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1. F being an arbitrary open Riemann surface, we consider
an exhaustion {F,} (n=1, 2, ---) of F' by regular regions satisfying
the conditions : :

i) for each », F, is a domain in F whose boundary 1', consists
of a finite number of closed analytic curves in F,

ii) for each n, F,=F,ul',F,.,,

iif) QFFF
and

iv) for each #, any connected component of F—F, is non-
compact in F.

Then there exists a canonical homology basis A,, B,, -+, Awn,
B, +++ such that A,, B, -+, Aum, B form a canonical homology
basis of F, (mod 9F,) and A;xB;=9;;, A;X A;=B;x B;=0"
(Ahlfors [1], Ahlfors-Sario [2]).

We denote by 1', the class of all square integrable harmonic
differentials defined on F. The relation which expresses the inner
product (o, o*) for two differentials @, o€ I', (or subclass of 1',) in
terms of periods of , o is called the Riemann’s bilinear relation,
where o* denotes the conjugate differential to o. Some conditions
which insure the validity of the Riemann’s bilinear relation are
found by some suthors (Ahlfors [1], Pfruger [3], [4], Kusunoki

1) We note, throughout this paper, the intersection number of two cycles A, B is
taken such that AX B has the positive sign when A crosses B from right to left as in
[2]. Hence it has the opposite sign to that in [1].
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[5], Accola [6]). In this paper we shall give some metric criteria
which insure the validity of the Riemann’s bilinear relation.

2. Let F$” (1=1, 2, -+, m(n)) be components of F,.,—F,. The
boundary of F{” consists of closed analytic curves contained in
I',ul',;,. We denote by «f” the part of the boundary of F{’ on
I, and by B¢ that on I',,,. Let #{’(p) be a harmonic function
in F” which vanishes on a{ and is equal to x{’ on B{” having
a conjugate harmonic function v¢” (p) which has the variation 27
on B, that is,

[ oo = 2

3’(:)
where the integral is taken in the positive sense with respect to
F{. The quantity xS is called the harmonic modulus of the domain
F$. If we choose an additive constant of »{”(p) suitably, the
function «” (p)+ S’ (p) maps conformally F with a finite number
of slits onto a slit rectangle 0<Tui” < pui”, 0< 05’ < 27. Similarly,
the harmonic modulus of the open set F,,,—F, is defined as
follows. Let u,(p) be the harmonic function in F,.,—F, which is

equal to zero on I', and to u, on L',.,, and its conjugate harmonic
v,(p) has the variation 27 on 1',,,, that is,

S dv, = 27 .
T'nta

The quantity u, is the harmonic modulus of the open set F, ,—F,.
If we choose adequately an additive constant of v,(p), the function
u,(p)+1v,(p) maps conformally F{” with a finite number of slits
onto a slit rectangle 0<u,<gu,, b;<v,<a;+b;, where a; and b;
are constants satisfying the following conditions

m

a; = Zﬂﬁl Z a; = 2w
o i=1

(i)
3

and
b, =0, bi=§ak A<ilm).
=1

The function u,(p)+iv,(p) maps conformally F,_,—F, with a finite
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number of slits onto a slit rectangle 0< u,<g,, 0<v,< 27. The
function wu(p)+ w(p) defined by u,,(p)+iv,,(p)+§m for each
F,..—F, n=1,2, ---) maps F—F, with at most gn enumerable
number of suitable slits onto a strip domain 0<u<R=§‘i i

0< v< 27 with at most an enumerable number of slits one to one
and conformally. This strip domain thus obtained is the graph
of F associated with the exhaustion {F,} in Noshiro’s sense (Noshiro
[7], Kuroda [8]).

3. Let us consider an open Riemann surface F and its ex-
haustion {F,}, and we shall construct the graph 0< u<_R, 0< v<27
of F associated with this exhaustion. For any » (0<(r<_R), the
locus v of points of F satisfying u(p) =7 consists of a finite
number of closed analytic curves o (=1, 2, :--, m(r)). Let
o;=a;dx+bdy ({=1,2) be two square integrable harmonic dif-
ferentials. We consider the following integral on the level curve

i)

s

L) = 100§ 10

and put
L) = L),
Further, when flzﬂ/ﬁj_<_r<i],wj, we put

A@r) = maxg dv = maxg dv,.
1gigm Jo P 1icm Jqy (P

Then we obtain the following

R
LEMMA 1. If the integral S d_(rr) is divergent, then there exists
0
a sequence {v,} (n=1, 2, --) of level curves v, ; u(p)=r, tending to
the ideal boundary of F such that

lim L(r,) =0,

npo0
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Proof. When Z_]I /ﬁj<r<ipj, by the Schwarz’s inequality,
= =

we have
Lir) = S S o] = §(¢)1b|dv§m|b2|dv,,

(D (1, )
<Al )(S o 10 |2dv> (S o 10 o)
Summing up from i=1 to i=m(r), we obtain
L(r)<A(r)g;<S |b1|"’dv,,>l/2 (S o 101 dv)
x5 ) (S )

o ([ ) ([ )

Hence, we get

”

[ L= (2 ) (o)

’A(r) 2#
=1 Py
3”‘;14. SV'L‘,u
= J oo 2y /2
<(fo | lbllzdvdu> (S’; [."10.]2dvdu)
?:‘I}Lj ’ 2!"
S(S.’;i S (|a1|2+lb,|2)dvdu>
Stp;
=1
%l‘j
J=1 o , 1/2
x () (|a2|‘+|b2|2)dvdu>
el

= “"’1||r,.+1—p,,||0’z”pm 1=Fan*

Consequently, we have
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L) gy
Jo KD ar < Syl ol dlr,-

oo 1/2 / o 1/2
<(E 0l r) (30, )
< oy o] < oo

Since the integral S is divergent by our assumption, we

0o A(7)
obtain lim L(#)=0. Therefore, we obtained the above-mentioned

>R

result.
Since
S 4y
S,J: 1 dr = #n°m1n 2"’ 217[ ¢
S #; max g dv ‘
Jj=1 i 7;‘)
we have
S i
" odr SJ=1 T odr d .
Z”SOA( y =27 A = & (min )

for any 7 satisfying Z ,u,,<r<2 ;. Thus we can say that the
result of lemma 1 hold if E (mm w) is divergent.

Next, we suppose that the exhaustion {F,} is canonical, that
is, each contour I\ (=1, 2, ---, m(n)) of I', is a dividing cycle.
Let D (=1, 2, --, m) be annuli each of which includes a contour

I and are disjoint each other. We put D,=\ /D¢ and assume
i=1

that D, (n=1, 2, ---) are disjoint each other. We constructe the

graph of \“]D associated with the sequence {D,} of open sets D,
and denote the harmonic modulus of D (D,) by v{’(v,). Also we
denote the function which maps \jD onto the strip domain

0<Cu<l R=31%,, 0< o< 27 by u(p)+iv(p). When $3v,<r< 31v,,

we put

A(r) = maxg dv .

()
Tr
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We point out that in this case each component of the level curve
is a dividing cycle. Then, by the same way as we did in the
proof of lemma 1, we have

R dr

0 L\ 7’)
a sequence of level curves tending to ideal boundary of F such that

each component of the curves is a dividing cycle and lim L(r,)=0.

LEMMA 2. If the integral S is divergent, then there exists

In the same way as the remark in lemma 1, we can conclude

that the result of lemma 2 holds, if Zo_a] (min »$) is divergent.

4. Let us denote by I',,, (I',,.) the class of semi-exact harmonic
(analytic) differentials in 1', and by 1, the class of exact harmonic
differentials in 1%, and further by I',, the orthogonal complement in
I, of 1I'f,. Then 1, I',,,. Now let ¢ be a cycle, then there exists

a harmonic differential o(c) so that S ®=(w, o(c)*) for € 1',. Such
a o(c) is unique, real, of class 1%,. If ¢ and ¢’ are two cycles,

then (o(¢’), o(c)*) is an integer, that is, the intersection number
¢’ xc¢ of ¢’ and ¢ (Ahlfors-Sario [2]).

LEMMA 3. Suppose Q is a compact bordered surface and o and
o arein ', (Q). Let {A;, B} (=1, 2, ---, k) b ea canonical homology
basis of Q (mod 2Q). Then

=3, 00,7 Lole) Lo

where u(p) is a function defined separately on each contour of Q.

14
If « is a contour of °2Q, then u( p)zg @ where p, is a fixed point
by

on & and the integration is in the positive sence of «.

Proof. Let a;= Sm“’ and b, = Sm

—ao(B;)), then © has the same periods as ® and ®’ belongs to
10 (Q). Since @ —«’ has no periods, we have o —o’=du, where u
is a harmonic function. By the Green’s formula we have

0. Let o =3 (bo(A)

(0=, o) = [, %) = — | uo.
e
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Therefore

(0, %) = (o, %)— §an uc

“2(0e Lo L) Lo

rR y

THEOREM 1. If the integral 3 ING)

exhaustion, then for a corresponding canonical homology basis the
Riemann’s bilinear relation

1 (@, %) = },ijﬂg) (SA,,CO Sak 7 SAk 7 Sﬁk w>

holds for two differentials o, c€1,,.

is divergent for a canonical

Proof. We shall take the sequence {v,} of level curves satisfy-
ing lemma 2 for two differentials ® and o. Since each component
v (i=1, 2, ---, m) of v, is a dividing cycle, if v, D,,, we may
suppose that F,, and the relatively compact domain Q, bounded
by level curve v, have the same homology basis A,, B,, -+, Ay,
B,.». By the application of lemma 3 to Q,, we have

@, 0-*)0” :p:z::(gflkw SBk&_ SAkﬁ Sakw> B San,. uo-

Since o€T1,,,, we have S ., =0. Hence for a fixed point p,€ v
T

0] =] {0 @O—uoa| < 101, 101,

therefore

Saa,.u& <'Z: S,ys‘t) |Q’|S7y> lo| _}0' (n— o).

Thus the proof is completed.
By the remark in 3, we get the following

CoroLLARY. If ) (min v{") is divergent, the Riemann’s bilinear
n=1 i
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relation (1) holds for two dijferentials ©, 7€,

Thus we know that on such a surface every we ', is de-
termined uniquely by its A-periods.

By the definition of the modulus we have

1 1 1
e ) (m) *
un p:‘bl U,:n

hence v, <min >, If S v, is divergent, F belongs to Os; and so

n=1

I'y.=I,. Thus we have

CoroLLARY (Kusunoki [5]). If iv” is divergent, then the

Riemann’s bilinear relation (1) holds for two », o€ '),

5. Next we choose annuli RS’ ({=1,2, ---, m) in canonical
region F, so that I'">’C RY, RPNRYP =¢ (i==j). Let R,,=\mj R
i=1

and x(R,) and w(R{’) be the harmonic modulis of R, and R;”,
respectively.

Define wy, to be the supremum of ux(R,) as R, ranges over
all possible choices. Accola [6] has given the following sufficient
condition for the validity of the Riemann’s bilinear relation :

If pp,>M_>0 for n—o (M; constant), then

(@, %) = %HEI,Z:; <SAka) SB/;J-— SAI:& SBka))

holds for o€, and for all @€ 1.

We shall remark that the above sufficient condition can be
extended to the following form :

Ir sup (min £ (R?)) =M >0 for n— oo, then the bilinear relation

holds for o€, and for @€ 1,,.

This can be proved, with a slight modification, by the same
way as in [6] and so we shall omit its proof.

In [6], Accola has constructed a Riemann surface for which
the bilinear relation holds. His example is the symmetric hyper-
elliptic Riemann surface. Let {a,}i-. be a strictly increasing
sequence of positive number such that @,—> o (k— o). Denote
by «, the segment between a,, , and a,,. Cut the plane along
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the slits. Take two copies of slits plane =, and #_ and cross
along the slits in usual way. The surface thus obtained is of
infinite genus and parabolic. We exhaust it by the portion F,
lying over the open disk with center at zero and radius a,,. Let
R, be the ring domain lying above the annulus a,, ,<|z|<d,,.

Then the harmonic modulus of R, is . log Don_

47 7 ay,-,
Accola’s condition, for the validity of thc bilinear relation it needs

According to

that %—>p>1 for a subquence a,’s. But, according to the

2n—1

corollary to theorem 1, we know that, for the validity of the bilinear

relation, it is sufficient to hold %o — oo,

n=1 azn—l

6. Ahlfors [1] has constructed a canonical homology basis
with respect to an exhaustion {F,} of F such that the cycles on
oF, are weakly homologous to a linear combination of only A-cycles
and if the index »n of OF, is large, each of index of corresponding
A-cycle is large. In following we shall use such a canonical
homology basis.

Now let {F,} be an exhaustion of F' by regular regions and
for each n, 1,(¢;) be a set of finite number of level curves;

u(p)=t; <:2:p,k=tl<t2<~--<t,-<-~-<t\,=kz="; ,u.k) such that at least
one critical point of #(p) is contained in I',(¢;) (j==1, »), where
u(p) is the function defined in 2. We shall consider the relatively
compact regions bounded by I',(f;) (n=1,2,--,7=1,2, -+, v(n)),
then we may suppose that those regions construct an exhaustion
{Q,;}. Let us introduce a canonical homology basis with respect
to this exhaustion, then the region bounded by I',(¢) (¢;<t<t;:.)
has the same canonical homology basis as that of the region
bounded by 1,(¢,) (cf. Ahlfors [1], Hilfssatz 5). For such a
canonical homology basis we have the following

R
TuroreM II. If the integral S is divergent for an ex-

dr
A(r)
haustion {F,}, then there exist an exhaustion and a corresponding
canonical homology basis such that the Riemanw's bilinear rvelation
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2) (@, o) =] (SAk ® SBkﬁ— SAk G SBk m> (a finite sum)

k

holds for two w, o € L'y, having only a finite number of non-vanishing
A-periods.

Proof. We consider the relatively compact subregion Q, which
are bounded by the level curves which were constructed in lemma
1. ® and ¢ have only a finite number of non-vanishing A-periods,
hence also have vanishing periods on each contour of 2Q,, for
sufficientlt large m. Therefore » and o belong to I',,.(2Q,,), because
any dividing cycles in Q,, are homologous to a linear combination
of cycles on 2Q,,. Let « (j=1, 2, ---, /(m)) be contours of 2Q,,.

Since L(,,6=O, We have anologously in theorem I

H(J)uﬁ"<5m|wlgm|‘7|- .
QEm (22773 am

Hence

Smm”&’gg‘;sawWSwu>|<fl—>0 (m — o)

m

Thus the proof is completed.

COROLLARY. If i (min p$?) is divergent for an exhaustion {F,},
n=1 i
then the Riemann’s bilinear relation (2) holds.
For such a canonical homology basis, on such surface every

o€, , is determined uniquely by its A-periods. Thus we have

ase

. . R dr
CoROLLARY. (Sario [9]). If the integral g

NG is divergent,

then Riemann surface belongs to O ,p.
Since min u >z, if S g,=oco, then theorem II holds. If F
i n=1
belongs to Og, then there exists an regular exhausion such that

i) =00 (Noshiro [7]), hence we have the following

CoroLLARY (Ahlfors [1]). If F belongs to O, then there exist
an exhaustion and the corresponding canonical homology basis such
that
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(@, 6*) =3 (SAk © SBka-— SA,, G SBkw> (a finite sum).

k

holds for two o, o€ ', having only a finite number of non-vanishing
A-periods.

7. Let G be any region on F whose relative boundary c
consists of at most an enumerable number of analytic curves,
compact or non-compact and clusters nowhere in F. If there exists
no non-constant, single valued, analytic function f(p) which has
the finite Dirichlet integral over G and its real part vanishes

continuously at every point of ¢, then G is called the subregion
R

of the class SO,,. We now suppose that the integral S —d(—% is
0

divergent for an exhausion {F,} of F by regular regions. We
consider the subset G, of G;

G, =Gn{p: u(p)<r 0<r R}

where u#(p) is the function defined in 2. If some components of
G— G, are relatively compact, we consider the union of these com-
ponents and G,. For simplicity, we denote it by G, again. Let
F(p)=U(p)+iV(p) be a single valued analytic function in G whose
real part U(p) vanishes at every point of the relative boundary
¢ of G. Then two differentials dU and dV belong to 1,,(G) and
dU vanishes along ¢. Thus we have by lemma 3 and U(p)=0
(peo)
[1dU|E, = (dU, dU)g,= —(dU, dU¥*); = —(dU, dV*);, = Sao,r'\c udv
We set 6,=0G, NG and denote components of 0, by 6 (1=1,
2, -+, {(r)). Then, by the same way as in the case of the proof

of lemma 1, we can conclude that there exists a sequence {6,}
such that

é Segw | dU]| Sef-“ |dV]|—0 (n—c0).

In such G,,, we have

]
14U, = ge Udv = 3 S o UdV.

n i=1
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If 6 is a closed curve, as Se‘“ dV=0, we have
o vav| <[ 14U o 1071

If 6, is a cross cut, let p’€c be a end point of 6:’, then
U(p")=0, hence

He‘ri: vav| = } Se;;y (U(p)- U(p’))dV| <SG$ |dU| Se‘/;: \dv).
Consequently,
‘ Ser,, UdV‘ <§ Seﬁ’,‘f |dU]| Seﬁf,) |dV|—0 (n— o0).

Hence, G belongs to SO,,. If we denote by 0%, the class of
Riemann surfaces each of which has no subregion not belonging
to SO,,, we have the following theorem proved by Kuroda [8]:

if the integral S dr is divergent, then F belongs to O, .

A7)

Since 0%,50,, (Kuroda [8]), this is an improvement of the
Sario’s sufficient condition. Moreover, by the same way as above,
we can generalize the above theorem in the following form.

THEOREM III. If the integral S is divergent for an ex-

m

haustion of F by vegular regions, then
(a)) (T*)G =0 »

where o€ 1',,(G) and ® belongs to 1,,(G), that is, o=df and the
harmonic function f(p) vanishes at every point of the relative boundary

of 1.

8. The special bilinear relation is said to hold on F if the
following is true (Accola [6]): if w€ ', o€, and ® has a
finite number of non-vanishing A and B-periods, then

(0, o¥) =3 <SAkw SBka-— SAk& SBka>> ’ (a finite sum).

k

Let 1,, be the orthogonal complement in 1Y, of I',,,. In [6] the
following theorem is proved: validity of the special bilinear rela-
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tion on F is equivalent to I';,,=T,NT,,. Also a surface on which
LN y=21",,=¢ holds is constructed. The surface evidently does

not belong to Oyp. Since (o, 0*)=(c*, @)= (c** o*)= — (o, 0¥), if
R

S A—d(%= o and @€l has a finite number of non-vanishing A-
0Lxo

and B-periods, then by theorem I we have

k

(@, o¥) = <SAkco SBka— SAkc-r SBkco> ’ (a finite sum).

R
Therefore we know that if S ar =oo, then 1',=T,N1.

o A, (7’) ’

Kyoto University and
Kyoto Technical University
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