assumed to be infinite
completely regular T 1-spaces, and all functions to be real-valued.

A compactification of X is  a compact Hausdorff space contain-
ing X  as a dense subspace. The Stone-tech compactification OX
is characterized among compactifications o f X  b y  the property
that every bounded continuous function on X  has a  continuous
extension over i3X 6 .

Let C*(X) denote the Banach space of all bounded continuous
functions on X  w ith the usual nom 11th sup 1t(x)1. We shall

xE
denote by Z (F ) the set of zero points of F E C*(X X Y ), that is,
Z(F)= {(x, y) G XxY ; F(x, y)=0} .

THEOREM 1. T he follow ing conditions on the product X x Y
are equivalent.

Both X  and Y  are pseudo-compact and Prx [Z(F)] 7 ) is closed
f o r each FEC*(Xx Y ).

Both X  and Y  are pseudo-com pact and p r y [Z (F )] is closed
f o r each F E C* (X X Y ).

The tensor product C*(X )® C*(Y) is  dense in C*(XxY).
13(XxY)= 3X+ BY

( a ) , , (  a )
The pattern of proof is '`( c ) ( d )K

( b ) / ( b ) .

Proof of (a)---> (c) : L e t  F  be an element o f C*(Xx Y) and
let F , denote the restriction of F  on x x Y . T h en  Fx defines a
continuous function on Y. By assigning F , to X E X , w e have a
map P o f X  into C * (Y ) .  The map P is continuous as we now
verify : Put H,(x, y)= 6 — min (8, 1 F(x, y ) - 1 0 F . ( Y ) 1 ) ,  then I -1,(x,
=8 on x x Y and H E(x , y )+0  implies that 1 F(x, —1 0 F x(Y)I <28.
Since p r x [Z(H e ) ]  is closed in X  by (a), there is a neighborhood
U (x ) o f  x  su ch  th a t U,(x)x Y r\Z(11,)= op. If x' E 1 / (X ),  then
1F ,(y)— F (y)1< 8 for each y E Y , and consequently 11F,—F„ , I1< 8
for each x' E U(X). Therefore P is continuous.

It follows that the image t(X ) C *(Y ) of X  is  compact, since
the continuous image of a pseudo-compact space is pseudo-compact
and since pseudo-compact metrizable space is compacts'. Therefore

6) See [3], P. 831.
7) p r x [Z (F ) ]  denotes the projection of Z (F )  into X.
8 )  Note that every metrizable space is paracompact (c.f. [8], P. 160) and that

pseudo-compact paracompact space is compact (c.f. [6 ]).

(a)
in  X

(b)
in  Y

(c)
(d)
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we have a finite number o f  functions, say F„ ••• , F,„ in  P(X)
C*(Y) such that '0 V(F 1)  covers P(X), where V„(F i ) — I f  E C*(Y);

Ilf—F1ll<110. Put f i (x)=max [0, 1/ —  F1—Fx1I], then 0 < f ( x )
<1/n and 2 f(x )> O  for each x E X .  Letting p 1 (x )= f 1 (x)12 f i (x),,=1
w e  have a  finite partition of unity 2 p 1(x )= 1 .  Now, let us

consider the function F„(x, y)= p i (x) F i (y ) which is evidently

an element o f  C * (X )O C * (Y ). Obviously p i (x) 0  implies that

F(x, .3) - 10 Fi(Y) < 1 / n  fo r  each y E Y, and therefore we have

IIF(x, 31) —  F.(x, Y)II=11(2 Pi(x)0 1 ) - F(x, Y) — (q(x)01).(10Ficy»11
iipi(x)0111.11F(x, y)-10F1(Y)11<i/n11 E = 1 / n . It

follows that C*(X) 0 C*(Y) is dense in C*(Xx Y).

Proof o f (c)---> (d) : To prove (d), we have only to show that
each F EC*(Xx Y ) has a continuous extension over 3 X x  3 Y . Let
F(x, y) be any element o f C*(Xx Y ) .  Then there is, regarding our
hypothesis, a  sequence {F„(x, y )}  o f  elements o f  C*(X) Ø  C*(Y)
which converges to  F(x, y). It is clear that each element of
C*(X )0 C*(Y) has a continuous extension over 3Xx RY, and we
shall denote by Ft(x, y )  the extension of F,(x, y )  over f3Xx 3Y.
Then {F:(x, y)} forms a Cauchy sequence o f  C*(3Xx 3Y) 9), and
since C*(3Xx,8Y) in complete {F,(x, y)} converges to a function
F* E C* (RXx RY), w hich  is th e  desired extension of F  over
RXxRY.

Proof o f  (d) ---> (a) : T h e first statement o f  (a )  is  an  easy
consequence o f Stone-Cr ech's theorem (see [8 ], P. 153) which states
that i f  h is a continuous map of X  to a compact Hausdorff space
Y, then h has a continuous extension h* which carries 13X to Y.
Let R * denote the one point compactification o f  real space R
(i.e. R* - co), then each continuous function fE  C (X ) (where
C(X) denotes the set of all real-valued continuous functions on X)
has a continuous extension f* (R*-valued function) over teX, and
f  is unbounded if and only i f  f*(p)=-00 fo r some p e S x . I f  Y
is  not pseudo-compact, then there is an unbounded continuous
function g(y) E C (Y ) . Since X  is assumed to be infinite, we can

9 )  See [2], P. 17, Proposition 5.



228 H isahiro Tamano

see that there is a bounded function h E C(X ) such that Z(h*) is
not open in /3X10 ,  where h* denotes the extension of h over OX.
Consider the function G(x, h ( x )  Ø  g ( y ) ,  then it is easy to see
that G(x, y) has no (R*-valued) extension over /3X x O Y . But this
contradicts th e assumption that )3(Xx Y)=13Xx OY. It follows
that both X  and Y are pseudo-compact. We now prove that
pr x [Z (F )] is closed in X  for each FE C*(Xx Y ) .  To this end, we
first observe that Pr s x [Z(F*) n (X x Y ) ]  Pr o x [Z(F*)n (X x RY )] ,
where F * denotes the extension of F  over /3Xx ,8 Y . Suppose not,
then there is a point x, E X such that F(x,, y ) + 0  for each y E Y
and F(x 0 , q)= 0 for some q E 13Y . Let F0 be the restriction of F *  on
xo x Y, then F 0(y )+ 0  for each y E Y and n (q )  = 0  for some q E 3Y.
Evidently, (1/F 5 )2 is  an unbounded continuous function on Y, and
hence Y can not be pseudo-compact. This is contradictory, therefore
we have p r o x [Z (F * )n (X x  IT )] — Prox[Z(F * ) n  (X x 3 Y ) ] .  On the
other hand, it is clear that Z(F) = Z(F*) n (X x Y) and it follows
that p r x [Z(F)]= pr p x [Z(F*) n (X x Y)]= Pr o x [Z(F*) r\ (X x OY )7=
prpx [Z (F*)]n X . Since Z(F*) is compact P r o x [ Z ( F * ) ]  is  compact
and consequently Prox[Z(F*)]r\X=PrAZ(F)] is closed in X . The
proof is completed.

The proof o f (b)--.(c) ((d) ( b ) )  is entirely similar to that of
(a) —> (c) ((d)--> (a)).

We now discuss the pseudo-compactness of the product X x Y.
Throughout the sequel, both X  and Y are assumed to be pseudo-
compact. By virtue o f th e  theorem due to  I . Glicksberg ( [4],
Theorem 1 ) ,  the pseudo-compactness o f  th e  product X x  Y  is
equivalent to that the relation 0(X x Y)=0Xx O Y  hold true. It
follows from Theorem 1  that X x  Y  is pseudo-compact if and only

1 0 ) Suppose that Z (h*) is  open for each hE C*(X ) then Z ( f )  is  open for each
JE C *(SX ). It follows that every continuous function on B X  assumes only finitely
many values, since { x ES X ; f (x )=a, aER , f EC *(13X )}  is  open (and closed) in /3X.
Take two points x, y  o f oX and let f  be a continuous function on oX  such that f (x )=0
and f ( y ) = 1 .  Then both {xE f3X ;  f (x )= 0 }  and x E  S X  f (x )4 o } are open and closed,
and at least one of them must be infinite because oX  is infinite. Consequently, there is
an open and closed subset A , containing infinitely many points such that OX—A 1 + .
Similarly, A 1 contains an open and closed A 2  containing infinitely points such that
il 1 —A2 + ,b..••It follows that there is a sequence { A „}  of open and closed subset of /3X
such that A „D A „+, and A„— A .+141 ,  fo r  each n. Let g„ be a characteristic function

of A „, then g = g „/ 2 "  is a continuous function of oX  assuming infinitely many values.

But this is a contradiction.
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if pr x [Z (F ) ]  is closed in X for each F E C*(Xx Y )  (or, equivalently,
if and only if pr y [Z (F ) ]  is closed in  Y  for each FE C* (XX Y)).

We first give a simple proof of the following proposition.
PROPOSITION 1. I f  X  is  compact, then X x Y  is  pseudo-compact

f o r any  pseudo-compact space Y.
Proof. W e shall show that p r  [Z (F ) ]  is closed fo r  each

F E C*(X X Y ),  which will complete the p roo f. I f  y  pr y [Z (F )],
then F(x, y )+  0  for each x E X .  There is, for each point (x, y) E

X x y , an open neighborhood U(x)>< V(y) on  which F(x, y)4-0.
S;nce Xxy is compact, X x y  can be covered by a  finite number
of such neighborhoods, say U1(x 1) x 171(Y), ••• Um (x.)x Vm (Y). Put

W(y)= AV  1(y ) ;  then W (y) is open and W(y)npr y [Z(F)]= y b.

It follows that pr y [Z (F ) ]  is closed in Y.
The next proposition shows that X x Y  is pseudo-compact for

any pseudo-compact space Y  if  X  has a "rich" supply of compact
sets, even if it is not compact. Recall that X is a k space") provided
every subset o f X  intersects every compact subset of X in a closed
set is itself closed. Every locally compact space, and every space
satisfying the first axiom of countability is a k-space.

PROPOSITION 2. I f  X  is  a pseudo-compact k-space, then X x Y
is pseudo-compact for any  pseudo-compact space Y.

Proof. Suppose that X x Y  is not pseudo-compact, then there
is a function FEC*(Xx Y ) such that prx [Z (F ) ]  is not closed in X.
Since X is assumed to be a k-space, there is a compact set C such
that Cr\prx [Z (F ) ]  is not closed. Let F ' be the restriction of F on
C x Y, then F'EC*(Cx Y ) .  Evidently Z(F')=Z(F)r\ (C x Y) and we
can conclude without difficulty that prc [Z (F ')]=  pr c [Z (F )n (C x  Y )]
=pr x [Z (F )n (C xY )]-=  Pr A Z (F )1 n C . Therefore p r [Z (F 1) ]  is not
closed in C .  On the other hand, it follows from Proposition 1 and
Theorem 1 that prc [Z (F ') ]  is closed, since C is compact. This is
contradictory, and hence X x Y  is pseudo-compact.

The preceding proposition can be generalized, by utilizing the
notion of P-point"), and Glicksberg's technique on the equicontinuity

11) See [8 ] ,  P. 231.
12) xE X  is said to be a P -po in t if every countable intersection of neighborhoods

of x contains a  neighborhood of x .  C.f. L . Gillm an and M . Henriksen: Concerning rings
o f  continuous functions, T rans. A m er. M ath. S oc. 77 (1954) 340-362.
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o f {P;(x)} y E y ,  where Fy (x) denotes the restriction of F E C*(Xx Y)
on Xxy.

Now, let us agree to call x E X  as a k-point of X if x satisfies
the following condition : If x is an accumulation point of a subset
H  of X , then there is a compact set C in X  such that x is also an
accumulation point of Cr\II. Every discrete point of X is a k-point,
and X  is a k-space if and only i f  every point of X  is a k-point.

THEOREM 2. I f  X is  pseudo-compact and if every non-P-point of
X is a  k-point, then Xx Y  is pseudo-compact for any  pseudo-compact
space Y.

Proof. Reviewing the proof o f Prop. 2, we can see that x 0
Pr [Z(F)]— Pr [Z (F )] for each F E C*(X X Y ) i f  x is a k-point of
X .  Consequently, {Fy (x)} y e y  is equicontinuous at each k-point of
X , because IFy (x)I y e , is equicontinuous at x if and only if x 0 A(E)
—A(6) f o r  any & > 0, where A(8)=- erx[Z( 8 —  min (8 ,  I F(x, Y) —

1OF x ( y ) l ) ) ] .  On the other hand, equicontinuity o f {Fy (x)} y e y  is
equivalent to the equicontinuity of each countable subset by virtue
of the fact that Ascoli's theorem holds in a pseudo-compact space
(c .f.  P i P. 370). Each countable subset o f  {Fy (x)} y E y  is obviously
equicontinuous at each P-point, and consequently each countable
subset o f  IFy (x)I y E ,  is  equicontinuous on  X .  It follows that
IFy (x)I y E y  is  equicontinuous on X , and hence Pr [Z (F )] is closed
for each F E C*(X x Y ). Therefore X x Y  is pseudo-compact.

REFERENCES
[ 1 ] E. W. Bagley, E. H. Connell and J. D. Mcknight : On properties characterizing

pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958) 500-506.
[  2  ]  N. Bourbaki : Topologie générale, Chap X, Paris (1949).

[  3  ]  E. Cech : On bicompact spaces, Ann. of Math. 38 (1937) 823-844.
[  4] I. Glicksberg : Stone-èech compactions o f products, Trans. Amer. Math. Soc.

90 (1959) 369-382.
[  5  ]  M. Henriksen and J. R. Is b e ll:  On the Stone:Cech compactification of a product

of to two spaces, Bull. Amer. Math. Soc. 63 (1957) P. 145.
[  6  ]  K . Iseki an d  S . Kasahara : On pseudo-compact and countably comact spaces,

Proc. Japan Acad. 33 (1957) 100-102.
[  7 ] T .  Ishiwata : On uniform space with complete structure, Sugaku Kenkyuroku,

vol. 1, no. 8-9 (1952) (in  Japanese) 68-74.
[  8  ]  J. L. Kelley: General topology, New York (1955).
E 9 ] J . N ovak  : On the cartesian product spaces, Fund. Math. 40 (1953) 106-112.
[1 0 ]  H. Terasaka : O n the cartesian product of compact spaces, Osaka Math. J. 4

(1952) 11-15.


