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The purpose of the present paper is to prove that an arbitrary
abstract variety can be imbedded in a complete variety as an
open set.

As for the terminology, we shall employ the one in the sequence
of papers of ours in the American Journal of Mathematics ([2]
(I, II, ITI)). We note that we need not assume that a ground ring
is a Dedekind domain. Namely, our proof is valid without any
modification in the case of models over a Noetherian integral
domain, models being adapted to the case. Therefore the ground
ring can be replaced also by a so-called Noetherian scheme,
provided that every localities are integral domains.

In §1, we state some of known theorems on birational cor-
respondences. In §2, we discuss a special kind of birational
transformation, called dilatation. In § 3, we give some auxiliary
results and in §4 we give the proof of our main theorem.

The writer likes to add here that there has been one contri-
bution by J. Ohm [4] to this problem saying that if V is an
abstract variety, C is a curve on V and if there is a quasi-
projective open covering {U;} of V such that C meets all the U;,
then there is an abstract variety V’ containing V as an open subset
in such a way that the closure of C in V’ is a complete variety.

1. Birational correspondences.

We consider from now on only models whose function fields

1) The work was supported by NSF grant G14736.
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are contained in a field, hence corrcspondences between models are
well defined as follows.

Let M and M’ be models. When M dominates M’, then the
map ¢ such that P>p(P)e M’ for every P€ M is a well defined
map. This ¢ is called the projection or geometric projection or
morphism, from M into M’. (¢(M) is not necessarily an open set
but contains a non-empty open set of M’.) The projection ¢ is
denoted by proj.a or proj,s or proj. Now, in the general case,
M"=J(M, M’) dominates both M and M’. The correspondence T
between M and M’ is defined to be (proja’,u’) (Proju’,ar)~'. This
T is denoted by Tpropm’. Taon’ gives in general a many to many
correspondence of spots in M and M’. Even if F is a closed set
of M, Ty, (F) is not necessarily a closed set of M’; what we
know in general is that if C is a constructive set of M, i.e., if
C is the union of a finite number of subsets of M of the form
(closed set—closed set), then T,,,,/(C) is also a constructive set of
M’ (cf. Chevalley [1] or Nagata-Nakai [3]).

We say that a model M of a function field L is complete with
respect to a spot P, if, for a given function field K containing L
and P, the following is true:

Every place of K dominating P has a center on M.

This property is obviously independent of the choice of K.

We say that a model M is complete with respect to a set M’ of
spots if M is complete with respect to every spots of M’.

We say that a model M is complete over a model M’ if M
dominates M’ and if M is complete with respect to M’. (Note
that if a model M dominates a model M’, then M’ is complete
with respect to M.)

Let M be a model of a function field L. The set of places
of L which have centers in M is called the Zariski-Riemann space®

2) The name of Riemann is added because Zariski [5] called this space “Riemann
manifold” in the case of a projective variety, though this is not a Riemann manifold
in the usual sense in differential geometry. The writer believes that the motivation
of Zariski for the terminology came from the case of a curve. Any way, the notion
has nearly nothing to do with Riemann, hence the name “Zariski space” is seemingly
preferable. But, unfortunately, the term ‘“Zariski space” has been usen in a different
meaning. Therefore we are proposing name “Zariski-Riemann space”,
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of M and is denoted by ZR(M). We introduce a topology, which
may be called Zariski topology, on ZR(M) defining the family of
subsets F of the following property to be a base of closed sets:
There exists a model M’ of L which is complete over M such
that F is the set of places which have centers in a certain closed
set of M.
Then we can prove easily that

Proposition 1.1. The Zariski-Riemann space ZR(M) is com-
pact.

The proof is just an adaption of that was given by Zariski
[5] (cf. Zariski-Samuel [6]).
The following fact is easily seen.

Proposition 1.2. If a model M is complete with respect to a
model M’ and if F is a closed set of M, then Ty, /(F) is a closed
set of M'.

In closing this section, we add one more definition.

We say that a model M is quasi-dominant over another model
M’ if the following is true:

Whenever a spot P in M corresponds to a spot P’ in M’, P
dominates P’. In other word, J(M, M’) is a subset of M.

2. Dilatation by an ideal.

When a non-zero ideal® a= {a(P)|P€ M} of a model M of a
function field L is given, let (fp;, -+, fpn) be a basis for the
P-component a(P) and let Mp be the projective model defined by
homogeneous coordinate (fp;, =+, fpn). Then

Proposition 2.1. M*=\/pc J(P, Mp) is a model of L which
is complete over M. M* is independent of the choice of the basis
fpis ot s fpn for each P.

This M* is called the dialatation of M defined by the ideal a.
The proof is straightforward and we omit it; cf. the case

3) An ideal of a model is a coherent sheaf of ideals in sheaf-theoretical sense.
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called monoidal transformation.
We note that the above definition can be adapted to the case
of fractional ideals. We note also that

Proposition 2.2. If M is a projective model and if a is defined
by a homogeneous ideal o* of a homogeneous coordinate ring of M,
then the dilatation M* defined by a is again projective.

In fact, we can choose M, independently of P (taking a basis
for the module of homogeneous elements of a* of a sufficiently
high degree).

We say that an ideal a of a model M is primary (or prime)
if the closed set F={P|a(P)==P} defined by a is irreducible and
if a(P) is primary (or prime, respectively) for every P in F.

We say that a model M is quasi-projective if M is an open
set of a projective model.

By these definitions, we have

Corollary 2.3. If a is a primary ideal of a model M and if
M’ is the dilatation of M defined by a, then for every quasi-
projective open subset M* of M, Ty (M*) is quasi-projective.

We note also that if ap is a primary ideal of a spot P of a
model M, then there is a uniquely determined primary ideal a of
M whose P-component is ap. In this case, the dilatation defined
by a is called the dilatation defined by ap.

In closing this section, we observe a kind of dilatation which
separates two closed sets in rough speaking.

If F is a closed set of a model M, then there is an ideal a
of M such that F is the closed set defined by a. (a is unique
with an additional condition that a(P) is semi-prime for every
PeF: in this case a is called the semi-prime ideal for F.)

Now, assume that F and F’ are closed subsets of a model M
and that they have no common component. Let a(F) and a(F”)
be ideals of M which define F and F’ respectively. Set a=a(F')
+a(F’). Then

Proposition 2.4. [In the dilatation M* of M defined by q,
so-called proper transforms of F and F’ have no common spots.
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Namely, if P and P’ are generating spots of irreducible components
of F and F’ respectively, then the loci M*(P) and M*(P’) do not
meet each other.

The proof is easy.

3. Auxiliary results.

Lemma 3.1. Let M and M’ be models of the same function
field L and let v be an arbitrary place in ZR(J(M, M’)). Then
there is a model M*=M%¥ (depending on v) of L such that (1) M*
is complete over M, (2) MN\M’'ZM*, (3) for every quasi-projective
open subset U of M, Ty,u~(U) is quasi-projective and (4) if P*
and P’ are the centers of v on M* and M’ respectively, then P*
dominates P’.

Proof. We shall prove the assertion by induction on the rank
of v. Let P be the center of v on M. If P dominates P’, then
M*=M is the required model. Therefore we assume that P does
not dominate P’. Hence, in particular, P¢ M/\M’. Let R, be the
valuation ring of » and let p be the prime ideal of R, which is
next to the maximal ideal. We may assume that the center @
of (R,,)p in M dominates the center @’ of (R,,)p in M’, by virtue
of our induction assumption. Let A’ be an affine open set of M’
which contains P’ and let x1, ---, x; be a set of generators of the
affine ring of A’. Then x; €@’ <<Q for every 7, whence there is
an element f of P which is not in p/\P such that fxi, -, fx,
are in P. Now consider the ideal ap=fR,/\P of P. This is a
primary ideal belonging to the maximal ideal, because b in next
to the maximal. Let M* be the dilatation of M defined by ap, then
M* is obviously the required model.

Theorem 3.2. Let M and M’ be models of the same function
field L. Then there is a model M* of L such that (1) M* is com-
plete over M, (2) M\M'M*, (3) for every quasi-projective open
subset U of M, Tp,u<(U) is quasi-projective and (4) M* is quasi-
dominant over M’.
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Proof. For each ve ZR(J(M, M’)), we take M} given by
Lemma 3.1. Then, by the compactness of ZR(J(M, M’)) (Pro-
position 1.1), we see that there are a finite number of M¥, say
M¥, -, M¥, such that for each ve ZR(J(M, M’)) there is one i
such that the center of v in M} dominates the center of v in
M’. Then the join of all MY, .-, M¥

¥ is obviously the required
model.

Theorem 3.3. Let M be a model of a function field L and
let M’ be the projective model defined by homogeneous coordinates
(%o, +++, %,). For each Pe M, let a(P) be the ideal of P generated
by all elements of the form ax,, -, ax, such that ax,, -+, ax, age
simultaneously in P. Then the dilatation M* of M defined by the
ideal {a(P)} of M dominates M’. A spot P€ M does not dominate
any spot in M’ if and only if P is in the closed set F defined by
the ideal {a(P)}.

Proof. P& M dominates a spot in M’ if and only if there is
one ¢ such that x,x7', .-, x,x7' are in P, which is equivalent to
that 1€ a(P). This proves the last assertion. Let P* be an arbi-
trary spot in M* and let P be the spot of M dominated by P*.
Let a(P*) be such as a(P) applied to the spot P* and to the pro-
jective model M’. Let y,, -, ,, be such that a(P)= >, 3P and
;97" € P* for every i. If yea(P), then there are «,, --,a, such
that (i) all @;x; are in P and (ii) y= > a@x:2;; (z;; € P). All a;x;
are in a(P), whence all @;x;y7" are in a(P*), which implies that
yyitis in a(P*). In particular, 1=y,y7'€ a(P*), which shows that
P* dominates a spot in M’. This completes the proof.

4. Proof of the main theorem.

Lemma 4.1. Let M be a model of a function field L and let
v be a place of L. Then there exists a model M’ which contains
M as an open set and such that v has a center on M’.

Proof. We shall prove the assertion by induction on the rank
of v. If v has a center on M, then we may set M’'=M. There-
fore we assume that » has no center on M. Let R, be the valua-
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tion ring of v and let p be the prime ideal of R, which is next
to the maximal ideal. By virtue of the induction, we may assume
that the place w defined by (R,)p has a center @ on M. Let M*
be a projective model carrying @ and let P* be the center of v
on M*. By virtue of Theorem 3.2, we may assume that M* is
quasi-dominant over M. Let N* be the set of spots in M* which
dominates properly some spots in M, i.e., N*=J(M, M*)
—(MN\M¥*). If P* is not in the closure N* of N*, then we may
set M’'=M\J(M*—N¥*). So, we consider the case where P*¢e N*,
Since Q@ ¢ N* and since p is next to the maximal, we see that
there is an element f of P* such that (i) f¢p and (ii) f is in the
ideal which defines N* locally at P*. If we replace M* by the
dilatation of M* defined by the primary ideal fR,/\P*, then we
have the situation P* ¢ N* (note that since fR,\P* is primary
to the maximal ideal, new N* coincides with the previous N¥*).
Thus our lemma is proved.

Lemma 4.2. Let M, and M, be models of the same function
field L. Set M=M,N\M,. If M,—M is contained in a projective
model M*, then there is a model M, which contains M such that
ZR(M,)=ZR(M,))\ /ZR(M,).

Proof. To begin with, we may assume that M, is quasi-
dominant over M, by virtue of Theorem 3.2. Set F=M—(M*N\M)
and F*=M*—(M*\M,. F* is a closed set, M,=M\ J(M*— F*)
and F= Ty, u(F*). Let F, be the closure of F in M,. Let H be
the set of spots in M, which do not correspond to any spot in
M,. Set G= Ty p,(M,—M).

We want to show that H\/F= Ty, a,(F™).

Obviously, F Ty, (F*). If P€ H, then, since M*—F*
< M,, we see that P€ Ty, p,(F*). Conversely, assume that Pe M,
—(H\JF) and let P, and P* be corresponding spots to P in M,
and M* respectively (P, exists because P¢ H). By assumption,
P, is dominated by P. Therefore we see that P, corresponds to
P*. Assume for a moment that P* is in F*. If P, is in M,
then P, € F, whence P=P,€ F, which is a contradiction. Thus
P ¢ M, whence P,e M*—F*. Since the spots P, and P* are in
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M* and since they correspond to each other, we see that P,=P¥*,
whence F* > P*=P, ¢ F*, which is a contradiction. Therefore P*
cannot be in F*, and we have proved the equality F\JH
= TM*-»MZ(F *)

Since F* is closed and since M* is complete, we see that
F\JH is closed. Thus we have

(%) F,—FZH.

This (x) being shown, we shall change the situation. Blowing
up M* and M, simultaneously, we can have the situation that M,
is quasi-dominant over M, by Theorem 3.2. H and F are not
affected obviously. By enough blowing up within the closure of
Twr,>m(G), G can be maintained, hence the property that
M=M,N\M, is maintained. By the invariance of F and H,(x) is
obviously valid. We may assume also that M* is quasi-dominant
over M,.

If a is an ideal of M, whose closed set is contained in H,
then we may replace M, by its dilatation defined by a. (One
should apply Theorem 3.2 to M* in order to preserve quasi-
domination.) Therefore by Proposition 2.4, we may assume that
F, does not meet the closure G of G.

Let {a(P)} be the ideal of M, as is given by Theorem 3.3
with respect to the projective model M*. Then there is an ideal
b= {b(P)} of M, such that (1) the closed set defined by b is con-
tained in H and (2) b(P)=a(P) if Pe H—(HN\F,)—(HNG). We
blow up M, by b and we get the dilatation M¥. Theorem 3.3
shows that M¥/N\J(M¥, M*) contains M¥F — Ty, (F\JG). Let us
denote by F¥ and G* the sets Ty, (F,) and Ty, *(G) respec-
tively. Now we want to claim that

M, = M\JJM$—F¥, M*\J(M§—G*)

is the required model.

In order to prove this, it is sufficient to show that every v
in ZR(M)\ /ZR(M,) has one and only one center on M,. Let P,
P*, P, and P, be the centers of v on M,, J(M¥—F¥, M*), M¥—G*
and M, respectively if exist.
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(1) When P, exists: P, is either in M or in M,—M. If
P, e M, then we have P, € M¥—G* and therefore P,=P,. Since
P, ¢ F, we see similarly that P,=P* if P* exists. Assume now
that P,¢ M. If P* exists, then P,=P* because of the facts that
M* is quasi-dominant over M, and that P, exists, hence P,=P%*.
P, does not exist in this case by the assumption that M=M,N\M,
(whence M,—G—H=M).

(2) Now we assume that P, does not exist. Then P, exists
and is in G\/H. Since F¥/\G* is empty, at least one of P* and
P, exists. Thus it is sufficient to show that P*=P, if both P*
and P, exist. Really, in this case, P,€ M,—(F,\/G), whence P,
dominates a spot in M*, which shows that P,€ J(M¥, M*).
Therefore P,=P*, and the proof is completed.

Now we shall prove the main theorem.

Theorem 4.3. For any given model M, there is a complete
model which contains M as an open subset.

Proof. Let M* be a projective model of the function field L
of M and consider ZR(M*). For each ve ZR(M*), there is a model
M, which contains M and such that » has a center P, on M,.
We choose such an M, so that M,— M is contained in an affine
model. (In fact, take an affine model A such that P,e¢ AT M, and
replace M, by M\ /A.) Then by the compactness of ZR(M*), we
see that there are a finite number of models M,, ---, M, such that
1) M M; for every i, (2) M;—M is contained in a projective
model for every 7 which is less than »# and (3) \J; ZR(M,) = ZR(M¥*).
We prove the theorem by induction on the number n. If n=1,
then we have nothing to prove any more. Assume that »n >1.
We apply Lemma 4.2 to M,_, and M, and we see that there is a
model M, such that M}, DM, N\M,OM and ZR(M}¥.,)
=ZRM,_)\JZR(M,). Therefore we complete the proof by our
induction assumption.

Northwestern University and Kyoto University
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