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Introduction

In this paper motivated by a recent paper of S. Mori [9] we
shall study a compactification of Green spaces under the use of
L. Naim's results [10] on Martin spaces and discuss the Dirichlet
problem and some applications to the functiontheory.

We consider, as the basic space, a Green space R  and define
in § 2 a compactification R* of R, maximal ideal space of a normed
ring Every non-negative continuous superharmonic function on
R  can be extended continuously onto R *  (Lemma 3). The ideal
boundary R* —R has a compact subset with remarkable proper-
ties, w hich is called, after H. L. Royden, the harmonic boundary
(sec. 4).

In § 3 we treat Dirichlet problems for functions given on the
harmonic boundary. Since it is shown that R *  is not metrisable
(Theorem 2), the usual Perron's approach must be somewhat modi-
fied, in particular for the discussion of solvability, but the results
are quite similar.

As applications we show finally in § 4 a theorem (Theorem 11)
of Riesz type for several complex variables and refer to  a Con-
stantinescu-Cornea's theorem [4] on open Riemann surfaces which,
in  case of the unit circle, reduces exactly to  the theorem of
Ri esz-Lusi n-Privaloff - Frost man-N evanlinna.
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§ 1 .  Preliminaries

1. We shall state briefly some definitions and L. Naim's results
[10] which will be used in the sequel. As the basic space R  we
consider a Green space introduced by M. Brelot and G. Choquet [2].
Bounded domains in  the euclidean space of dimension 2  a n d
Riemann surfaces o f hyperbolic type are the most typical examples
of Green spaces. Let qo be a fixed point of R  and

{G(P, q ) / G ( p ,
 g o )

K(P, g) = 1 (p = q = q0)

where G  denotes the Green function on R , then there exists a
compact metric space i? , Martin space, such that R  is dense on k
and for any sequence of points fpn l (p u e R )  tending to a point
s G k—R, {x(p n , q)} converges uniformly on every compact subset of
R to a uniquely determined harmonic function, say K(s, q) ( q ) .
W e denote by A the ideal boundary E—R and by A, the set of
points s E A  fo r which Ks are minimal in the class of positive
harmonic functions on  R .  According to R. S. Martin [8] every
positive harmonic function h on R can be represented by a canonical
measure ph on A , as

h(P) = , p E R

In case of h 1, we write p i = X.
Every K-potential carried with a positive measure on R

U(p) = R x(p, q) dm(q)

is extended onto k as a lower semi-continuous function. Now a
set E R  is called to be th in  (" effilé") at a point s E  r\E (bar
means the closure taken on k ) i f  there exists a K-potential U
with a property

U(s) < lim inf U(p) .
P—>s , PEE

E  is also said to be thin at all points of A not belonging to E.
As the elementary properties
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a) The union of two sets both thin at s  is thin at s.
b) Every polar set is thin at each point of A.
c )  A  boundary point sE A  belongs to A, if and only if R is not

thin at s.
The sets on R  whose complements in R  are thin at sE A, make a
filter b y  a). Every set of a, is not thin at s E A , on account
of a) and c). The limit of a function along a, is called the pseudo-
lim it (or f ine lim it) a t s  and denoted by lim a, . The results of
Naim used in the following are :

(1 °) Every Green potential with a positive measure possesses a
pseudo-limit zero on A „  [X ]. Here [X] means "except a
set of X-measure zero".

(2 ° ) Maximum principle (I). L e t  u  be a  subharmonic function
on R  bounded above. If fo r every s E A „  [X], there exists
a set E , which is not thin at s  and

(1 ) lim sup u(p) < 0
P- ) ' ,  PEE,

then u <O throughout R.
In particular, if the pseudo-limits o f u  are < 0 , on A „  [X],
then u< 0 throughout R.

§ 2. Norm ed r in g  associated with R

2 .  Let be a family o f functions on R  with the following
properties

(i ) f E  is bounded and continuous on R
(ii) for every fE there exists a function T (f )= T . f  E HB
(bounded harmonic on R ) such that the difference ( =f — T -f
possesses a pseudo-limit zero on .1„ [X ].

Note that the representation

( 2 ) f  = T • f +p  , f  E

is unique on account of Maximum principle (I). We introduce
the following norm

( 3 ) = sup If(P)1
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LEM M A 1. V I I  IIT ' f  I, f E
PROOF. Given 6>0, there exists a set E E a t  e a c h  sE A„ [X]

on which If — T. f l < 6 .  Hence we have by Maximum principle (I)

II T•f l  =  sup Dim sup 7. . f ( p ) ]
P -). ,  PE Pis

sup [lim sup f (p )]+  6 Ilfl +6,
P-0, , pEEs

where sup is taken for s E A„ [ X ] ,  q.e.d.
Now the following functions are contained in the class 0 ;
( a )  HB- functions on R .  In fact, for f  E HB we have merely

to  take T . f= f .
( 0 )  Bounded continuous super- and sub-harmonic functions on

R .  For instance, if f  i s  superharmonic and we take a s  T • f the
greatest harmonic minorant of f ,  then  p = f — T . f  i s  a Green
potential by Riesz' decomposition (cf. [2 ]), hence f G  0 by (10 ).

( 7 )  Continuous functions on k restric ted  to  R . Indeed, for a
continuous function f  on R  we consider as T. f  the solution of the
Dirichlet problem for f  restricted to A , then T  f  possesses the
pseudo-limit f  on A, [X] (cf. [10]) .

LEIVIMA 2. 0 makes a ring  with unit 1 under the usual addition
and multiplication.

P R O O F . Let f i = T. f i +(p i  (i= 1 , 2 ) be any two elements of 0.
Clearly, .f1 + f,—  T•f+(p ((p=p 1 +(p 1) belongs to  0  an d  T  is
linear over 0 ;

( 4 ) T (f i+  =  T. f i + T. f 2 .

As for the product, one can write it, on account of the bounded-
ness of f ,  such  as

f i f ; ( T•f1)(T•f2)+ 11P

where lim a , Alf =0, s G Ai , [X ]. W hile for any HB -functions u and v

uv =  [ (u + v ) 2 —(u—V) 2 ]/4 G ,

because each term in the right hand side is subharmonic. Hence
f 2 ) = w + 4), w E H B  and lim as ¢)= 0, sE A„ [X ]. T hus w e

know f, f2 = w +(p ((p=q,  +(f)) belongs to 0  and w=  f ,  f ) ,  i.e.
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( 5 ) rf1 f2 )=T ((T •f1 ).(T •f2 ))•

THEOREM 1. T he spa ce i s  a  normed ring w ith  respect to the
n orm  (3).

It remains to prove the completeness. Let Ilfm-f.11-0 (m,n
eo) where f n = 7' • fn+P„, then  { L }  converges uniformly to a

bounded continuous function f  on R .  Since by Lemma 1  and (4)

T. f„— T. f n l

the sequence { T•fn}  also converges uniformly to an HB-function
on R .  W ritting this limit function as T•f,

f = = lim p ,,

where the covergence is uniform on R .  There exists a set eC A ,
of X-measure zero, outside of which all p„ possess a pseudo-limit
zero . Given &>0, 1P - - P.1<&/2 on R  for a large number n and
there is a set E E  s  E .11—e on which I p n  < & / 2 . Hence p l< 8
on E",' which implies lim as (p= 0, sE A„ [ X ] .  That is, f E

3 .  Let be the subclass of such as

{p E  , lim y  =  0 , s E  „  [X ] }

which is complete with respect to the norm. The set of bounded
continuous functions whose carriers are compact on R  makes an
ideal ,< % .  Let b e the set o f a l l  maximal ideals of
Introducing 931 the closure topology due to Gelfand-Silov (cf. [5],
[7 ]) , then 9-J1 becomes a compact Hausdorff space, say R*, on which
the homeomorphic image of R  is  open and dense. We denote it
again  by R .  Every function of can be continuously extended
to R * .  The closed set

A *  R* —R

is called the ideal boundary of R .  A* consists of maximal ideals
containing W e  note that, besides the elements of following
functions also can be continuously extended to R * .  Hereafter we
say  th at a  function f  is continuous in the wide sense if f  is  a
continuous mapping into the extended real line,
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LEMMA 3. L et f  be a positive functions continuous in  the wide
sense on R .  I f  f ( p ) =m in  (f ( p ) ,  n)E ( n = 1 , 2 ,  •••), then at each
q E A* f  has a f inite or infinite lim it" equal to lim  fn (q) and f  defined

by these lim its is continuous on R *  in  the w ide sense.
In particular, positiv e superharm onic functions continuous in

the wide sense on R  have this property.

Proof is immediate and omitted.
In  the following we shall denote the function f  extended on

R *  as above by f  again.

THEOREM 2. Our compact Hausdorf f  space R * is not metrisable.

PROOF. Suppose that R * is  m etr isab le , then there would exist
a countable number of points q, E A* (L)= 1, 2 , •••) which are dense
in a compact subset A* of R * .  Further for each q ,  we can take
a sequence of points r ,  (a= 1 , 2 , •••) on R  tending to q „ .  We re-
arrange them as {p,,} ( n =1 ,2 , •••). If constants cn > 0  are chosen
such  that cÉ  c„G(po , p,,) <oc  w here p 0(  I  fin ) G R , then the function

G(p)-- cnG(p, p„)

is non-constant positive and harmonic on R  except p n  (n=1 , 2, •••).
For a positive number m>G(p 0)

G m ( p )  min (G(p), Al) <

i s  a  continuous su p erh arm o n ic  function E hence by the mini-
mum principle there is a point q* E _1* such that

Gm (q*) = in f Gm(p) < M
pEie

Since {q,}  is  dense in A* and Gm is continuous on R * , fo r  suf-
ficiently small s > 0  there exists a point q;  such that

GM(q 3 ) M—E , q;  E A*

While G(X )-- +co  ( , G= 1, 2, •••), therefore we have G M (p )=M  and
Gm(q; ) =M  for o o .  This is  a contradiction.

1 )  Limit taken over th e  filter of neighborhoods of q.



On a compactif ication of Green spaces 391

4 .  Let A t b e  the set of maximal ideals containing an ideal
A i  i s  a compact subset of A*, which is called the harmonic

boundary o f R  and p lays an important role in our theory.

THEOREM 3  (Maximum principle (II)). Every sub (super)-harmo-
nic function on R which is bounded above (below) and continuous in
th e  w ide  sense  attains its  m axim um  (m inim um ) on the harmonic
boundary A P of R.

PROOF. It suffices to prove for bounded functions. Let u  be
a bounded continuous superharm onic  function on R .  Let inf

and a be the principal ideal generated by u  =u— X  (>0) G Then
becomes a (proper) ideal of To see th is, suppose

= then there exist functions f  and p o such that

f  + go. = 1 , f  E (p0E 0 .

While
= w = (AC

Hence by Maximum principle (I) w e have

w 1 .

On the other hand

w M  max (0 , sup f )
Ft

Since w— iiM i s  subharm onic , it  fo llo w s b y  Maximum prin-
ciple (I)

w uM  o n  R , h en ce  inf w 0F?

which is a contradiction. Thus we know a u  i s  an ideal con-
taining ii, which implies u vanishes at some point of A t ,  q.e.d.

For the following purposes we prepare two lemmas.

LEIVIMA 4. L et q be any  point Ap and E  a com pact subset of
disjoint w ith q. T hen there ex ists a positive HB -function u on

R  such that u(q)=0 and  u=1  on  E.

PROOF. Since q  does not belong the closure E, there exists an
f E  such that f  belongs to ideal TVV, but not to maximal ideal

xEF,
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q. That is, f = 0 on E and f(q)=1- O. N o w  fro m  the decomposition

f 2 = v +p  , v =  T • f 2 ,

and Maximum princip le (II), w e fin d  th at v  i s  a  non-negative
HB-function such  that v  vanishes on  E  and v(q)— c -I-0. Now
v,(p)= min (v(p), c) and

u =1— (T •v ,)1c
is  the required.

LEMMA 5. L et u , and u , be any superharm onic functions conti-
nuous in the wide sense on R , then

(u, A  u2)(q) = min (u,(q), u,(q)) , q G

where u, A  u , means the greatest harmonic m inorant of  u , and u,.
This is  an immediate consequence of the Riesz' decomposition

min (u„ u,) = A  u2 + g ,

g  being a Green potential. Since g n = min (g, n)E gn hence g
vanish on At (Lem m a 3).

§  3 . Dirichlet problem s

5 .  Let f  b e  a  real-valued function given on the harmonic
boundary At of a Green space R  and Uf  resp. Uf  the families of
continuous (in the w ide sense) superharmonic resp. subharmonic
functions u  resp. v on R  satisfying the boundary conditions ;

( 6 ) lim u(p) f (q) , resp. lim v(p) <  f (q) , q E .
P-Y.q P->q

Let Eli  resp. H f  be the lower resp. upper envelopes o f functions
belonging to U f  resp. U f a  17 f and H f  are harmonic or ± co on R.
I f  they are coincident we write it I/1  and sa y  th a t f  i s  solvable,
provided that H 1  is  fin ite . In  this section we treat the case that
f  is bounded . In th is case it should be noted that the limits exist
in (6), moreover there exist the decreasing resp. increasing sequences
of harmonic functions un  resp. v„ such that

( 7  ) l i M  =  H  f  r e S P .  HID H  f
11.-J•00
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Indeed, for any bounded u E U f ,  T .u < u  and T .u = u  on At, hence
T •uE U f ,  moreover, by Lemma 5 T -u  T .2 )  also belongs to  Uf ,
provided that u  and y belong to U p  Therefore we can find the
sequences iu n i. and {v„} in  (7) (cf. [7]). N ow we can im m ediately
solve the following Dirichlet problem as in  the classical case.

THEOREM 4. L e t f  b e  a  bounded function o n  th e  harmonic
boundary A t o f  R , then we hav e for any  qE

( 8 ) lim  Hf (p )= H f (q) <  firn sup f (r) ."
P-).q, PER ÷ g ,  rEe

In particu lar, if  f  is continuous on Ap, i t  is  solvable and

( 9 ) H f(p) H f (q ) =  f (q ) , p ,

moreover f o r each point pe R  there ex ists a regular (Borel) measure
on A t such that

(10) H1(p) =LT f (q) d ,uP (q) . 2

PROOF. Let q E A t, then for any 6> 0 there exists a neighbor-
hood V of q  such that for sE Vn At

f (s) <  X + 8 , X  =  lim  sup f (r )
r E

L e t E=At — V , th en  b y  L em m a 4  th ere  ex ists  a positive HB-
function  W  such  that W (q)= 0 an d  W = 1 on E .  It follows by
Maximum principle (II), that we have, for sufficiently large positive
constant C

H 1 < C W + X + 6  in  R ,

hence El f ( p) f(q) < X+6, which im plies (8). If f  is continuous,
Hf = l i f  b y  (8 )  and Maximum princ ip le  (II),. T hus H1  g iv e s  a
positive linear functional (for each point pE R ) over the space of
continuous functions on the compact Hausdorff space At, hence
there ex ists a  regular m easure fi,P on A t by w hich  Hf (p) can be
expressed as  (10).

1) T h is means inf (sup !) w here Uri denotes any neighborhood of q.
115  1  I q r ) 4 , , -

2) Hereafter we write instead o f  f 4 P ,  in  particular i f  some relations hold for
any p E R.
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As the immediate consequences, we know at first that for any
f e  T . f  can be expressed as

T • f = f  d p  ,

because every function of vanishing on At belongs to

THEOREM 5  (Maximum principle (11)0. L et u be a subharmonic
function which is bounded above and  continuous in  th e  wide sense
on R .  I f  u < 0  on A t ex cept a se t o f  p-measure zero, then u < 0
throughout R."

PROOF. It suffices to prove fo r  a  bounded u. B y  Riesz' de-
composition we know u < T .0  on R  and u = T •u  on A t. It fo llow s
that

u < T .0 T • u d p =  u d p < _ 0 .

6. To treat the Dirichlet problem for non-continuous functions
we start from

LEMMA 6 .  L et lu n l  be a monotone sequence of FIB-functions on
R  an d  limu n = u  be bounded, then

u(q) = lim u n (q) , f o r q E— e ,  ik(e) = O.

PROOF. Suppose {un }  is increasing, then we have

(11) lim un (q) < u(q) , q E

and

u =  Han u n  l i m u„d,a = lim un dif, , o n  R.,, 00 n

While since u E HB, u= udp,

‘1 .1 (u(q)—lim (11(q)) d it(q) O,

from which the conclusion is obtained under (11).

1 )  Cf. the remark after Theorem 6.
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LEMMA 7. L e t  E  be a  closed subset o f  A t .  Then the character-
istic function X E o f  E  is  solvable and

11xE  = 2 E d f  = ( E ) , o n  R ,

m oreover there ex ists a  simultaneously open and closed set E ,C E
su c h  th at ,a(E— E0) = 0  an d  H x ,  vanishes on  AP —E0 , = 1  on E 0 ,
moreover 11%E = H x E 0 .

PROOF. Take a  decreasing sequence o f  H B -fu n c tio n s  {u }
(cf. (7)) such that

un E Ux E

where we m ay assume u n = 1 on E, because it is enough to consider
u n  A 1. B y  (8 ) H x E = 0  on an open set At — E on A t  and since
u „ = 1  on E , by Lemma 6  w e have

11% ,  X E o n  Al`, [id  .

Since H%E  e HB , the set E o = f)1„E =1}  (J E )  is closed and p(E — E0)
= 0 .  H e n c e  it  is  e a s i ly  s e e n  b y  Maximum principle (II), that
H%E = TI,E 0 . This implies that H%E  vanishes on At —E0 . While H x E

is continuous, hence we find that E , must be open and immediately
H, E , q.e.d.

The following lemma is valid also in our space.

LEMMA 8. L et {p„}  be a monotone sequence of solvable functions
on A t, which converge to p ,  then

= lim .

THEOREM 6. A  measurable function f  on A t is  solvable if  and
only i f  it is integrable w ith respect to 1.6. A nd then

(12) II =f  ,

moreover

(13) H f =  f o n  At , [ a ] .

PROOF. As is  seen  little  later, for an y simple (step) function
theorem is va lid . Now we may suppose a given f  is non-negative.
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Let {f„} be an increasing sequence of simple functions tending to
f ,  then by Lemma 8

H f  = lirn H f  n =  liM f  n d,u, = lim  n d,0 = f d ,u,2,_„00

therefore the first assertion of the theorem holds. H f  is defined
on Al< by Lemma 3. Since Hf n = f „  on Ap, LA, we have H f > f „ ,
successively H f> f  on At, Dd. Hence if H  f<00 H f= f  on AP, [p ]
b y (12).

To complete the proof, we consider the characteristic function
XE  o f  a  1a-measurable set E A t .  T here ex ist an  increasing
sequence of closed sets E n (( E )  such that ,c6P(E— Eo ) = 0 , E c =lim  E .

Since XE n --->XE 0 ,  using Lemma 7  we have by the same argument
as above

H„E o (p ) XE0 diaP = XE d p,P , for any P,

and 11)tE 0 =XE on At, [p]. W hile, H „ o <  Hx E <H , E <H ,, E 0 +
Here it is proved that H„E _E 0 = 0 , hence H, E = H x E o . Indeed, i f  We
take, for any 8 > 0 ,  an open set e D E — E , whose tt,P-measure <E,
then it is easily seen that

O r i
x (P ) = HXE-E0C1 ed,u,P <  6 .

Since & is arb itrary, H, E _E o (p )= 0  i.e. .H,E _E 0 0. Thus we know
that Theorem is valid for simple functions.

REMRAK. F or a n y  Borel set E C A t ,  H, E = ,a (E ).  Hence if
,a (E )= O  fo r some point p E R , p ( E ) =O  for any p E R  by means
of the usual minimum principle. Therefore the Maximum principle
(II), still holds if u <0  on At — E, 1c6P(E) = 0  for some p E R.

As an application,

THEOREM 7. Let u  be a superharm onic function which is bounded
below and continuous in the wide sense, then the function u  on
is integrable w ith respect to ,u, and is expressed as

u  = ud,u,+w in R ,
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where w  is  a G reen  po ten tial. In  particu lar, if  u  is positive and
harmonic on R , then w  is singular and the integral term is quasi-
bounded.

PROOF. Let u (p )=  min (u( p), n) E (n =1, 2, •-•), then since by
Theorem 4 and Lemma 3

U un d t b  in R ,  h en ce  u > S zv, u dik ,

we find u is integrable on A t. M oreover by (13) w = 0  on  A t, [p ],
therefore any HB-function co (> 0) majorized by w must be identi-
ca lly  zero b y  Maximum principle (II)„ q.e.d.

7 .  THEOREM 8. A positive harmonic function w on R  is singular
if  an d  only i f  w  vanishes on At.

PROOF. Let w  be singu lar and v=min (w , k ) (k> 0 ) .  Since v
is  a superharmonic function E O <T • v <v <w , hence T•v_--=--0,
th a t is, v  reduces to  a Green potential. It follows that v=w=0
on A t b y  L em m a 3 . The converse is  trivial.

THEOREM 9. I f  a sing le  point q E A t  has a positiv e measure
with respect to ,<i„ then ,u,({q}) is m inim al in class H B .  Conversely,
any m inim al function co (sup co =1 )  in  H B  is identical with the ,u,-

measure o f  an  isolated point of  At.

PROOF. The first part of the theorem  is evident, as {q} is  a
closed se t. To prove the converse, let e= {p E A  ,  co = 1}. S ince
e  is closed, 0< 11, 8 < co . It fo llow s that 11, e =c•co (c : const.>0),
hence co=0 on AP — e. I f  e  contains at least two points q, and q2 ,
there exists by Lem m a 4 an HB-function u  (0 < u < 1 ) such that
u(q,)= 1  and u(q2) = 0. Since A  co <co, v is proportional with co.

While v(q2) = min (u(q,), 60(0)=0, which is absurd, q.e.d.
From above two theorems we have the following

COROLLARY. Every positive minimal function 12  on R  vanishes
on At, provided that it is unbounded. If S2 is bounded, S2 vanishes
on A t  except an  isolated point q *  on A t  where 1- 2(q*)= sup 12(p).

PER

Moreover the set of  bounded minimal functions on R  is countable.
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W e note h ere  th a t for an unbounded positive minimal func-
tion w  the set

= { q E w (q) = + Do} A* —At

is closed and connected (cf. [6]), which is proved as fo llow s. Eoo is
evidently closed. Let Eos consist o f tw o disjoint components E,
and E „ then there exists a continuous function f > 0  on  R * such
that f  = 0 on E, and = 1  on E „  Let U =  {  f >11  2}, m = max w K 0 0  )

and w, be a superharmonic function such that

i n  R— U
101 min (w,i n  U

Let u , be the greatest harmonic minorants of w ,  then u , are not
identically zero . Indeed,

w — m  i n  D =  {peR— U ; w (p)> m }
w i > u

1.0i n  R— D

u  is  a non-constant subharmonic function, hence u1 > 0 .  Since w
is  minimal and u i <w i <w , u i =c w  (c : const. > 0 )  which is absurd,
because u i < w ,  is bounded (< m ) on U.

§  4 . Applications

8 .  First o f all we state some remarks on harmonic measures.
Let A  be a Borel set on A, and (DA  th e  harmonic measure o f A
in k, i.e.

° A ( = K s(P) dX(S)
A

which is characterized by the property

( A A (l —coA ) 0

(cf. [ 4 ] ) .  Considering 0)A  as an element of we have by Lemma 5

min ( (q), 1—(0A (q)) = 0 f o r  q E At .

that is, the values of (DA  o n  AP are either 1  or 0. Hence there
exists a set E  such that

WA  =  p(E ) = H , E  , E  =  {q E W ( q )  1} .
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E is simultaneously open and closed on At by Lemma 7. It should
be noted that if  A  is  a  closed set, coA  possesses the pseudo-limit
zero on A, — A , [X ].  T o see th is, let G,. (n =1, 2, •-.) b e sets of
points of R  whose distances from A are not greater than 1/n, then
by Martin [8]

.A ( P )  = iim 1 ,.(p ).

In general, for a positive superharmonic function u and a  closed set
G on R  u t(p ) stands for a superharmonic function which is equal
u  on G  except a  s e t  o f  capacity zero and equal H G  on R—G.
H - G i s  the solution of D irichlet problem o n  R— G  w ith  the
boundary function 14t, w here u means the function u  extended by
0 onto an Alexandroff point of R .  Let o  deno tes a  sphere with
diameter r whose center is s E A ,. S in ce  for s E  —G„ and r =1/n

we have

O <  6)A(P) < 1 t2n(p) I l f g - n R ( P ) p E cr; R .

W hile, by Naim [10] lim a yrnR (p )=  0  for any r > 0  and sE A „

[X ], from which we can immediately get our conclusion.
Now from our point of view we shall prove some theorems

valid on the Martin spaces.

THEOREM 10. Let R be a Green space and A the M artin boundary
o f  R .  L et e be a se t on  A whose X-measure (harmonic measure) is
positive. I f  a positiv e  superharmonic function u continuous in the
wide sense on R possesses at each p o in t o f  e  a  pseudo lim it + 00,
then u is identically  + 00 .

PROOF. There exists a  closed set F C e  such that F > 0 , i.e.
coF (q,)= X (F) >0 (cf. § 1). Let

W (P) w F (P )/ (u (P )+1 )

1/(u+1) is a non-negative bounded continuous subharmonic function.
This is seen by considering the approximation of u  by smooth
superharmonic functions in  the local. Hence WE F r o m  a b o v e
rem ark w e know  that the pseudo-limit o f  W  is  equa l zero on
A i, [X ], hence
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WE ,

and that there exists a closed set E  on AP such that

coF = fIX E  = 0 on R * .

Since p (E )= 1  on E  and W=0 on At, it follows that

u =  +co on E .

While by Theorem 7 u  is integrable on A t w ith  respect to  ,u„
hence the set {q E ;  u(q) = + 00} must be o f  1a-measure zero,
which is a contradiction.

As applications of this theorem we get theorems of Riesz type.

THEOREM 11. L et D  be a  dom ain in  2n-dimensional euclidean
space le" adm itting a Green function and A  the M artin boundary
o f  D .  Let

P(zi, zn) , z,z), ••• , z,,)) , (m > 1 )

be an  analy tic transform ation of  D  into R 2 -  an d  p (D ) denotes the
image of  D in R 2 1n. Suppose E is a set in R 2 m such that there exists a
positive continuous pluri-superharmonic function" f2 on lem(resp. p(D))
which becomes + 00 on E  (re s p . p (D )n E ). If  (I) possesses a pseudo-
lim it E E  at each point of  the set e A  whose X-measure (harmonic
measure) is positive, then the mapping p  degenerates so that (p(D) E.

In fact, n,(p(z„ ••• , zn ) )  becomes a positive pluri-superhar-
monic, hence superharmonic function continuous in the wide sense
on D  and possesses a pseudo-limit + 00 at each point of e. Hence
the theorem follows from the preceeding one.

If the boundary surface of D is sufficiently smooth, the Martin
boundary o f D  is identical with the euclidean boundary. In the
special case that (I) is bounded and E  the 2(m—X)-dimensional
subspace

14)1 ai, ••• , wx = a x( 1 X m)

it suffices to take

=  —  log I(w 1 —  al) ( w x — ax) + K ( K :  const. > 0) .

1 )  As for pluri-subharmonic functions see e.g. H. L. Bremermann [3].



On a compactif ication of  Green spaces 401

In case of one variable we can choose as D any open Riemann
surfaces possessing a Green function and get under the following
remark a  theorem of Constantinescu-Cornea [4] (in slightly re-
stricted form) which reduced exactly to the classical Riesz-Lusin-
Privaloff-Frostman-R. Nevanlinna's theorem.

Given a superharmonic function v>0 on R, the extremisation
of v with respect to a  se t G R  is, by definition, a positive super-
harmonic function on R  which is the lower envelope of positive
superharmonic functions on R  majorizing v on G . We denote it
by E G v. If R— G is  open,

EGv(p) 1 -1f,?- G(p), p E R - G.

On the other hand, every harmonic function u>0 on R  can be
decomposed such as

u(P) = IG u(P)+In(p),  p E G

where G is  a  domain (cf. [4]). Hence, in particular, / G Ks >0 on
G if and only if EG K , is not identical with K s , therefore by Naim's
criterion, if  an d  only i f  R— G is th in  at s. Thus we know that
for s e  (q )) , As) in  [4 ]  is  a  pseudo-limit o f p  at s.

9 .  Finally we refer to a  continuous mapping of our compact
space R * onto the M artin space k (c f . [5 ]) . Let C (k) be a ring
of continuous functions on k, which is a subring of by sec. 2
(7). For each point (maximal ideal) ME R* = { f  E  M  n  C (P)}  is
an  ideal o f C (P), moreover a  m ax im al ideal, because a n  ideal
(/'(41 , g) (g E C(1A?), g OA ) would contain a  non-vanishing constant
g ( M ) = g ( p ) - ( g ( p ) - g ( M ) ) .  For A"4-'  there ex ists a unique point
/lAle  k such that f (]1 ) =0 for every f  E /12f, otherwise for each point
pE R w e  h a v e  a  function f  p e i f  which does not vanish at p.
Hence from the compactness of k  th e re  e x is ts  a  function g=

E such that g  I  0  on R. S in c e  1/g E C(P), it follows that
1=g-  1  E 11A4 ' which is absurd. The mapping

: M
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gives a  continuous mapping o f R* onto k, which leaves each point
o f R  in v a r ia n t . Since R  is dense in  E, T(R*)= R and  , r (A * )= A .

KYOTO UNIVERSITY
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A dded i n  Pro o f  (July 10, 1962). Prof. M . Brelot has kindly informed
me that he had given in his paper (Ann. Acad. Sci. Fenn. 250) a sharper
result than Th. 1 0 . By his theorem Th. 11 is improved correspondingly,
that is, the continuity o f S2 is unnecessary and at each point s of e ço has
merely to possess a  limit E E  (more generally, to approach E )  along a
non-thin set at s.


