On a theorem of Weitzenböck in invariant theory

By
C. S. Seshadri
(Communicated by Prof. M. Nagata, March 14, 1962)

Let V be an affine variety and G an algebraic group acting on V (on the left). Let R be the coordinate ring of V and $I_{G}(R)$ its subring of G-invariants. If the characteristic of the ground field is zero, and G is semi-simple, it is now a well-known result that $I_{G}(R)$ is finitely generated over the ground field (cf. [2] or [4]). The same result is also known to be true without any hypothesis on the characteristic of the ground field if G is a torus group (cf. [2]). In these cases, the essential part of the proof is that there is a canonical projection operator of the space of regular functions on the group G onto the space of constants, which can be extended to a projection operator of R onto $I_{G}(R)$ and then using the fact that the ring of polynomials in a finite number of variables over a field is Noetherian, we get the result. There is a less known result of Weitzenböck (cf. [3]), which says that if V is the affine space and G an algebraic 1-parameter group acting on V by linear transformations, $I_{G}(R)$ is again finitely generated, provided that the ground field is of characteristic zero; and it is realized easily that this result is equivalent to the assertion that $I_{G}(R)$ is finitely generated for the particular case $G=$ the additive group G_{a}. This result is no longer true if V is an arbitrary affine variety (this is a consequence of the famous counter example of Nagata (cf. [1] or [2]) showing that $I_{G}(R)$ need not be, in general, finitely generated).

In this note, we prove a result (cf. Theorem 1) which is valid
for any characteristic and of which Weitzenböck's result is an easy consequence. Even when the characteristic is zero, our method brings out clearly the underlying idea of Weitzenböck's proof.
§ 1. Suppose that the varieties V and G are both defined over a field K, with points in a universal domain Ω. Suppose that there exists a dense subgroup H of K-rational points of G such that every element of H gives rise to a K-automorphism of V. Let R be the K-coordinate ring of V and $R_{1}=R \otimes_{K} \Omega$ its Ω-coordinate ring. Then we see easily (cf. [2]) that $I_{H}(R) \otimes_{K} \Omega=I_{G}\left(R_{1}\right)$, which shows that $I_{H}(R)$ is finitely generated over K if and only if $I_{G}\left(R_{1}\right)$ is over Ω. Since these conditions will be satisfied in the problems we consider, we assume hereafter that $K=\Omega$, or simply that K is algebraically closed.

Let V be a vector space of dimension 2 over K and e_{1}, e_{2} a fixed chosen basis of V. We can then represent an element of V by a 2×1 matrix over K. If $A \in S L(2, K)$ and $\alpha=\alpha_{1} e_{1}+\alpha_{2} e_{2} \in V$, we define $A \circ \alpha$ as the element of V represented by the matrix $A \cdot\binom{\alpha_{1}}{\alpha_{2}}$. Now if $W=V^{m}=\oplus V$ (m times), we extend the operation of $S L(2, K)$ to W by defining :

$$
A\left(v_{1}, \cdots, v_{m}\right)=\left(A v_{1}, \cdots, A v_{m}\right), \quad A \in S L(2, K), v_{i} \in V
$$

Every element $w \in W$ can be represented by a $2 \times m$ matrix:

$$
w=\binom{\alpha_{1}, \cdots, \alpha_{m}}{\beta_{1}, \cdots, \beta_{m}}, \quad \alpha_{i}, \beta_{i} \in K
$$

Let R be the coordinate ring of W; then we can regard α_{i}, β_{i} as variable elements of R. Then $t_{i j}=\operatorname{det}\left(\begin{array}{ll}\alpha_{i} & \alpha_{j} \\ \beta_{i} & \beta_{j}\end{array}\right)$ is an element invariant under $S L(2, K)$. We denote by J the subring $K\left[t_{i j}\right]$ $(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant m)$ of R. We write G for $\operatorname{SL}(2, K)$.

Proposition 1: The ring $I_{G}(R)$ is finitely generated over K.
The only non-trivial case we have to consider is when $m \geqslant 3$. Let $W_{i j}$ be the G-invariant affine open subset of W defined by $t_{i j} \neq 0$ and let $R_{i j}$ be its coordinate ring. Consider for example, the subvariety Z of W represented by points of the following form

$$
\left(\begin{array}{lll}
\lambda & 0 & \alpha_{3}, \cdots, \alpha_{m} \\
0 & 1 & \beta_{3}, \cdots, \beta_{m}
\end{array}\right), \quad \lambda=1-0
$$

Then Z meets every G-orbit in W_{12} at a unique point, from which it is deduced easily that the quotient variety*, W_{12} / G exists and can be canonically identified with the affine variety Z. This implies in particular that $I_{G}\left(R_{12}\right)$ can be canonically identified with the coordinate ring of Z. Since $\lambda=t_{12}, \alpha_{i}=-t_{2 i}$ and $\beta_{i}=\lambda^{-1} t_{1 i}$, we see that $I_{G}\left(R_{12}\right)$ is generated by $t_{12}, t_{12}^{-1}, t_{1 i}(i \geqslant 3), t_{2 i}(i \geqslant 3)$ and that $I_{G}\left(R_{12}\right)=J_{S}$, where J_{S} represents the ring of quotients of J with respect to the multiplicatively closed subset S formed of positive powers of t_{12}. This shows that if V is the open subset of points P of W such that for at least one $t_{i j}, t_{i j}(P) \neq 0$, the quotient variety V / G exists and it can be identified with the open subset Y of the affine variety X whose coordinate ring is J, such that if $P \in Y$, at least for one $t_{i j}, t_{i j}(P) \neq 0$. Now it is trivial to see that the complement of Y in X reduces to a point, in particular it is of codimension $\geqslant 2$ in X. From this it follows easily that if $f \in I_{G}(R)$, it is integral over J, which shows that $I_{G}(R)$ is finitely generated over K since J is. q.e.d.

Remark: The statement analogous to Prop. 1 for the case $G=$ $S L(n, K), n>2$, can be proved in a similar manner.

Let $V^{(m)}$ be the m-th symmetric power of the vector space V. A canonical basis for the vector space $V^{(m)}$ is given by homogeneous monomials of degree m in e_{1}, e_{2} (the chosen basis of V). The operation of G can be canonically extended to $V^{(m)}$. Let $M=\underset{1 \leqslant i \leqslant n}{\oplus} V^{\left(m_{i}\right)}$; then the operation of G can be extended to M by defining

$$
A \circ\left(x_{1}, \cdots, x_{n}\right)=\left(A \cdot x_{1}, \cdots, A \cdot x_{n}\right), \quad x_{i} \in V^{\left(m_{i}\right)}, \quad A \in G .
$$

Let S be the coordinate ring of M.
Proposition 2: The ring $I_{G}(S)$ is finitely generated over K.

[^0]We present an element q of $V^{m_{i}}$ by the matrix

$$
q=\binom{\alpha_{1}, \cdots, \alpha_{m_{i}}}{\beta_{1}, \cdots, \beta_{m_{i}}} .
$$

Let Q_{i} be the subset of $V^{m_{i}}$ such that for every $j, 1 \leqslant j \leqslant m_{i}, \alpha_{j}$ or β_{j} is different from zero. The subset Q_{i} is open, G-invariant and its complement is of codimension $\geqslant 2$ in $V^{m_{i}}$. There is a canonical morphism $k_{i}: Q_{i} \rightarrow V^{\left(m_{i}\right)}$ defined by $k_{i}(q)=$ the element of $V^{\left(m_{i}\right)}$ represented by the homogeneous form $\prod_{1 \leqslant j \leqslant m_{i}}\left(\alpha_{j} e_{1}+\beta_{j} e_{2}\right)$ in e_{1}, e_{2}. The morphism k_{i} is a G-morphism (i.e.) it commutes with the operation of G. The symmetric group Γ_{i} on m_{i} elements acts canonically on $V^{m_{i}}$, leaves Q_{i} invariant and also commutes with the operation of G. If T_{i} is the torus group of dimension ($m_{i}-1$) represented by $y=\left(y_{1}, \cdots, y_{m_{i}}\right), y_{i} \in K, \prod_{1 \leqslant j \leqslant m_{i}} y_{j}=1, T_{i}$ operates on $V^{m_{i}}$ by defining $q \circ y, q \in V^{m_{i}}$ as the element

$$
\binom{y_{1} \alpha_{1}, y_{2} \alpha_{2}, \cdots, y_{m_{i}} \alpha_{m_{i}}}{y_{1} \beta_{1}, y_{2} \beta_{2}, \cdots, y_{m_{i}} \beta_{m_{i}}}
$$

of $V^{m_{i}}$. We see that the operation of T_{i} also commutes with G.
Now if Q is the open subset of $W=\prod_{1 \leqslant i \leqslant n} V^{m_{i}}$ defined by $Q=$ $\prod_{1 \leqslant i \leqslant n} Q_{i}, Q$ is G-invariant and its complement is of codimension $\geqslant 2$ in M. If we now define the morphism $k: Q \rightarrow M$ by $k=k_{1} \times \cdots$ $\times k_{n}, k$ commutes with G. If $T=\prod_{1 \leqslant i \leqslant n} T_{i}$ and $\Gamma=\prod_{1 \leqslant i \leqslant n} \Gamma_{i}$, we see that $H=T \times \Gamma$ acts canonically on W, leaves Q invariant and commutes with the operation of G. Further we see easily that the quotient variety Q / H can be canonically identified with an open subset of M. If R is the coordinate ring of W, we see easily that $I_{G}(S)=I_{H}\left(I_{G}(R)\right)$. By Prop. 1, $I_{G}(R)$ is finitely generated and since H is the product of a torus group and a finite group, $I_{H}\left(I_{G}(R)\right)$ is also finitely generated over K. q.e.d.
§2. If X is an algebraic variety on which an algebraic group G operates (on the left), we call it a transformation space and denote this object by (X, G). A morphism between two such objects $\left(X_{1}, H_{1}\right)$ and $\left(X_{2}, H_{2}\right)$ is a morphism $f: X_{1} \rightarrow X_{2}$ of varieties together
with a homomorphism $\rho: H_{1} \rightarrow H_{2}$ of algebraic groups such that $f(g \cdot x)=\rho(g) f(x), x \in X_{1}, g \in H_{1}$. We can then define an isomorphism between two transformation spaces. We call (W, G) a fundamental space for the group $G=S L(2, K)$, if (upto an isomorphism), W is a finite direct sum of vector spaces of the form $V^{(m)}$ and G operates canonically on W as we have seen before. The additive group G_{a} can be considered as a subgroup of G by means of the morphism $\lambda: G_{a} \rightarrow G, \lambda(\alpha)=\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)$. Therefore if (W, G) is a fundamental space for G, G_{a} operates on W and the object $\left(W, G_{a}\right)$ is called a fundamental space for G_{a}. If for example $W=V^{(m)}, W$ can be identified with the vector space generated by the translates of a regular function on G_{a}.

Proposition 3: Let $\left(X, G_{a}\right)$ be a transformation space such that X is a finite dimensional vector space and every element of G_{a} operates by a linear transformation of X. Then $\left(X, G_{a}\right)$ is a fundamental space for G_{a} if the characteristic of K is zero.

Let $m=\operatorname{dim} . X$. Then if we identify the group of K-automorphisms of X with $G L(m, K)$ by choosing a basis of X, the operation of G_{a} on X is defined by a homomorphism $\chi: G_{a} \rightarrow$ $G L(m, K)$ of algebraic groups. Since $\chi\left(G_{a}\right)$ is again isomorphic to G_{a}, we can assume that χ is injective. Then χ is uniquely determined by $(d X)(t)$, where t is a fixed chosen non-zero element of the tangent space at 0 of G_{a}. We note that every element of $\chi\left(G_{a}\right)$ is a unipotent matrix. Therefore $(d \chi)(t)$ can be identified with an ($m \times m$) matrix A such that if

$$
A=\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
0 & 0 & A_{3} & \cdots & 0 \\
\cdots \cdots \cdots \cdots \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & A_{n}
\end{array}\right) \quad A_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & \cdots \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & 1 & \cdots
\end{array}\right)
$$

is the Jordan canonical form of $A, \lambda_{i}=0$ for every i. Therefore to prove the proposition, we can assume that A itself has the form

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots
\end{array}\right)
$$

As we have seen before, the group G operates canonically on $V^{(m-1)}$ and if we refer the operation of G to the canonical basis of $V^{(m-1)}$, we have a representation $\rho: G \rightarrow G L(m, K)$. Consider the representation $\mathcal{\rho}: G_{a} \rightarrow G L(m, K)$ defined by $\mathcal{P}=\rho \circ \lambda$. We check that the Jordan canonical form for $d X(t)$ is A, which proves the proposition. q.e.d.

Theorem 1: Let $\left(X, G_{a}\right)$ be a transformation space such that X is a finite dimensional vector space and every element of G_{a} operates by a linear transformation of X. Let R be the coordinate ring of X. Then $I_{G_{a}}(R)$ is finitely generated if (i) $\left(X, G_{a}\right)$ is a fundamental space or (ii) the characteristic of K is zero.

By Prop. 3, we can assume that (X, G_{a}) is fundamental for G_{a} so that the operation of G_{a} is induced by an operation of G on X and (X, G) is fundamental for G. Consider $L=X \oplus V$. Then G operates on L by defining, $g \circ(x, v)=(g \cdot x, g \cdot v)$ and (L, G) is fundamental for G. Consider the subvariety X_{1} of L formed of elements (w, v) such that $w \in X$ and $v=\binom{1}{0}$. We identify G_{a} as a subgroup of G by the homomorphism λ of G_{a} into G. Then X_{1} is left invariant by G_{a} and if an element g of G transforms an element of X_{1} again into X_{1}, g in fact belongs to G_{a}; in particular the intersection of a G-orbit in L with X_{1} is either empty or coincides with a G_{a}-orbit in X_{1}. We note that the G-invariant subset X_{1}^{G} generated by X_{1} coincides with the complement of the closed subset of L formed of elements $(w, 0)$ where w is an arbitrary element of X and 0 is the 0 -vector of V. Therefore X_{1}^{G} is open in L and its complement is of codimension $\geqslant 2$. Let S be the coordinate ring of L. Then every regular function of X_{1}^{G} is also regular on L; in particular the algebra of regular G-invariant functions of X_{1}^{G} can be identified with $I_{G}(S)$. By Prop. 2, $I_{G}(S)$ is finitely generated over K. We shall now show that every $G_{a^{-}}$ invariant regular function on X_{1} is induced by a G-invariant regular function of X_{1}^{G}. This will complete the proof of the theorem since (X_{1}, G_{a}) is isomorphic to (X, G_{a}).

Consider the canonical mapping $f: G \times X_{1} \rightarrow L$ defined by $f\left(g, x_{1}\right)=g \cdot x_{1}$. Then $f\left(G \times X_{1}\right)=X_{1}^{G}$. Now if x is G_{a}-invariant
regular function on X_{1}, we extend it to a regular function y on $G \times X_{1}$ by defining $y(g, w)=x(w), g \in G, w \in X_{1}$. Because of the condition that the intersection of a G-orbit of L with X_{1} is either empty or a G_{a}-orbit in X_{1}, we see that y is constant on the fibre over every point of X_{1}^{G}. Therefore y goes down into a regular (G-invariant) function on X_{1}^{G}, if we assume that f is a separable morphism (i.e. the field of rational functions $F\left(G \times X_{1}\right)$ of $G \times X_{1}$ is a separable extension over the field of rational functions $F(L)$ of L), which is not difficult to check. (Actually, for the theorem, it is not necessary to use the fact that f is separable, for if Q is the quotient field of $I_{G}(S)$, we have the canonical inclusion $Q \subset F(L)$ $<F\left(G \times X_{1}\right)$ and if N is the algebraic closure of Q in $F\left(G \times X_{1}\right)$, y can be identified with an element of N integral over $I_{G}(S)$. This fact is sufficient to conclude that $I_{G}(R)$ is finitely generated over K), q.e.d.

Remark: We do not know what happens to the above theorem if the characteristic of K is not zero and (X, G_{a}) is not fundamental.

REFERENCES

[1] M. Nagata: On the 14th problem of Hilbert, pp. 766-772, Amer. Jour. of Math., vol. 81, 1959.
[2] M. Nagata: On the 14th problem of Hilbert, Lecture Notes (1961-62), Tata Institute of Fundamental Research, Bombay (to be published).
[3] R. Weitzenböck: Über die Invarianten von Linearen Gruppen; pp. 230-250, Acta Mathematica, vol. 58, 1932.
[4] H. Weyl: The Classical groups, 1946, Princeton, New Jersey, Princeton University Press.

Tata Institute of Fundamental Research
Colaba, Bombay 5-BR, India

[^0]: * If G is an algebraic group acting on a variety X, we say that the quotient variety X / G exists if the canonical structure of a ringed space on the space of orbits in X is a variety.

