A condition for the extension of a complex line bundle for a family of Kähler surfaces

By
Shigeo Nakano

(Received Jan. 12, 1963)

It is well known that the surfaces of degree 3 in a projective 3 -space contain straight lines, while some of the surfaces of degree 4 do, and some do not, contain straight lines. In view of this fact, we are led to the following question: Let a differentiable family $C V \rightarrow M$ of compact complex analytic manifolds and an analytic submanifold W of V_{0} be given. (V_{t} denotes the member of \checkmark corresponding to $t \in M$.) Then under what condition does there exist a submanifold \mathscr{W} of V, which forms a family of complex manifolds $\left\{W_{t} \mid t \in M\right\}, W_{t}$ being a submanifold of V_{t} and $W_{0}=W$?

In the case where W is of co-dimension 1 in V_{0}, the problem is divided into two parts : extension of the line bundle [W] defined over V_{0} to a family of bundles over $C V$, and the extension of the cross section of $[W]$ defining the divisor W to a family of cross sections.

As for the first part, Kodaira and Spencer gave a condition in [3], §13. We shall give here another condition, which may be called the differentiated form of theirs.

§ 1. π operation of Fröhlicher and Nijenhuis

In [1] and [2], Fröhlicher and Nijenhuis defined a kind of multiplication between a scalar differential form and a vector differential form, and studied its properties.

Let X be a differentiable manifold and ω, L be scalar and vector differential forms of degrees q and l respectively, then $\omega \pi L$ is a scalar form of degree $(q+l-1)$ defined by

$$
\begin{align*}
& \omega \pi L\left(u_{1}, \cdots, q_{q+l-1}\right) \tag{1.1}\\
& =\frac{1}{(q-1)!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \omega\left(L\left(u_{\sigma(1)}, \cdots, u_{\sigma(t)}\right), u_{\sigma(l+1)}, \cdots, u_{\sigma(q+l-1)}\right),
\end{align*}
$$

where u_{1}, \cdots, u_{q+l-1} are variable tangent vectors to X at the point under consideration, and \sum ranges over all permutations σ on suffixes $1, \cdots, q+l-1$.

In the case where X has a complex analytic structure, the tangent vector bundle is the Whitney sum of holomorphic and anti-holomorphic tangent bundles, and a differential form decomposes into a sum of terms of various types. We consider a scalar form ω of type (r, s) with $r \geqq 1$, and a holomorphic vector form L of type $(0, l)^{1}$. Then $\omega \pi L$ is the scalar form of type $(r-1, s+l)$ given by

$$
\begin{align*}
\omega \pi & L\left(u_{1}, \cdots, u_{r-1}, \bar{v}_{1}, \cdots, \bar{v}_{s+l}\right) \tag{1.2}\\
= & \frac{1}{(r-1)!(s+l)!} \sum_{\substack{\sigma \in \mathbb{ভ}_{r-1} \\
\tau \in \mathbb{S}_{s+1}}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \\
& \times \omega\left(L\left(\bar{v}_{\tau(1)}, \cdots, \bar{v}_{\tau(l)}\right), u_{\sigma(1)}, \cdots, u_{\sigma(r-1)}, \bar{v}_{\tau(l+1)}, \cdots\right) .
\end{align*}
$$

(The meaning of Σ is clear.) For a holomorphic vector form M which has the expression $M=\left(M^{\alpha}\right)$, where

$$
M^{\omega}=\frac{1}{r!s!} \sum M_{\beta_{1} \cdots \beta_{r}, \bar{\gamma}_{1} \cdots \bar{\gamma}_{s}}^{\omega} d z^{\beta_{1}} \wedge \cdots \wedge d z^{\beta} r \wedge d \bar{z}^{\gamma_{1}} \wedge \cdots \wedge d \bar{z}^{\gamma_{s}}
$$

with respect to local parameters $\left(z^{1}, \cdots, z^{n}\right)$ and to the basis $\left(\frac{\partial}{\partial z^{\omega}}\right)$ of holomorphic tangent space and with $r \geqq 1$, we define

$$
\begin{align*}
S(M)= & \frac{1}{(r-1)!s!} \sum_{\alpha} M_{\omega \beta_{1} \cdots \beta_{r-1}, \bar{\gamma}_{1} \cdots \bar{\gamma}_{s}}^{\alpha} d z^{\beta_{1}} \wedge \cdots \wedge d z^{\beta_{r-1}} \wedge \tag{1.3}\\
& d \bar{z}^{\gamma_{1}} \wedge \cdots \wedge d \bar{z}^{\gamma_{s}}
\end{align*}
$$

$S(M)$ is a scalar form on X. In the case of (1.2), we easily verify

$$
\begin{equation*}
\omega \pi L=(-1)^{q+l+1} S(\omega \wedge L) \quad(q=r+s) \tag{1.4}
\end{equation*}
$$

(The meaning of $\omega \wedge L$ is clear.) It is also easy to see

[^0]\[

$$
\begin{equation*}
\bar{\partial} S(M)=S(\bar{\partial} M) \tag{1.5}
\end{equation*}
$$

\]

Hence we obtain

$$
\begin{equation*}
\bar{\partial}(\omega \pi L)=-\bar{\partial} \omega \pi L+(-1)^{q-1} \omega \pi \bar{\partial} L . \tag{1.6}
\end{equation*}
$$

This shows that (holomorphic) vector valued Dolbeault cohomology group of type $(0, l)$ operaties on scalar Dolbeault group of X. In other words there is a natural bilinear mapping

$$
H^{s}\left(X, \Omega^{r}\right) \times H^{l}(X, \Theta) \rightarrow H^{s+l}\left(X, \Omega^{r-1}\right) \quad(r \geqq 1)
$$

induced by π. (Here Ω^{r} denotes the sheaf of germs of holomorphic r-forms on X and Θ the sheaf of germs of holomorphic tangent vector fields on X.)

§ 2. Family of line bundles

Let $\mathscr{B} \rightarrow \vartheta \xrightarrow{\varpi} M$ be a differentiable family of complex line bundles over a family $C V$ of compact Kähler manifolds parametrized by M. (For the definition, see Kodaira-Spencer [3]. Generally we follow these authors in terminology and notation.)
Since we concern ourselves with structures sufficiently near a particular one, we can assume that M is covered by a single coordinate neighborhood and $C V$ is covered by coordinate neighborhoods $\left\{U_{j}\right\}$ such that $\varpi\left(\cup_{j}\right)=M$. In \cup_{j} we have local coordinates $\left(z_{j}^{1}, \cdots\right.$, $z_{j}^{n}, t^{1}, \cdots, t^{m}$), where (t) is a system of coordinates on M and $\left(z_{j}^{1}, \cdots, z_{j}^{n}\right)$ form, for each fixed (t), a system of complex analytic local coordinates on V_{t}, the complex structure corresponding to $(t) \in M$.

We can also assume that V_{V} is diffeomorphic to $V_{0} \times M$, where $V_{0}=\omega^{-1}(0)$. In terms of local coordinates, the diffeomorphism $\mathcal{V} \cong V_{0} \times M$ can be expressed as

$$
\left\{\begin{array}{l}
z_{j}^{\infty}=f_{j}^{\alpha}\left(\zeta_{j}, t\right) \tag{2.1}\\
t^{\lambda}=t^{\lambda}
\end{array} \quad(\alpha=1, \cdots, n ; \lambda=1, \cdots, m)\right.
$$

where $\left(\zeta_{j}\right)$ denotes a system of local coordinates on V_{0}, and f_{j}^{a} is C^{∞} in ζ and t. We can assume $f_{j}^{\infty}\left(\zeta_{j}, 0\right)=\zeta_{j}^{\infty}$. The equations (2.1) can be solved as

$$
\left\{\begin{array}{l}
\zeta_{j}^{a}=g_{j}^{a}\left(z_{j}, t\right) \\
1 t^{\lambda}=t^{\lambda} . \tag{2.2}
\end{array}\right.
$$

Replacing M by a smaller neighborhood of (0) if necessary, we can assume $\operatorname{det}\left(\partial f_{j}^{\alpha} / \partial \zeta_{j}^{\beta}\right) \neq 0$ and $\operatorname{define} \mathcal{P}_{j_{\beta}}^{\gamma}$ by

$$
\frac{\partial f_{j}^{\alpha}}{\partial \bar{\zeta}_{j}^{\beta}}=\sum_{\gamma} \frac{\partial f_{j}^{\alpha}}{\partial \zeta_{j}^{\gamma}} \mathcal{P}_{j \beta}^{\gamma}(\zeta, t) .
$$

Then $\mathcal{P}=\left\{\mathcal{P}_{j}\right\}$, with $\mathcal{P}_{j}={ }^{t}\left(\mathscr{P}_{j}^{1}, \cdots, \mathscr{P}_{j}^{n}\right)$ and $\mathcal{P}_{j}^{\gamma}=\sum \mathcal{P}_{j \beta}^{\gamma}{ }^{\gamma} \bar{\zeta}_{j}^{\beta}$, is a $\Theta_{0}-$ valued differential form of type $(0,1)$, which satisfies the relation

$$
\bar{\partial}_{0} \mathcal{P}=[\mathcal{P}, \mathscr{P}]
$$

and which characterizes the family $C V$ of complex structures. ($\bar{\partial}_{t}$ denotes the exterior differentiation with respect to anti-holomorphic coordinate in the structure V_{t}).

$$
\begin{equation*}
\eta_{\lambda}=\left(\frac{\partial \mathcal{P}}{\partial t^{\lambda}}\right)_{t=0} \tag{2.3}
\end{equation*}
$$

determines an element of $H^{1}\left(V_{0}, \Theta_{0}\right)$, which is nothing else than $\rho_{0}\left(\frac{\partial}{\partial t^{\lambda}}\right)$ (Kodaira-Spencer [4]).

Now we shall consider the Chern classes of the bundles B_{t}. As cohomology classes $\in H^{2}(X, \boldsymbol{Z})(X=$ the underlying differentiable manifold of V_{t}), these Chern classes are all the same. Hence its image in $H^{2}(X, \boldsymbol{C})$ is represented by a differential form

$$
\begin{equation*}
\Phi(\zeta)=\sqrt{-1} \sum_{\alpha, \beta} \Phi_{\alpha \bar{\beta}}(\zeta) d \zeta^{\alpha} \wedge d \bar{\zeta}^{\beta} \tag{2.4}
\end{equation*}
$$

which is real, closed and of type $(1,1)$ with respect to the structure V_{0}, and has periods which are integers.

Since we concern ourselves with a family of Kähler manifolds, we may assume that we have a family of Kähler metrics on $\left\{V_{t}\right\}$, depending differentiably on t. Denote by $\pi_{t}^{(r, s)}$ and H_{t} the operators of projection of differential forms to the part of type (r, s) and to the harmonic part in the Kähler structure of V_{t}. Then the condition that Φ represents the Chern class of B_{t} implies that

$$
\begin{equation*}
H_{t} \pi_{t}^{(2,0)} \Phi=0 \quad \text { for } \quad t \in M \tag{2.5}
\end{equation*}
$$

Proposition 1. Notations being as above, we have

$$
\begin{equation*}
H_{s}\left\{\left(H_{s} \pi_{s}^{(1,1)} \Phi\right) \pi \eta\right\}=0 \tag{2.6}
\end{equation*}
$$

for any $s \in M$ and for those Θ_{s}-valued $\bar{\partial}_{s}$-closed differential forms η which determine cohomology classes in $\rho_{s}\left(T_{M}\right)$.

Proof. We consider the case $s=0$. We can take Φ to be harmonic and we have

$$
\Phi=\sqrt{-1} \sum \Phi_{\alpha \bar{\beta}}(\zeta) d \zeta^{\alpha} \wedge d \xi^{\beta}=\sqrt{-1} \sum \Phi_{\alpha \bar{\beta}}(g(z, t)) d g^{\alpha} \wedge d \bar{g}^{\beta} .
$$

Hence

$$
\pi_{t}^{(0,2)} \Phi=\sqrt{-1} \sum \Phi_{\alpha \bar{\beta}}(g(z, t)) \frac{\partial g^{\alpha}}{\partial \bar{z}^{\rho}} \frac{\partial \bar{g}^{\beta}}{\partial \bar{z}^{\sigma}} d \bar{z}^{\rho} \wedge d \bar{z}^{\sigma}
$$

and

$$
\begin{equation*}
H_{t}\left\{\sqrt{-1} \sum \Phi_{\alpha \bar{\beta}}(g(z, t)) \frac{\partial g^{\alpha}}{\partial \bar{z}^{\rho}} \frac{\partial \bar{g}^{\beta}}{\partial \bar{z}^{\sigma}} d \bar{z}^{\rho} \wedge d \bar{z}^{\sigma}\right\}=0 \tag{2.7}
\end{equation*}
$$

Since $z^{\alpha}=f^{a}(g(z, t), t)$, we have

$$
0=\sum \frac{\partial f^{\alpha}}{\partial \zeta^{\gamma}} \frac{\partial g^{\gamma}}{\partial \bar{z}^{\beta}}+\sum \frac{\partial f^{\alpha}}{\partial \bar{\zeta}^{\gamma}} \frac{\partial \bar{g}^{\gamma}}{\partial \bar{z}^{\beta}}=\sum \frac{\partial f^{\alpha}}{\partial \zeta^{\gamma}}\left(\frac{\partial g^{\gamma}}{\partial \bar{z}^{\beta}}+\sum \mathcal{P}^{\gamma} \frac{\partial \bar{g}^{\delta}}{\partial \bar{z}^{\beta}}\right)=0,
$$

and

$$
\frac{\partial g^{\gamma}}{\partial \bar{z}^{\beta}}+\sum \mathcal{P}^{\gamma} \bar{z} \frac{\partial \bar{g}^{\delta}}{\partial \bar{z}^{\beta}}=0 .
$$

Putting this into the expression (2.7) and taking the value of its derivative at $(t)=(0)$ with respect to t^{λ}, we obtain

$$
H_{0}\left(\Phi \pi \eta_{\lambda}\right)=\left(\frac{\partial}{\partial t^{\lambda}} \pi_{t}^{(0,2)} \Phi\right)_{t=0}=0,
$$

where

$$
\eta_{\lambda}=\left(\frac{\partial \rho}{\partial t^{\lambda}}\right)_{t=0} .
$$

This argument holds good for general value of s. We have only to observe that $H_{s} \pi_{s}^{(1,1)} \Phi$ must be the harmonic form representing the Chern class of B_{s}.

§ 3. Sufficiency

Suppose we have a differentiable family $\mathcal{\sim} \xrightarrow{\tau} M$ of compact

Kähler surfaces, and suppose a complex line bundle B_{0} over $V_{0}=$ $\varpi^{-1}(0)$ is given. Let Φ be the harmonic form of type $(1,1)$, which represents (the image of) the Chern class of B_{0}. Our purpose is to prove

Proposition 2. Under the situations of this paragraph, and making use of previous notation, let the condition (2.6) hold for $s \in M$ near enough to 0 , and for η belonging to $\rho_{s}\left(T_{M}\right)$, then there exists an open neighborhood U of 0 on M such that B_{0} can be extended to a family of line bundles \mathscr{B} over $C V \mid U$.

For the proof, we first note that Prop. 13.2 of Kodaira-Spencer [3] can be applied to our case, since $\operatorname{dim} H^{2}\left(V_{t}, \Omega_{t}\right)$ is constant because V_{t} are Kähler. Therefore, we have only to prove $H_{s} \pi_{s}{ }^{(0,2)} \Phi=0$ for s near enough to 0 .

We take a differentiable family $\Psi^{(1)}(, t), \cdots, \Psi^{(p)}(, t)$ of bases of $H^{0}\left(V_{t}, \Omega_{t}^{2}\right)$. Such a family exists since $\operatorname{dim} H^{0}\left(V_{t}, \Omega_{t}^{2}\right)$ is independent of t. We set

$$
\begin{equation*}
u_{r}(t)=\int_{V_{t}} \Psi^{(r)}(z, t) \wedge \Phi(g(z, t)) \tag{3.1.}
\end{equation*}
$$

and try to prove $\quad u_{r}(t)=0 \quad(r=1, \cdots, p)$.
For the purpose we consider $\left(\partial u_{r} / \partial t^{\lambda}\right)_{t=s}$. Since we fix λ throughout, we omit λ. We write $\xi_{j}{ }^{\alpha}=f_{j}{ }^{\alpha}\left(\zeta_{i}, s\right)$. Then $\left(\xi_{j}{ }^{\alpha}\right)$ is a system of analytic local parameters on V_{s}. We have $\zeta_{j}{ }^{\beta}=g_{j}{ }^{\beta}\left(\xi_{j}, s\right)$. We put

$$
\begin{equation*}
h_{j}^{\alpha}\left(\xi_{j}, t ; s\right)=f_{j}^{\alpha}\left(g_{j}\left(\xi_{j}, s\right), t\right), \tag{3.2}
\end{equation*}
$$

then (ξ) and $(z)=(h(z, t ; s))$ are in the same relationship as (ζ) and (z) in $\S 2$. (Only V_{s} takes the place of V_{n}.)

Define $\psi^{\gamma}=\sum \psi^{\gamma}{ }_{\beta}(\xi, t ; s) d \xi^{\beta}$ by

$$
\begin{equation*}
\frac{\partial h^{\alpha}}{\partial \bar{\xi}^{\beta}}=\sum \frac{\partial h^{\alpha}}{\partial \xi^{\gamma}} \psi_{\beta}^{\gamma}(\xi, t ; s), \tag{3.3}
\end{equation*}
$$

then $\psi=\left(\psi^{\gamma}\right)$ has the same meaning as \mathcal{P} in $\S 2$, with respect to s. Thus $\psi(s)=0$ and $\left(\frac{\partial \psi}{\partial t}\right)_{t=s}$ is the $\bar{\partial}_{s}$-closed Θ_{s}-valued form which represents $\rho_{s}\left(\frac{\partial}{\partial t}\right)$. Omitting the suffix r for simplicity, we have

$$
\begin{aligned}
& u(t)=\int_{V_{s}} \Psi_{12}(h(\xi, t ; s), t) \sum_{\alpha, \beta}\left(\frac{\partial h^{1}}{\partial \xi^{\alpha}} d \xi^{\alpha}+\frac{\partial h^{1}}{\partial \bar{\xi}^{\alpha}} d \bar{\xi}^{\alpha}\right) \wedge\left(\frac{\partial h^{2}}{\partial \xi^{\beta}} d \xi^{\beta}+\frac{\partial h^{2}}{\partial \bar{\xi}^{\beta}} d \bar{\xi}^{\beta}\right) \wedge \\
& \wedge \sum_{\lambda, \mu, \rho, \sigma} \Phi_{\lambda \bar{\mu}}(g(\xi, s))\left(\frac{\partial g^{\lambda}}{\partial \xi^{\rho}} d \xi^{\rho}+\frac{\partial g^{\lambda}}{\partial \xi^{\rho}} d \xi^{\rho}\right) \wedge\left(\frac{\partial \bar{g}^{\mu}}{\partial \xi^{\sigma}} d \xi^{\sigma}+\frac{\partial \bar{g}^{\mu}}{\partial \xi^{\sigma}} d \bar{\xi}^{\sigma}\right) \\
& =\int_{V_{s}} \sum \Psi_{12} \Phi_{\lambda \bar{\mu}}\left|\begin{array}{llll}
\frac{\partial h^{1}}{\partial \xi^{1}} & \frac{\partial h^{1}}{\partial \xi^{2}} & \frac{\partial h^{1}}{\partial \bar{\xi}^{1}} & \frac{\partial h^{1}}{\partial \xi^{2}} \\
\frac{\partial h^{2}}{\partial \xi^{1}} & \frac{\partial h^{2}}{\partial \xi^{2}} & \frac{\partial h^{2}}{\partial \bar{\xi}^{1}} & \frac{\partial h^{2}}{\partial \xi^{2}} \\
\frac{\partial g^{\lambda}}{\partial \xi^{1}} & \frac{\partial g^{\lambda}}{\partial \xi^{2}} & \frac{\partial g^{\lambda}}{\partial \bar{\xi}^{1}} & \frac{\partial g^{\lambda}}{\partial \xi^{2}} \\
\frac{\partial \bar{g}^{\mu}}{\partial \xi^{1}} & \frac{\partial \bar{g}^{\mu}}{\partial \xi^{2}} & \frac{\partial \bar{g}^{\mu}}{\partial \bar{\xi}^{1}} & \frac{\partial \bar{g}^{\mu}}{\partial \xi^{2}}
\end{array}\right| d \xi^{1} \wedge d \xi^{2} \wedge d \bar{\xi}^{1} \wedge d \xi^{2} \\
& =\int_{V_{s}} \sum \Psi_{12} \cdot \Phi_{\lambda \bar{\mu}} \operatorname{det}\left(\frac{\partial h^{\alpha}}{\partial \xi^{\beta}}\right)\left\{\left(\frac{\partial g^{\lambda}}{\partial \bar{\xi}^{1}}-\sum_{\rho} \frac{\partial g^{\lambda}}{\partial \xi^{\rho}} \psi_{1}^{\rho}\right)\left(\frac{\partial \bar{g}^{\mu}}{\partial \xi^{2}}-\sum_{\sigma} \frac{\partial \bar{g}^{\mu}}{\partial \xi^{\sigma}} \psi_{\frac{\sigma}{\sigma}}\right)\right. \\
& \left.-\left(\frac{\partial g^{\lambda}}{\partial \xi^{2}}-\sum \frac{\partial g^{\lambda}}{\partial \xi^{\rho}} \psi_{2}^{\rho}\right)\left(\frac{\partial \bar{g}^{\mu}}{\partial \xi^{1}}-\sum_{\sigma} \frac{\partial \bar{g}^{\mu}}{\partial \xi^{\sigma}} \psi_{1}^{\sigma}\right)\right\} d \xi^{1} \wedge d \xi^{2} \wedge d \xi^{1} \wedge d \xi^{2} .
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
& \left(\frac{\partial u(t)}{\partial t}\right)_{t=s}=\int_{V_{s}}\left\{\frac{\partial \Psi_{12}(z, t)}{\partial t}+\sum \frac{\partial \Psi_{12}}{\partial z^{\rho}} \frac{\partial h^{\rho}}{\partial t}\right. \tag{3.4}\\
& \left.\quad+\Psi_{12} \frac{\partial}{\partial t}\left(\log \operatorname{det}\left(\frac{\partial h^{\alpha}}{\partial \xi^{\beta}}\right)\right)\right\}_{t=s} d \xi^{1} \wedge d \xi^{2} \wedge \pi_{s}^{(0,2)} \Phi \\
& \quad-\int_{V_{s}} \Phi \wedge\left(\pi_{s}^{(1,1)} \Phi \pi \eta\right) .
\end{align*}
$$

Now we have $\Phi=H_{s} \Phi+d X$ and $X=\Xi_{1}+\Xi$, where Ξ_{1} is of type (1,0) and Ξ of type (0,1). Hence

$$
\begin{aligned}
& \pi_{s}^{(2,0)} \Phi=H_{s} \pi_{s}^{(2,0)} \Phi+\partial_{s} \Xi_{1}, \\
& \pi_{s}^{(1,1)} \Phi=H_{s} \pi_{s}^{(1,1)} \Phi+\partial_{s} \Xi \bar{\partial}_{1} \Xi, \\
& \pi_{s}^{(0,2)} \Phi=H_{s} \pi_{s}^{(0,2)} \Phi+\bar{\partial}_{s} \Xi .
\end{aligned}
$$

As we easily verify, the relation

$$
\Psi \wedge(\Phi \pi \eta)=-(\Psi \pi \eta) \wedge \Phi
$$

holds. Hence we have

$$
\begin{aligned}
\int_{V_{s}} \Psi \wedge\left(\pi_{s}^{(1,1)} \Phi \pi \eta\right) & =\int_{V_{s}} \Psi \wedge\left(H_{s} \pi_{s}^{(1,1)} \Phi \pi \eta\right)-\int_{V_{s}}(\Psi \pi \eta) \wedge \partial_{s} \Xi \\
& =\int_{V_{s}} \partial_{s}(\Psi \pi \eta) \wedge \Xi,
\end{aligned}
$$

because of our assumption $\int_{V_{s}} \Psi \wedge\left(H_{s} \pi_{s}^{(1,1)} \Phi \pi \eta\right)=0$.
On the other hand, we have $\partial h^{\alpha} / \partial \xi^{\beta}=\delta_{\beta}^{\alpha}$ for $t=s$. Hence

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t} \log \operatorname{det}\left(\frac{\partial h^{\alpha}}{\partial \xi^{\beta}}\right)\right]_{t=s}=\left[\frac{\partial^{2} h^{1}}{\partial t \partial \xi^{1}}+\frac{\partial^{2} h^{2}}{\partial t \partial \xi^{2}}\right]_{t=s}} \\
& {\left[\frac{\partial \Psi_{12}}{\partial t}+\sum_{\rho} \frac{\partial \Psi_{12}}{\partial z^{\rho}} \frac{\partial h^{\rho}}{\partial t}+\Psi_{12} \frac{\partial}{\partial t}\left(\log \operatorname{det}\left(\frac{\partial h^{\alpha}}{\partial \xi^{\beta}}\right)\right)\right]_{t=s} d \xi^{1} \wedge d \xi^{2}} \\
& \quad=\left[\frac{\partial \Psi_{12}}{\partial t}+\sum_{\rho} \frac{\partial}{\partial \xi^{\rho}}\left(\Psi_{12} \frac{\partial h^{\rho}}{\partial t}\right)\right]_{t-s} d \xi^{1} \wedge d \xi^{2} .{ }^{2)}
\end{aligned}
$$

Now

$$
\begin{aligned}
\int_{V_{s}} & {\left[\frac{\partial \Psi_{12}}{\partial t}+\sum_{\rho} \frac{\partial}{\partial \xi^{\rho}}\left(\Psi_{12} \frac{\partial h^{\rho}}{\partial t}\right)\right]_{t=s} d \xi^{1} \wedge d \xi^{2} \wedge \bar{\partial}_{s} \Xi } \\
& =-\int_{V_{s}} \bar{\partial}_{s}\left\{\left[\frac{\partial \Psi_{12}}{\partial t}+\sum_{\rho} \frac{\partial}{\partial \xi^{\rho}}\left(\Psi_{12} \frac{\partial h^{\rho}}{d t}\right)\right]_{t=s} d \xi^{1} \wedge d \xi^{2}\right\} \wedge \Xi \\
& =\int_{V_{s}} \sum \frac{\partial}{\partial \xi^{\rho}}\left(\Psi_{12} \frac{\partial^{2} h^{\rho}}{\partial \xi^{\beta} \partial t}\right)_{t=s} d \xi^{1} \wedge d \xi^{2} \wedge d \xi^{\beta} \wedge \Xi
\end{aligned}
$$

Since $\left(\frac{\partial^{2} h^{\rho}}{\partial \xi^{\beta} \partial t}\right)_{t=s}=\eta^{\rho}{ }_{\bar{\beta}}$, this integral is equal to

$$
\int_{V_{s}} \partial_{s}(\Psi \pi \eta) \wedge \Xi
$$

Putting these into (3.4), and showing the suffx r explicitly, we obtain

$$
\frac{\partial u_{r}(s)}{\partial s}=\int_{V_{s}}\left[\frac{\partial \Psi_{12}^{(r)}}{\partial t}+\sum_{\rho} \frac{\partial}{\partial \xi^{\rho}}\left(\Psi^{(r)} \frac{\partial h^{\rho}}{\partial t}\right)\right]_{t-s} d \xi^{1} \wedge d \xi^{2} \wedge H_{s} \pi_{s}^{(r)} \Phi
$$

The harmonic part of $\left[\frac{\partial \Psi_{12}^{(r)}}{\partial t}+\sum_{\rho} \frac{\partial}{\partial \xi^{\rho}}\left(\Psi^{(r)} \frac{\partial h^{\rho}}{\partial t}\right)\right]_{t=s} d \xi^{1} \wedge d \xi^{2}$ is equal to $\sum_{q} a_{r q}(s) \Psi^{(q)}(, s)$, where $a_{r q}(s)$ are differentiable functions of s. Hence $\left\{u_{r}(s)\right\}$ satisfy the system of differential equations
2) This expression is a well defined differential form on V_{s}.

$$
\frac{\partial u_{r}(s)}{\partial s}=\sum_{q} a_{r q}(s) u_{q}(s) .
$$

Since $u_{r}(0)=0$, we see that $u_{r}(s)=0$ in a neighborhood of 0 .

REFERENCES

[1] A. Fröhlicher and A. Nijenhuis: Theory of vector-valued differential forms, Koninkl. Nederl. Akad. Wetensch. Ser. A, vol. 59 (1956), pp. 338-359.
[2] -... : Some new cohomology invariants for complex manifolds, I, II, Ibid. vol. 59 (1956), pp. 540-564.
[3] K. Kodaira and D. C. Spencer : On deformations of complex analytic structures, I, II. Ann. of Math. vol. 67 (1958), pp. 327-466.
[4] K. Kodaira, L. Nirenberg, and D. C. Spencer : On the existence of deformations of complex analytic structures, Ibid. vol. 68 (1958), pp. 450-459.

[^0]: 1) Here, a holomorphic vector form means a (C^{∞} -) differential form with values in the holomorphic tangent bundle.
