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1. Introduction.

Given a standard 1-dimensional Brownian motion with sample
paths ¢ —e(t) (e(0)=0), let P,,(B) be the chance that the solution
r:t—(u, v)€ER’ of

la. Dlu]=ii+c(w)u+c,(u) = é

1b. v=u
2a. u(0) =a
2b. v(0)=1b

experiences the event B, interpreting la as v+gt[c,(u)v+c2(u)]ds=
0

b+e. [z, P.] is a (singular) diffusion in the plane winding clock-
wise about the origin, governed by

p _1ap, ,0p ap

£ =—"_Frp L [cla)d =

o " 2ap Vg Lo@bTelaly;
it should be viewed as the response of the resonator D to the white
noise é.

J. Potter [5] found that for a spring (uc,=>0) with no damping
(¢,==0), the energy e=(1/2)vz+g ¢, is a martingale and used this
0

fact to obtain the bounds
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c.t]igt < max e(s)<c,tlgt (1 )
¢, >0, c,>1, lgt=Ig(gt).
Potter also proved that the sample path hits each disc i.0. (£ 1 o)
oo u -1/2
ifg (1+S 02> du< oo .
0 0
M. Kac [4] studied the damped spring D[u] =iéi+c o +cu
(0<c,, ¢, =constant) : in that case [, P.] is Gaussian having a
stable distribution p(da x db) of total mass+1, and letting E denote
the integral (expectation) based on P=S p(daxdb)P,, and t, the

time between roots of #=0, the total angle 0=0(f) swept out
between times 1 and #>>1 is found to be about 27¢/E(t) (£ 1 o).
S. O. Rice [6] had evaluated E(t,) and now Kac finds a minimum
principle for E(13) similar to Thompson’s principle for Newtonian
electrostatic capacities ; the actual distribution of t, is still unknown.

The purpose of the present note is to give a complete descrip-
tion of the winding of the phase path about the origin in the
simplest case (¢,=c,=0); the joint distribution of the 1/2 winding
time t,=min (¢: ¢ >0, #(#)=0) and the hitting place b,=|o(t,)| is
evaluated for paths starting on the line ¢=0, and the following
strong laws for the speed of winding are established :

P,,,,[ligq (lgt)y'o@t) = —/3/8] =1

P,,[lim (g 1/1)70(5) = +/3/8] = L.

2. Winding times and hitting places (c,=¢,=0).

Before it is possible to talk about winding about =0, it must
be proved that the sample path does not hit =0 at positive times.

D[u]=i implies v=b+(teds, so ¢ is Gaussian and it is a
0
simple matter to evaluate the probabilities
1. P,,[u(t) € dE, o(t) € dn]= p(t, a, b, & n)dEdy

g e [ E—a—btY | E—a—bO(n—b) _ (n—b)
~ (/3 exp | o e - Jezar
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of coming from £(0)=(a, b) into déxdn in time ¢ and to check the
that the Green function

2. Gla, b= S b, a, b, 0, 0)dt

("VE (@bt (atbth B,
So 2 TP\ e pl6 t/z)

has the following properties :

3a. G< o a+bv >0
3b. lim G = oo.

a?+5240

G(u, v, 0, 0) is now a continuous supermartingale, its sample paths
are bounded on bounded time intervals if 1(0)==0, and the result
follows from the fact that P,,(x(#)=0)=0 at each positive time.

Given a sample path g starting at r(0) = (a, b)==0, the 1/2
winding time t,=(: t >0, u()=0) statisfies P,,(0<t,< o0)=1.

P, (0<"t)=1 is immediate.

t,=co implies that  moves in a 1/2 plane for all positive

t
times, or, what is the same, that g eds is bounded above or below
0

for all positive times. But such Brownian (tail) events have prob-
abilities 0 or 1 and so the obvious bound

P,,(t,= o) < lim lim P S'eds< d) = 1/2

dt oo theo

implies the desired P,,(t,< o0)=1.

Consider now the 1/2 winding time t, and the corresponding
hitting place H,=|v(t,)| >0 for sample paths y starting on the line
a=0 (v(0)=b=0). Because the Brownian scaling ¢— ce(t/c*) (c_>0)
takes ¢ into a new standard Brownian motion, the 1/2 winding

time t,=min(f : <t>0, bt+gteds=0> is identical in law to

min ((t: t >0, bt+§:ce(s/cz)ds = 0)

't/
0

min ((t 11 >0, czbt/cz+c3‘ cze(s)ds =0)

¢ min <(z‘ 1t >0, ¢+ ¢ S:eds = O)

— ¥ min ((t:t>o, :l:l—l—S:eds - o) c=|b],
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ie., t, is identical in law to b* X the 1/2 winding time for paths
starting at (0, 1), and the same trick applied to v=0-+e verifies
that the hitting place 9, for paths starting at (0, b) is identical in
law to b X the hitting place for paths starting at (0, 1), indeed, since
the motion starts afresh at its passage time to the line a=0, it
follows that the series of 1/2 winding times and hitting places

da. t,=min(t:¢t >1t,.,, u(t) = 0)—t, n>1,
t,=min(#: ¢ >0, u(t) = 0)
4b. b, = |o(t,)| n>1
for paths starting at 1(0)=(a, b)==0 is identical in law to the series
5a. c%,, c(t,+ht,), (b + hit,+(hh,)'ty), etc.
5b. c¢h,, chh,, chih,h,, etc.,
in which c=|v(t,)| and the pairs (¢,, &), (£, h,), etc. are indepen-
dent with common distribution Py, (t,< ¢, §,<h).
3. Computing the joint distribution P,(t,<t,9,< h).

Because 1 winds clockwise about the origin and begins afresh
at the 1/2 winding time t,, the Gauss function p of 2.1° satisfies

1. p(t,0,1,0 0
=Swmﬂﬁ@d&medwﬂhwmh—me)

t>0, >0,
and, using the Laplace transform
2. (et 0,40, bt

= a constant depending on & alone

y K _(v/8a(d’ + ab+b?))
vVa+ab+ b
a,a b>0,°

1 becomes

2 y.m means formula m of section z.
3 [1(2) : 146(29)]. K_, is the usual modified Bessel function.
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a9, K-(V8a(l+5+0%)
) V1+b+¥
K (/8@ = ab+ b))
V& —ab+b

- rEm(e“"l, b, € da)

a™>0, b>0.*
3a is now multiplied by K,(~/8x b) (|v|< 1) and integrated (db)

over [0, +o0): the result is

KN (g o - 5
5 ods (e 15} [[Buten b edak(vea afa  |y1>1,

and now using the Lebedev transform pair®
ta. fo) = raoK,@%
4b. f(a) = S” Fo)Kif@)do  do= 2wy sinh wydy,

3b is solved to obtain

5. En(e*, b, €da)

_("Ki(v/8a)Kiy(\/8ax a)
‘So S cosh (ey/3) 204

which in turn can be inverted as a Laplace transform to obtain
the joint distribution of t, and 9, :

6. P,(t € dt, b, € da)

=}_ —savaryy (T Kin(4alt) dodtd
2 ° ) 2 cosh (wy/3) 24 4*

a -
3a e‘2/t(1—a+az)84 1te ™ 0.7

e T VT,
6 can be integrated to obtain
3
7. P,(b,€dh) =~ ——
@ ) 27 1+ W

Ey is the integral (expectation) based on Py,.

[1(2) : 377(34)].

[1(2) : 173].

[1(1) : 285(64)] justifies line 2, while line 3 follows from the classical formula
Kiy(a)= So exp (—a cosh t) cos rt dt.

N o oo s
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and
_ 3 ("
8a. Eu(lgh) = - tgh
27 Jo

8b. E,[(lgt)]<oo.

8 is needed below. I could not perform the integrals needed to
find P,(t, €dt).

4
V'3

hS/Z dh _
+ 3

1+4

4. Speed of winding.

Given &*+b* >0 and using 2.5b, 3. 8a, the strong law of large
numbers, and the fact that y starts afresh each time it hits the
line a=0, one finds

1. P, [limn'lgh, =4z/\/3]=1.
n4 oo

Recall the series 2.5a and the bound 3.8b. Because #,, ¢,, etc.
are independent with common distribution P, (t,<¢), it follows
from the Borel-Cantelli lemma that |/g¢,|[<nd as nt o (6>0),
and this bound applied to 2.5a implies that as # 1 o, n'igt,
behaves like n~'lg h2h: -+ K. _,, whence

2. Pa,,[li*rp ntigt,=8x/\/3]=1.

2 in turn implies that if §=6(¢) is the total algebraic angle swept
out up to time ¢, then

3. PollimUgt)o(t) = —v3/8] =1

since t,.,<t<(t, is the same as —(r—1)7>0-—6(t,) > —n= and
Igt,~8xn/\/3 as n? .

5. Winding for paths beginning at ;=0.

Given a sample path beginning at g(0)=0, it follows from
3.6, the scaling established in 2, and the starting afresh of x at
passage times that the forward chain :

1 tf =min(t: ¢t >1, u(t) = 0), b = |o(t)|
F=min(: ¢t >tf, u@) =0), b = |v(t3)]
elc.
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of 1/2 winding times and hitting places is Markovian with transi-
tion probabilities
2. Pt €dt, by €dh|B;.,)

=p*(ti_,, b, dtxdh)

ﬁfj‘? G X (208~ L) (i)
7Ty, T bn—1

any ) (E—ti 03012
——dbdtdh t >t
“ So \/719 ( = 1)

=0 (t < t':—l) ’
where B, _,=the field of ti, by, -+, ti,, by
Consider now the backward chain :

3. vt =max@: t<1, ult) =0), by = |o(t)|
t; = max ((¢: t<t7, u(®) =0), by = |ov(iz)|
etc.

of 1/2 winding times and hitting places as the path spirals back
toward the origin as #| 0. Both t; and 9, are positive and |0

t
as n oo as is evident from the fact that S eds experiences an

0
infinite number of changes of sign as ¢ |0, and taking advantage
of the scaling properties of winding times and hitting places, a
little computation reveals that the backward chain is Markovian

with transition probabilities :
4. Py(t; €dt, b, €dh|B;.)
=p (., biy, dEtXdh)
_ p(dtxdm)p*(t, h, dt,_,xdb5_,)
pat, < db; )
where B,_,=the field of 11, b1, -+, t,_,, bh_,, and p(dt x dh) stands
for the (infinite) stable mass distribution

5. pldtxdh) = exp (—2Kr /)t *dt hdh

for the forward chain. 4 states that the backward chain has the
same transition probabilities as the dual [t_,,0_,:n=--, =10,
etc.] of the two-sided forward chain [t,,, 0 ,:n=-, —1,0, etc.]
with stable distribution p(dt = dh), i.e., with (infinite) shift-invariant
distvibution

3
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6’ Q[tmedtm) BmEdhmy "‘,fnedt,,,f)nédhn]
= p(@t, X Al Dty By Bt pis X Alyery)
o p (s By, dt, < dR)

n,m= -, —1,0, etc., n<'m
(see G. Hunt [2] or [3] for such dual chains).
But now

7a. Q[b,,€dh,, -, b,€dh,]
= ("asznan, po, 0. ah,.) - P, 6,€dn)
and

. 3 (ab)*db.
™. P,,(5,€db)=p*(a, db) = = = av
® )=p"a db) 27 a*+ b a

so that the (Markovian) dual chain of hitting places [b_,: n=
-+, —1, 0, etc., @] has as its transition probabilities

P
8. p (b da) = éLflﬁb %(’g”*db-)
_ 3 (ba)"bda
27 i+ b @
_ 3 (ab)j3/2 da?

oratib? b
= pH(b, da),

t.e., the dual hitting chain has the same transition probabilities as
the reciprocal 97" :n=---, —1,0, etc., Q] of the original (Markovian)
forward chain of hits, and it follows that

9. Poo[rriin ntigh; = —4=/\/3]=1.

As to the 1/2 winding times [t,:n=--, —1, 0, efc., @], it is
immediate that the pairs #,=(t,—1t,.,)/b%, and h,=Y,/h,., (n=
-+, —1, 0, efc.) are independent with common distribution 3.6, so
with the aid of the expression t,= Zlbf,,,,ltm (n<C0), the bound

n < »

|lgt,|< md (nt o) leads at once to the strong law
10. P [limnigt; = —87//3] =1
n4oco

for the backward chain of 1/2 winding times and to the strong law
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1L P,[lim (lg1/0)70(0)=+v/3 /8] = 1

for the total angle ¢ swept out between times 1 and #<1.

Massachusetts Institute of Technology
August, 1962
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Note added in proof: K. It6 (private communication) showed me the following
rapid proof of the strong laws 4.3 and 5.11. Because c¢~'/2%(ct) (#2>0) is a standard
Brownian motion if ¢>>0, the law of the pair

pF=[u*, v¥]: w*(H)=t"%? S:e(S)ds, vR(E) =t"1%(t)

is unchanged by the substitution f—cf, so the angle §*=0*(¢) swept out by £* be-
tween times 1 and ¢ is identical in law to 0*(ct)—6*(c). But this means that the law
of the functional d6*(e!)/dt(p)=—[6*(e!)dyp is unchanged by an additive shift of the
time scale, and it follows by the strong law of large numbers that

lim ¢~16*(et) =1im (Igt) ~16*(¢) =constant ,

troo oo

using the fact that Brownian tail events are trivial. Also, |6*—@|<z/2 so that
(Igt)~0(¢) tends to the same constant as 1 co. A similar proof leads to 5.11.



