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I. Introduction

(“nt”(“nb”) means the n-th line from top (bottom respectively))
In my paper “On a compactification of an open Riemann surface
and its application”, this Journal vol. 1, No. 1, (1961) [*],
(1) 17t, p. 22 “We denote by & the family of real-valued bounded,
continuous functions on R each of which has the radial limits in
K for almost all ¢®”---to this sentence the following should be added :
moreover the radial limit function fo 7(¢’®) (0<0<27) is invariant
under the group of the cover transformations except for a null-set.
(2) 8t, p. 24 Delete the sentence “From this, we know that--:
belongs to §. Hence:---belongs to ¥’
(3) 9t, p. 27 “Then D—2D meets Ag” to be corrected as follows:
“The D meets Ag.” (The proof will be given in supplements
from the more general point of view.)
(4) 14b, p. 27 lemma 2.2 will be verified in supplements from
the more general point of view. (The (2), (3), (4) will be studied
from the other standpoint in chapter IIL.)

II. Supplements

Here we shall give some notes supplementary to the paper [].

1. We shall use the same notations as in [*]. Let R be an open
Riemann surface of hyperbolic type and let # be a subharmonic
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function bounded, upper semicontinuous on K. Then we have the
following

PROPOSITION 2.1. Let D be a subset in R such as D={pE R;
u(p)>c}. Then the closure D of D with respect to RE meets Ag,

where infr u<c< supg u.

Proof. We suppose that DNAg=¢. Then DN Il'g=v is com-
pact and yNAg=¢, consequentry there exists a non-negative func-

tion @(€F,) such as =0 on Ag, =1 or v. Let E:{peR;
¢(p)>%}, then EnAg=¢. Let K; |z|< 1 be the conformal image

of the universal covering surface of R and let 7(z) be the con-
formal mapping from K onto K. Then the radial limits of
@o T(rei®) are zero for almost all § (0=<<6< 27=). Now we define
a function #(p) on R such as

@(p) = u(p) on D
=c on pe R—D.

Then # is a bounded subhamonic function on R, consequently
#o T(rei®) has the radial limits for each ¢ except for a null-set
(Littlewood [6, 7]). I?S:C lim @o T(re®) >c¢ for some 6, then the
image os={p€ R; p= T(re?®), 0< 8< r< 1} is contained in D for
a suitable number 8, that is, ¢;CD. Therefore 5N\ 1I'yCy and
from this we know that the set {¢‘®} such as 1121 do T(rei®) >c is

of linear measure zero since @ belongs to %,. Thus we conclude
that #(p)<c on R. This is absurd, that is, DNAg=¢. (q.e.d.)

Let #*(g*) be the superior limit of « at ¢* (€ Ag). Then #*(g*)
is the upper semicontinuous bounded function on Ag, therefore is
the measurable function on Ag. We have the following

THEOREM 2.1. Let u be bounned, upper (lower) semicontinuous
subharmonic (superharmonic) function. Then

LHM. u={_ug)dug*; p)  (pER)

(G H. M. u = [ limu(g") dulg*;p)
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Proof. In the following, we shall deal with a bounded upper
semicontinuous function wu. Let AMp)=L.H.M. uw(p) and a(p)
=SA%12*(q*)d,w(q*; 2) (P€R). We shall verify that \(p)—a(p).

At first, we note that A(p)=u(p), since Mg*)=u*(¢*) and u(g*)
=i*(g*) except for a null-set. In the following, we shall see that
a(p)=u(p) (p€ R). We suppose that at some point p, in R

u(po) —a(p,) =€ >0.
Then

D = {pe R; u(p)—u(p) ><]

is a non-compact subset in R and the closure D (in R&) meets Ag
by proposition 2.1. Let ¢*(€Ag) be such a point that #(g*)
=#*(g*), then there exists an open set o, (in R%) such that g*€ o,
and

()~ < i) K@)+

for every point p€ o, because # is continuous on RE. On the
other hand, there exists an open set o, such that ¢* € o, and

&
u(p) @)+
for every point p€ o, R From these inequalities, we have
_ &
u(p)—u(p) <E

for every point pé€ (o,no,)NR. From this, we conclude that
g*¢ DNnAg. Considering that #(g*)=a*(¢*) except for a null-set,
we know that DNAg is a null-set.

Now we define the subharmonic function #(p) on R such as

o(p) = u(p>—u(p)—§ on D
=0 on R—D—2D,

Then we know that the least harmonic majorant of wo(p) is
identically zero on R. Suppose that L.H.M. v(p)=u(p) >0. Then
A,={g* € Ag; w(g*) >0} is of positive measure, consequently there
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exists a simultaneously open and closed subset v (CA,) such as
yn(DNAg)=¢. Then u(g*) is continuous on ¢, consequently
min p(g*) =, >0. Then the function

Y

(D) = p(D)— me@y( D)

is positive harmonic on R, and moreover &(p)=v(p) on R, where
w,(p) is the harmonic measure of vy. Indeed, it is evident that
#(p) is a positive harmonic function. We shall show that Z(p)
=v(p) on R. Suppose that at some point p (€ R)

v(p)—(p) = €>0,
then

E—{peR; up)-np) >%]

is a non-compact subset in R and the closure £ meets Ag. Let
g* (€ Ag) be a point such as ¢* ¢, then there exists an open set
o such that ¢* €c and

1 0) > v(p)
0< D) ~Mp) <5

for every point p€ o because of w,(¢*)=0. From this, we know
that

op) — Hp) <G (peonR),

that is, EnAg is the subset of . Since yCAg—D, any point
g*€ EnAg does not belong to DNAg. Consequently there exists
an open set & such that ¢*€ & and #nD=¢. From this, we know

that limo(p)=0. On the contrary, lim v(p)= € because of
pre® prax 2

g*€ EnAg. This is absurd. Thus we know that Z(p)=v(p) on
R, and that considering that wu(p)=L. H. M. v(p) we conclude that
v(p)=0 on R. Thus we have verified that u(p)<#(p). From this,

- we know that

wk(g*) = g—m u(p) < Mg*) < u(g*)
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for almost all points g¢* € Ag, where Mp)=L.H. M. u(p). Thus
we have M p)=u(p) (p€ R). (q.e.d.)

COROLLARY. @*(g*) (=lim u(p)) (¢* € Ag) is a continuous func-
prq*

tion on Ag, where u(p) is a bounded semicontinuous subharmonic
Sfunction.

Proof. a*(g*)=x(g*) (a.e.) and #*(¢*) is upper semicontinuous
on Ag, consequently #*(g*)=2A(¢*) for all points of Ag.

Thus I. (3) has been verified and I. (4) also verified under
the wide interpretation (cf. chapter III). From theorem 2.1 we
have the following

THEOREM. Let u be a positive superharmonic function on R.
Then u=+co, provided that e.={g*€ Ax; u*(g*)=+o} is of
positive measure, wherve w*(g*)=1im u(p).

Pra*
Proof. Let w,(p)=min [u(p), n], where the n are positive
integers. Then, by theorem 2.1

@p) = G H M up) = S A%uif(Q*)d/ﬂ(Q*: P (wr(g*) =}Lr{l_ (D))

>q¥

and {#,(p)} is the non-decreasing sequence. Therefore
lima,(p) = |, _tim uf(@"dule*; p) < u(p)

and from this we know that #(p)=+ oo provided that e, is of
positive measure.

III. Ring of bounded continuous functions on R.

1. In this chapter we shall give another compactification R¥ of
an open Riemann surface R (¢0;) such as bounded continuous
subharmonic (superharmonic) functions will be extended con-
tinuously onto R¥. To define it we use the Royden’s decomposi-
tion [9] without using the universal covering surface as in my
former paper. Now let R¢0; be an open Riemann surface and
let f be a bounded continuous function on R. Let {R,} be an
exhaustion of R such as OR, consists of a finite number of
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mutually disjoint Jordan closed curves. We denote by H%, the
harmonic function in R, which is the solution of the Dirichlet
problen with respect to the boundaily value function f. Then the
f is decomposed as follows ;

f= un+(f_un)

where u,=H%, on R,, =f on R—R,. Let {u,} be a subsequence
of {u,} such that wu,, converges uniformly on any compact sub-
domain in K. Then

J =t (f—thny) = utp
where #=lim u,, and @=f—wu. This decomposition is not always
k>
unique. Now let F be the family of bounded continuous functions
on R for each of which the above decomposition is unique for
any exhaustion {R,} of R. We denote by D, f] the harmonic
part of the decomposition of f. It is evident that F contains the
superharmonic and subharmonic functions. We denote by K the

subfamily of F consisting of @ such as D,[@]=0. Now we shall
prove that F is a ring with respect to the usual multiplication

and sum.
Property 1. fe F=\feF (N real)
Property 2. f, g€ F= f+g€F
Property 3. f, g€ F= fgeF

Properties 1 and 2 are trivial. We shall verify the property 3.
Let fe F, pe K and =0 on R. At first, we show that f.p€ K.
Let M:s%p | f], then

—Mp < fp < Mp,
consequently for an exhaustion {R,}
—MH%, < Hff, < MHY,,,

that is, lim H% =0 and from this we know that fp€ K. Next, in
case that @ (€ K) is general, we note that »* and @~ belong to K
respectively, where p*=max (¢, 0) and @ =max (—, 0). Indeed,

ot =H% v0, H%, =HgvO0,

Rn



On a ring of bounded continuous functions 31

and that HY%, AH%,=0, H,,=H%, —H%,. From this, we know
that @*, @ belong to K respectively. Thus we can see that
fpe K for any @ (3K). Let f,g be any elements of F. Then
f=u+p U=y f]) and g=v -+ (v=Iy[ g7]), consequently fg=uv
+ur+vp+ @y, From this we know that fg €& F because of uv€ F
(duv=(u+0)*—(u—v)*). Next we denote by || f| =sup | f] the norm

of f. Then we have the following
ProposITION 3.1. || f||=lu|l, where u=Dg[ 1.

ProPOSITION 3.2. Let {f,}(f,€ F) be a Cauchy sequence with
respect to the above norm. Then there exists a function f( € F) such
as || fo—fll—0 as n—co.

. Proof. We know easily that f,(p) converges uniformly a
function f on R. Let f,=u"+9" be the decomposition of f,,
then f,— f,=@"®—u")+ (@™ —p™) and ||f,—full=I1u"—u
by proposition 3.1. Therefore #“” converges uniformly to an
HB-function #. Thus we have

@ = lim ™ = lim (f,—u4"™) = f—u,

and the convergence is uniform. We must prove that @€ K. Now
we suppose hat @=v-++r (v€ HB). Then noting the D [¢]
=Dy[p—p™], we have

Il < llp—p™|| =0 (as n —co)

that is, v=0. (q.e.d.)

Thus we know that F is a normed ring with respect to the
above norm. By means of Gelfand’s method, we obtain the com-
pact Hausdorff space R%. R is mapped topologically in R} and
and its image is open and dense in R%. We denote by 1% the
R%-R and I'y is called the ideal boundary of R. All of the
maximal ideals each of which contains the ideal K construct the
harmonic boundary of R and is denoted by Ap (C L'p).

RemMArk. The ring F contains the bounded continuous sub-
harmonic and superharmonic functions, From this, we see the
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similarity with Y. Kusunoki’s ring [5]. I do not know whether
they are identical or not.

LEmMmA 3.1. A bounded continuous subharmonic (superharmonic)
function attains the maximum (minimum) on Ag.

LemMmA 3.2. Let e,, e, be closed subsets in Ap such as e,Ne,
=¢. Then there exists a positive bounded havmonic function u such
af u=1 on e, =0 on e,.

LemMa 3.3. Let u,v be HB-functions on R, then wuvv
=max (u, v) and uNv=min (u, v) on Ap respectively.

We note that proposition 2.1 and lemma 2.2 in my former
paper [x] are established this time. Now let v be any subset in
A, then we can give the outer harmonic measure u, with respect
to v by the same method as in [*]. We shall see that all of the
results in [*] are established, because the above three lemmas hold
in R}%. The following lemma will be used in the succeeding
sections.

LEmMMmA 3.4. Let v be a subset of Ap such as py=0. Then
vyC (Ap—7). (cf. proposition 4.3 [*])

2. Martin boundary and harmonic boundary Ap. Let R¢0; and
let A, be Martin boundary consisting of the minimal points. Let
G be an open set in R. After Constantinescu-Cornea, we call that
s (€A, belongs to A,(G), provided that I;K, >0 and denote it by
s€A(G). Let §= [\ G, where G is the closure of G in R} and

SEAE)
s is a minimal point in A,. We call § the image of s and denote

by §=W(s). Let <y be a subset of A, then V(y)={s; $§=V(s), s€ v}
is called the image of v in R%. The § is not empty as is verified
easily under the considerations of Folgesatz 2 [1] and the com-
pactness of RF.

PrROPOSITION 3.3. The tmage § is connected in R¥.

Proof. We note that I;K, >0 implies that there exists the
only one component G of G such as IzK,>0 and IsK,=0 for
any other component G’ of G different from G [1]. Consequently,
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in the following, we assume that G is connected. Now suppose

that § is disonnected. Then § is decomposed to o,uc,, where

o,, o, are both compact and o,no,=¢. Let f (€ F) be a function

on R such as £ >0 on o,, =0 on o, and inf f=c¢_>0. Then
%y

D:{peR; f(p)>%} is open and D >o,, Dno,=¢p. Now we show

that for any domain G (s €A(G)),
GNnoD==¢. (%)

Suppose that GNoD=¢, then H,=GAD and H,=Gn(R—D) are
not empty respectively and H,n H,=¢, consequently G=H, v H,.
This is absurd, because G is connected. Thus we know that
GNnoD==¢$. Now let G=GN3D, then we can prove that N\G==¢,
where G varies in 8= {G; s€ A,(G), G connected}. Suppose that
NG=¢, then \ JG°=2D, where G° is the complementary set of G
with respect to oD. From the compactness of oD

oD = G uGyuGiu - uGe
that is,
G~¢‘ = 4)’ (**)

n
i=1

where G;=9D—G¢. On the other hand, for any G,, G,(€®)

IGlﬁGZKS > 0

because of I; K,~>0 and I;K,>0 [1], consequently there cxists
a component G, of G,NG, such as I K, >0, that is, G,n3D==¢
(cf. (x)). From this, we know that

G:nG; = (G:naD)N(G;naD) = (G:nG;)n3aD > (G;nG;)naD = ¢
for any ¢ and j, that is, [i\G,:t:(b. This contrudicts with ().
Therefore $nOD==¢. This is absurd, because of $noD=¢.

LEMMA 3.5. Let D be a non-compact subregion in R and let
the relative boundary oD consists of the regular points with respect
to the Dirichlet problem. Then I,K, >0 if and only if $§CD—2D.

Proof. Let I,K, >0, then w(p) (=I,K,) is minimal in D and
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it vanishes continuously on 9D. Let E be a subregion of D such
as E={peD; w(p)>c>0}. Since I,K,>>0 and EnaD=¢, we
know that $§C D—9D, where E, D, 9D are the closure in R¥.
Conversely, let $§¢ D—2D, then

HING

therefore

(\J G)vaD’ = R%,
that is, ([3 G;)NnoD= ¢}, where G°'=R%— G and 2D°=R}§—20D. From
this, Wetnknow that -

(\GINaD = §.

We note that I;K, >0 for each G;, consequently IzK, >0 where
G= Q G;. Let G, be a component of G such as I K, >0, then
GOCB because of G,noD=¢ and §CD—0oD. From this, we know
that I,K, >0. (q.e.d.)

PrOPOSITION 3.4. Let v be a X-measurable subset of A, with
positive measure and let o.(p) be the harmonic measure [1]. Let

D,,:{péR; wy(p)>1—%} n=2,3,---). Then f\D,, contains the
image of v except for a null-set of X-measure zero.

Proof. By means of Constantinescu-Cornea [1],

op) = [, KOWaXE) 09 =1 sey
=0 s€A —v,
and
A,CAG) [X]

where A,={s€A,; 0(s) >a} and G,={peR; o,(p)>a}. From
this and lemma 3.5, we know that G,>W(y) [X], that is, G,

contains the image of v except for a null-set in . Let a,:l—l,
n

then N\ D,>¥() [X]. (q.e.d.)

PROPOSITION 3.5. The harmonic boundary Ap is contained in
the closure of Y(A,).
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Proof. Suppose that the harmonic measure of W(A)NAg is
constant 1. Then that ArCW(A,) is valid (cf. lemma 3.4).
Suppose that the harmonic measure of W(A,)NAr is not constant.
Then Ap—W(A,) contains a subset o simultaneously open and
closed. Let ®,(p) be the harmonic measure of ¢. Since

o(p) = | Kax
A
for a suitable set A(cCA,), V(A)C ﬁﬁn [X] (cf. prop. 3.4). Let

&= {¥(s); ws)< N\ D, s€A},

then o,=1 at every point of &. On account of the assumption,
VY(A)No=¢, 5no=¢ (where o is open and closed). Next, noting
that ®, vanishes on A;—o, while w, is 1 on &, we know that
éN(Ap—o)=¢. Thus 6NAp=¢, from which we can conclude that
A is of X-measure zero. Indeed, on account of ¢NAg=¢, there
exists a non-negative continuous function f on R} such as f=c
(>0) on &, =0 on A,. Let D be an open set in R such as

D= {pe R; f(p)>%}. Then there exists an open set D such that

D>DudD, DNnAp=¢ and that 9D consists of regular points. It
is clear that D belongs to the class SOy;. Consequently the set
y={s€A,; IzK,>0} is of X-measure zero by [1]. On the con-
trary, the set A is different from v by X-measure zero by means
of lemma 3.4. This is absurd, because A is of positive X-measure.
Thus we conclude that ApC W(A)). (q.e.d.)

PROPOSITION 3.6. Let v be a subset of the harmonic boundary
Ay of R with positive measure and let o, (p) (p€ R) be the harmonic
measure of vv. Let § be the subset of W(A)) such that o, attains 1
on ¥, that is,

§ = {W(s) oy =1 on V(s), sEA}.

Then the v is contained in the closure of ¥ except for a set of the
harmonic measure zero.

Proof. Let % be the closure of §. Suppose that y—% is of
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positive measure. Then there exists a simultaneously open and
closed subset of y—%, We denote it by o. Then there exists a
subset A of A, such as o, (p)=w,(p). According to Constantinescu-

Cornea [1] and Proposition 3.4, ‘lf(A)Cf»\E,, [X], where E,

={pER; mw(p)>1—l}. Now the set

n

n = {¥(s); w,=1 on ¥(s), s€ A}

=~

% and yno=¢ by the assumption. Consequently
gNo=¢ and further 7NAg=¢, because w,=1 on o, =0 on A—o.
Thus there exists a function @ continuous on R3} such as =1 on
n, =0 on Ap. Let D,, D, be open sets snch as

is a subset of

D, = {peRr; p(p>1]
D, = {pER; ¢(p)>%}.

Since @(p) is continuous on R}, D,>D,vwoD,. There exists an
open set D such as D, CDCD, and that 9D consists of regular
points of the Dirichlet problem with respect to D. It is clear that
D—2D>%n and DNnAp=¢. The former implies that D¢ SO,y by
lemma 3.4 and Constantinescu-Cornea [17], and the latter implies
that D€ SOyp. This is absurd. (q.e.d.)

NoTe. I conjecture that the following proposition will be
hold ; Let A be a X-measurable subset of A,, and let W(A) be the
image in R%. Then

o0 = | Kaxs)

coincides with the harmonic measure of W(A)NAp.

LEMMA 3.6. Let S(p) be a lower semi-continuous, bounded
superhamonic function. Then S(g*) (lim S(p)) is continuous on A,
p>q¥
and

G H.M. S(8) = |, S@")dutg*: p).

Proof. Let u(p)=G. H. M. S(p), then
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up) = |, SeMdup;s pzuw),

and U(p*)=S(p*) except for a null-set, that is, the harmonic
measure of

N = {p*eAp; Up*)==S(p*)}

is zero. Now we suppose that U(p)=Fu(p). Let o= {p*€Ag;
U(p*) >u(p*)}, then & is open in Ap. Consequently & contains a
simultaneously open and closed subset o with respect to Ar.
Since M is a null-set, there exists a simultaneously open and closed
subset v (CAp) such that o—v is of positive harmonic measure
and at each point of o—v

U(p*) = S(p*) > u(p*) .
Therefore
inf (S(p*)—u(4%) = £>>0.
Let ®,_,(p) be the harmonic measure of o—v, then we can prove
that
S(p) = u(p)+co,o(p) (0<c<2).

To prove this, suppose that u(p)+ce,_4(p)—S(p) >0 at some point
in R. Then the set D={pE R: u(p)+co,_,(p)—S(p)>&E} is not

empty for a suitable number §>0. It is clear that DNAr=¢.
Indeed, for any p*€ ArC D we have

i_igl; (S(D) —u(p) —co,_(D)) zplgl_l (S(D)— ((p)+co,(p)))
PED (PER)

= S(p*) —u(p*) —co,(p*) = 0.

This is absurd, that is, DNAr=¢. Hence there exists a non-
negative bounded continuous function f on R¥ such as

f>0 on D

=0 on Ar.
The function f belongs to K since f=0 on Ar. Then

Af(p) = max [u(p)+co, o(p)—S(p)—¢€, 0] (pER)
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for a suitable positive number A. Consequently (#+cw, ,—S—¢&)
v0=0, because Dy[Af]=0. This is absurd. Thus we know that
S(p)=u(p)+ce,_y(p) at every point in R. This is absurd, because
of u=G. H. M. S(p). Consequently

0p) = |, SeHdup*s p) = u(p).

From this, we know that S(p*) is continuous on A since S(p*)
=u(p*) (a.e.) and that S(p*) is lower semi-continuous on Ap.

(g.e.d.)

COROLLARY 1. Let S(p) be a lower semi-continuous super-
harmonic function. Then the quasi-bounded component of G. H. M.
S(p) is equal to

| o S du 5 5)

provided that S(p) is bounded below.

COROLLARY 2. Let S(p) be a lower semi-continuous positive
superharmonic function. Then S(p)=+ oo, provided that the set
e.= {p*€Ar; S(p*) =+oo} is of positive harmonic measure.

3. On the Lindeléfian mapping. Let K. R’ be open Riemann
surfaces and let R be of hyperbolic type, while R’ be unrestricted.
Let f be an analytic mapping of R into R’. Let p* be a point
of the harmonic boundary of R and U= {U(p*)} be the family of
open sets in R% each of which contains the p*. Now we define
the image of the p* by the mapping f. At first, we assume that
R’ is of hyperbolic type. We define the set in R7* such as

M (p*) = U(p{)\é uf(U(P*)) ,

where F(U(p*)) is the image of UNR by f and f(U(p*)) is the
closure of f(U(p*)) in R#. MJ(p*) is not empty, because
(UnR)N(U,NR)-=¢ for any U, U,el. We call Mp*) the
image of p*. From the fact that the set /\Uell U(p*) consists of
the single point p*, we know that «’€ HB(R’) converges as p— p*
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along the filter 1. Consequently every bounded harmonic function
on R’ is constant on M (p*).

PROPOSITION 3.6. M (p*) contains the only one harmonic
boundary point of R’, provided that MAp*)NAr==.

PROPOSITION 3.7. MK p*) consists of a single point, provided
that M(p*)NR’== .

Proof. At first, we show that M (p*)NR’ is connected.
Suppose that MAp*)N R’ is disconnected. Then there exists dis-
joint closed sets A and B such as AuB=M/{p*)NR’. Let G be a
Jordan domain in R’ whose relative boundary is smooth and
ANnG==¢, while BNG=¢. Let S’(p’) be the superharmonic func-
tion in R’ such that S’(p")=1 on G and S'(p')=H%x_¢c on R'—G.
Then S’of is a continuous superharmonic function in R, con-
sequently S’of converges along the filter 1. This is absurd, that
is, M{p*)NR’ is connected. By the same manner, we know that
M(p*) consists of a single point in R’. (q.e.d.)

In the following, we shall study the mapping of type-B/
under the condition R’¢0s;. Now let Gx(p; q), ®r(p’; ¢’) be the
Green functions of R, R’ respectively. According to M. Heins,
Or(f(D); 4= Zpir-a’ () Or(p; 7)+uy(p) and u,(p) is the grea-
test harmonic minorant of ®p/(f(p); q). The u,(p) has the
Parreau’s decomposition : u,/(p)=v,(p)+w.,(p), where v,s is the
quasi-bounded component and w, is the singular component. Then
we have the following

ProrosITION 3.8 v(#) = | lim Sx(A(B); ¢)du(s* ; $)
(peER).

TueoreM 3.1. The analytic mapping f of R into R’ is of
type-Bl if and only if Mp*)C(Sgr), for every p* (€ Ar), where
(Sg), ts the subset of the ideal boundary 'r of R’ on which Green
function of R’ vanishes.

Proof. We note that (8g/), is independent of the singular
point ¢’ of x/(p"; ¢’). From this and proposition 3. 8, it is evident
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that 7 is of type-B/ provided that MAp*) C(®,/),. Conversely let
f be of type-B/ at some points ¢'(€ R’). Then v,,=0, consequently
lim @/ f(p); ¢’) must vanish at every points of Ar because it is
=7

continuous on Ar by lemma 3.5. On the other hand, we know
easily that ®/(f(p); ¢) (p€ R) is extended continuously (admit-
ting + o) onto R¥. From this we know that MH{p*)C (Sg),.
(q.e.d.)

THEOREM 3.2. The closure of \J MAp*) contains the har-
prEAF
monic boundary of R’, that is, Ax C\JMp*).

Proof. We denote by v the set \ /M« p*). Suppose that Ar—%
is of positive harmonic measure. Then it contains a simultaneously
open and closed subset o. It is evident that o=&, 6Nny=¢. Let
ox(p'; o) (p’€R’) be the harmonic measure of o. Then
o/(f(p); o) is an HB-function on R. Let & be the subset of Ap
such as 6= {p*€Ap; (@pof)(p*)=1}. The & is of the harmonic
measure positive, more exactly, ®pof is the harmonic measure
of 4. Indeed, (1—wgof))Awgof=0. Let M; be the image of &,
that is ,M; = {MAp*); p*€s}. Then the closure M; of M; does
not meet o by the assumption. Furthermore M; does not meet
Af, because @p/(p’; o) attains 1 at every points of M;. This is
absurd by means of the following lemma.

LEMMA 3.7. Let f be of type-Bl. Let Ar, Ap be the har-
monic boundaries of R and R’ respectively. Let v be a subset of Ar
whose harmonic measure is positive, and let M, be the set such as
M,={MJ(p*); p*ev}. Then the closure of M, (with respect to R¥#
meets Ay,

Proof. Suppose that M, does not meet A% Then there exists
a non-negative function ¢’ continuous on R such as ¢’=c¢ (C>0)
on M, =0 on Ak, Let D’ be an open set in R’ such as

D’:{p’ER';(p’(p’)\/%-}. Then D’NAy=¢ and D’ >M,. We can

construct the open set D” such that 9D” consists of the Jordan
curves and D” >D’udD’, furthermore D”NA%=¢. Then there
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exists a positive bounded superharmonic function S’(p") continuous
on R’ such as
S'(p)=0 on AF
=1 on D”voD”.

Now S(p)=S’of(p) is superharmonic and continuous on R. It is

clear that S(p) is positive on v. Consequently u(p)=G. H. M. S(p)

is positive on R by lemma 3.6. Let a(p)= g’u%u( ), then @(p’)
F=

<S(p) on R’. From this, we know that
0 Eu<S(p),

where Eyu is harmonic on R ([1], Satz 5). This is absurd, that
is, MynA’ #=¢. (q.e.d.)

From lemma 3.7 and theorem 3.2, we know the following

TueorEM (M. Heins [4]) If f is a conformal map of type-Bl
from R into R’ and w is a singular positive harmonic function on
R’, then wof is a singular positive harmonic function.

Noting that the essential part in the proof of lemma 3.7 is
that M (p*)"R'=¢ for every p*€ Ar, we have the following

TueoreM (M. Heins [4]) Let f denote a conformal map of R
into R’ and let u denote a positive harmonic function on R’. If
uof is singular on R, then w is singular on R’ and f is of type-Bl.
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