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Let o  be a  discrete valuation ring of a field k  and let be
the maximal ideal o f  o. Then the notion of a model over o,
defined by N agata  in  [ 4 ] ,  may be considered in  a  sense as a
complex notion of two models defined over different fields k  and
o/p respectively. L et M  be a model defined over o. Then M  is
a set of spots which dominate o or h. I f  we denote by M k the
set of all the spots in M  which dominate le. M k  is an open subset
o f M  and is a model defined over k. On the other hand the closed
subset M — M k  corresponds naturally to a  (not necessarily irre-
ducible) model defined over on). Moreover each spot o f M— Mk

is obtained as a specialization of one of Mk  o v e r  o. Then there
arises naturally a question that how the structure of M k  as a model
over k  is reflected in that of M— M,. as a model over of  in  this
specialization process over o. T h is  work is initiated by this
question.

On the other hand. an algebraic variety defined over k  is
equivalent to a  model defined over k  (cf. Chapter 1 . § 9  in [4 ]),
and a theory of the reduction o f algebraic varieties o f any dimen-
sion with respect to a  valuation 13 of a basic field k  was developed
by Shimura in [ 8 ] .  In Shimura's theory, the reduction of a variety
V  is naturally obtained, roughly spoken, by the reduction of
defining equations fo r V , if V  is an affine variety or a projective
variety with a "f ix ed sy stem  o f  coordinates - . However when V
is an abstract variety, the reduction o f  V depends on a choice of
affine representatives o f  V .  In  other words it is impossible to
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define a  "canonical" reduction o f  V. On the contrary our theory
treats, from the first, a  model defined over o and the reduction
process is uniquely determined on a given model. From our point
of view, the construction of a p-variety by Shimura can be con-
sidered as follows : Let V  be a variety defined over k and let Mo

b e  th e  m odel over k .  which is equivalent to V .  Then the
construction of a p--variety having V as its underlying variety is
essentially nothing but to construct a  model M  over o such that
M contains Mo as an open subset and each spot of M— M0 domi-
nates o. Grothendieck indicates also this standpoint in  [1] (cf.
Chap. I, 3.7). For example, le t  V  be an affine variety with a
generic point (x, ••• , x„) over k. Then the canonical reduction of
V with respect to this system of coordinates is nothing but to con-
struct the affine model over o defined by the affine ring orx„ •••

From this point of view, our standpoint seems to be quite
natural. Moreover, it is not worthless to point out that our re-
duction theory may be regarded in some point as an intersection
theory o f generalized cycles on models over o (cf. § 3).

Shimura's method in  [8 ] depends on the theory of multiplicity
of proper specializations over a local domain, which is a generali-
zation of the specialization theory with respect to a field developed
by W eil in  [9 ]. O n  th e  contrary our method makes extensive
use of the theory o f multiplicity in local rings.

In § 0, we shall recall the terminologies and the notations on
models defined in [4]. In § 1, we shall summarize the preliminary
results, which will be necessary in the other sections. In § 2, we
shall investigate some calculi of generalized cycles on models over
a discrete valuation ring. In § 3. we shall first define an induced
spot Q ' of a spot Q  which does not dominate the ground ring,
and then we shall define a  multiplicity th(Q Q'). Using this
multiplicity we shall define two operations p  and p ', which cor-
respond to the operation p defined in  [8 ] .  Moreover we shall see
that if the treated model is p-simple, ik(Q ; Q') may be considered
as a  multiplicity o f  Q ' as a component of intersection of Q and
the generating spot P o of the model over p. In §4, compatibility
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of p' with calculi o f  generalized cycles will be discussed. In § 5,
we shall show first that the notion of a P-variety in the sense of
[8 ] is equivalent to that of a model over o, and that the operation
p ' is equivalent to the operation p  defined in  [8 ] .  Theorem 5
will play an essential role in the proof.

Here the author wishes to express his hearty thanks to Prof.
Y. Nakai for his encouragement and his suggestions during the
period for completing this work.

§ O. Terminologies and notations

We use generally the terminologies and the notations in Nagata
[4] but we summarize some basic notations for convenience of the
readers.

A  ring R  is called local i f  it  is  a commutative Noetherian
ring with unit and it has a unique maximal ideal ni. To denote
these facts we shall simply say that (R, n i )  is a local ring. Let
(R, ni) be a local ring and let (S. n )  be a local ring contained in
R, then we say that (R, in) dominates (S, n) i f  in S = n .

Let I  be a Dedekind domain or a  fie ld . Let L  be a  finitely
generated field over the quotient field of I. A  r in g  A  is called
an affine ring o f L  over I  i f  A  is a  finitely generated subring of
L  over I  and has L  as the quotient field. A  spot P  o f L  is a
quotient ring of an affine ring A  o f L  with respect to  a prime
ideal o f  A .  Then th e  s e t o f a ll spots L  which are rings of
quotients of A  is called an affine model defined by A .  A  model
M  of L  is a set of spots of L satisfying the following conditions :
M  is a union of a finite number of affine models over I  and, for
any two spots P  and P ' o f M, we have P = P ' if and only if they
correspond, i.e., there exists a valuation ring of L which dominates
both P  and P '.  L  is called the function f ield o f M .  It is known
that an affine model is a model."

A spot (P ', in') is called a specialization of a spot (P, in) if  P
contains P ' and P= P,'„, Fy. Let P  be a spot of a model M . Then

1 ) See Lemma 1  of Chapter 2 . § 1 1  in [4-1 ] .
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w e denote by M (P) the set of a ll spots of M  which are speciali-
zations o f P .  M (P) is called the locus of P  in M . Let 5 be the
family of the sets which are unions of a finite number of loci of
spots in M .  Then we can introduce a topology in M  such that 5
is the family of the closed sets in this topology. 2 )

Let (P, m) be a spot of M and let ( t )1, be the natural homomor-
phism o f  P  onto P/m . Let P ' be a  specialization o f P  in  M.
Then (Pp(P') i s  a spot of P/m over 4) An, and it is known that
the set of such spots (hp(P') is a model in P/m over cpp(/). This
model is called the induced model defined by P .  Let I  be a dis-
crete valuation ring with the quotient field k. Let Mk  b e  the set
of spots of M which contain h. Then M k is  a model o f L  over k,
and is called  the reduced m odel o f M  over h . "  M k  i s  an open
set of M.

Let L  and K  be two function fields contained in  a field. If
P  and Q  are spots of L  and K  respectively over J. the set of
spots which are rings of quotients of P[Q ] and dominate both P
and Q is called the join o f P  and Q ; it will be denoted by J(P, Q).
Let M  and N  be models o f L and K  respectively. Then the union
o f a ll J(P, Q), where P  and Q run  over all spots in M  and N
respectively, is called the join o f  M  and N  and will be denoted
by J(M , N ). It is known that J(M , N ) is a model of L (K ) over /•"

If the function field L  of a model M  over I  is  a regular ex-
tension over the quotient field of J. we say that M is an absolutely
irreducible model o v e r  I . Let M  and N  be two absolutely irre-
ducible models over I  of the function fields L  and K  respectively.
Then L O I K  has no zero-divisor. Let L* be the field of quotients
o f L O ,I f  and we regard L  and K  as subfields of L * in a natural
w ay. Then the join of M and N  in L* is called the product model
o f M  and N  and is denoted by M ON . 5 1

Let L  b e a  function field over I ,  and we assume that L  is
separable over the quotient field of I. Let L ' be a finite separable

2) See Chapter 2 , § 7  in  [4 -I ].
3) See Chapter 2 , § 8  in  [4 -I ].
4) See Chapter 2, 4  in  14 -I].
5) See Chapter 5 , § 2  in  [4-III].
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extension o f L .  Let P  be a spot of L  and let P be the integral
closure o f  P  in  L'. Then we denote by N(P ; L') the set of all
the spots which are rings of quotients of P  with respect to  the
maximal ideals o f  P .  I f  M  is  a  model o f  L , the union of all
N (P  L ')  where P  runs over all spots in M , will be called the
derived normal model o f  M  in  L ' and denoted by N (M  L ') .  Then
it is known that N(M ; L') is a model o f L ' over /. 6 '

Let M be an absolutely irreducible model of the function field
L  over I. Let M  be the union of affine models with affine rings
A i  ( 1=1, 2, —, n). Let /* be a Dedekind domain or a field con-
taining I  an d  le t L *  b e  the quotient field  of L O I P .  Let
A t  be the affine ring A1 $411 `  over I*  (i=1, 2 , •••  n ). Then the
union M * of the affine models defined by AP is a  model o f I,*
over P .  M * is called the extension of  M  ov er I* and is denoted
by MO /*."

A  valuation ring or a field which is a ring of quotients of I
is called a place of I. When L  is a function field over I ,  a valua-
tion ring t, o f  L  is called a place o f L  i f  y dominates some place
of I. L e t  M  be a  model o f L .  Let u be a place of L . Then  if
y dominates some spot P  o f M , P is uniquely determined and is
called the centre of y in M .  A  model o f L  is called to be complete
i f  every place of L  has a centre in M.

Let x0 =1, x„ ••• , x„ be elements o f  a  function field L  such
that /[x, , x n]  is an affine ring o f L .  Let M  be the union of
affine models defined by affine rings /[x o/xi , , x„/x i ]  such that
x1 =r-0 , respectively. Then M is a complete model o f L  over I  and
is called the projective model o f L defined by the affine coordinates
(x„ ••• , x)."

§ 1 .  Algebraic preliminaries

LEM M A 1. L e t R  an d  R ' be tw o com m utative rings w ith a
common subring R". L et S and S' be multiplicatively closed sets in

6) See Chapter 2 ,  § 5  in [4-ii.
7) See Chapter 5 ,  * 1  in [4 -III].
8 )  See Theorem 5  of Chapter 2 ,  * 2  in [4-I].
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R  an d  R ' respectively . M oreover S OS ' be the set of  the elements
s g s '  in R O,„ , , R ',  w here s an d  s ' run ov er all the elements of  S
and  S ' respectively. T h e n , R s R 's, is canonically  isom orphic  to
(R OR" R lsos'.

The proof o f  this lem m a has no essential difficulty. There-
fore we omit the proof.

Let R  b e  a  r in g . Then we denote by l(R ) the length o f R
as R -m odule. If S is an R-m odule, then we denote by l(S : R ) or
/(S ) the length of S  as R-module.

LEMMA 2 .  L et (R , in) and (R ', n e ) be tw o local rings w ith a
common subfield k and  w e assum e that A =R O k R ' is N oetherian.
L et q  and q ' be prim ary  ideals belonging to n i and respectively
and let 4_‘ be a m inim al prim e divisor o f  (m , n i ')A . Then we have

1(A /(q, q') 241%) = /(A s / ni, ' )  As) l(R /q)l(R 'lq/).

PROOF. We shall prove by induction on l(R lq)+1(R 'lq '). If
/(R /q)+/(R '/(/)=2 , th en  in = q  and in '= -0 ' and h en ce  w e have
nothing to prove. Let l(Rlq)A-1(R'lq') be larger than 2 .  Then we
may assume in + q  and q = q '= 0 . Let ti be a minimal in-primary
ideal of R different from O. Then i f  a  is  a non-zero element o f 4,
we have aR=--Fi and 0 : aR=ni, and hence aR is isomorphic to R/ni
as R -m o d u le . T herefore, by induction hypothesis, we have as
Al i -module

/(CiAl i) 4(qR kR')%) = l((R 1 in k R ')% ) = O n, 104104R ') .

Again by induction hypothesis we have

1(A5 ) =  /(45 /FiAs ) 4- l( A5 )
= 411% 1 (ni, ni')A,$)l(R')(l(R1q) + 1)

1(24%,1(ni, ni')Aa(R )1(R ) .

This means that our lemma is true. q.e.d.

LEMMA 3. L et the notations and  assum ptions be the  sam e as
in  Lemma 2. Then we have

rank As =  rank R-r- rank R' .

PROOF. Since (ne", in"")A s C(in, niT" A s  (,),", ne")21% for any
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positive integer n , w e have by Lemma 2

/(As /(m, m') As ) l(R I m 2 ") (R  'I m'2 ") /(As /(ni, ni 2 "11s)
/(As/(ni, i ts)/(R/ tn")/(R/ in").

O n the other hand it is known that there exist polynomials
f (X ) , g (X ) and  h (X ) such that f (n)=1(R /m "), g(n)= l(R / I m '") and
h(n)=411s /(in, m')" A) for any sufficiently large n .  It is also known
th at th e  degrees o f f ,  g  and  h  a re  rank R . rank R ' and rank As

respectively ." T hen  th e  above inequality means that rank A s  is
equal to rank R + rank R ' .  q.e.d.

LEMIVIA 4. Let the notations and assumptions be the same as in
Lemma 2. Then (n i ,  i i ik g „R ' has no imbedded prim e divisors.

For the proof, see the lemma 2, Chap. 5  in  Nagata [4 HIT

LEMMA 5. L et (R, m ) an d  (R ', n i  be tw o local rings w ith a
com m on discrete v aluation rin g  o  o f  ran k  1. W e assum e that
A =R O „R ' is  N oetherian and le t •̀4 be a  m inimal prim e divisor of

m ') A . L et 7-1- b e  a p rim e  element o f  o  and we assume that 71- R
and 7TR' are primary ideals belonging to maximal ideals of  R  and R'
respectively. T h e n  w e  have

l(A sI7rA %) = 1(i1931(m. ul'),4% )1(R1 n-R)1(R' 17R') .

P roof. This is a direct consequence of Lemma 2, if  we notice
that A b r il is isomorphic to RI 7TROg R' I 7r.R ' , where lc is  the residue
class field of o.

N ex t w e  sh a ll lis t w e ll k n o w n  resu lts  on  multiplicities of
local rings.

L et (R, in ) be a local ring o f rank d  and  let q  be a  primary
ideal belonging to in . Then there exists a polynomial ( q ;  n )  of
degree d  such that, fo r  any sufficiently la rg e  n, (r(q n)=l(R lq").
L et a  be the coefficient of re  in  0- (q n). Then ( d ! ) a  is called
the multiplicity  of q  and is denoted by e(q)."

Let R ' be a semi-local ring with the maximal ideals tiq •-• ,
and let (R , ni) be a local subring o f R ' such that 1) each in; lies

9 )  See * 4 in  [3 ].
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ovor ut, i .e .,  n  R = n i ,  and 2) each R In il  is a finite module over
Rim. L e t  cr, b e  a  primary ideal belonging to in; for each i  and
set q'--=ci n ••• n q,.'. Then R'/q' can be regarded as an  R-module,
and the length l(R 'lq '" ; R )  as R-module is defined. It is known
that there ex ists a  polynomial 0- (q', R  n )  su ch  th a t tr(q' , R n )
=1 ( R '/q '; R )  for any sufficiently large n. Let d  be the degree of
tr(cr, R ; n )  and  le t a  b e  the coefficient of rri in  0- (q', R ; n ) .  The
integer (d! )a is  ca lled  the relative m ultiplicity  of q ' w ith  respect
to R  and is denoted by rm(q' ; R)."

LEMMA 6. L e t (R, n i) be a  lo cal ring  o f  ran k  1, le t  q  be a
prim ary  ideal belonging to ni and  assum e that x  is  a  superficial
element o f  q. Then if  x  is not a zero-divisor, e(q)=e(xR)=1(R1 xR).

For the proof, see the lemma 5. 3 in  Nagata [3].

LEMMA 7. (T he  Ex tension Form ula) L et (R, n i)  b e  a  local
domain, an d  le t  R ' be an  integral domain containing R  such that
R ' is  a f inite R -m odule . L et K  and K ' be the quotient f ields of R
and R ' respectively. T h e n , f o r a;.y  prim ary  ideal q o f  R  belonging
to in, it holds that rm (qR ' ; R )= [K ' K ]e (q ) .

For the proof, see the corollary 2 of the theorem 2  in  Nagata

[3] .

LEMMA 8. (The Theorem o f  A dditiv ity ) L et (R, be a local
ring and let P„ ••• , ps be  all of  prime divisors of  zero; we renumber
them so that co-rank p1 = rank R  i f  and only i f  L et q„ ••• , q,
be primary components of  z ero belonging to p „  ,  p ,  respectively.
Then, for any  prim ary  ideal q belonging to ni, it ho lds the equality
e(q) Eç e((q + qi )/(q i )).

For the proof, see the theorem 3 in  Nagata [3].

LEMMA 9. (The A ssociativ ity  Form ula) L et  x , ,  •••  , x , b e  a
sy stem  o f  p aram eters  o f  a  lo c a l  rin g  R  a n d  s e t  q >2,1 x i k ,

=  E l x i R .  Then we have the equality

e(q) E e(aRv ) e ( ( q  p) ,

where p  ru n s  o v er all (m inim al) prim e div isors o f  n  such that
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co-rank p=d —s  and rank 13 = s.

For the proof, see the theorem 8 in  Nagata [3].

LEMMA 1 0 .  (The R eduction Theorem ) L e t (R, m ) be  a  local
ring and assum e that the zero ideal o f  R is  p rim ary . Let be the
prim e divisor o f  z ero . T hen , f or any  prim ary  ideal ci belonging to
nt, we have e(q)= e((q+ p)/13)/(R).

For the proof, see the theorem 9 in  Nagata [3].

§  2 .  Cycles on models over discrete valuation rings

Let k be a field, and let (o, ti) be a  discrete valuation ring of
k o f rank 1. We shall denote by K  the residue class field of o.
For convenience we consider two "universal domains" f2 and
which a re  algebraically closed fields of infinite degree of trans-
cendency over k and K ,  respectively. When we speak o f a  ground
ring ex tension o* o f  o , we always assume that o* is a  discrete
valuation ring o f rank 1 in  f 2 ,  which dominates o, and  that the
residue class field  is  a  subfield of n '.  We shall call an  element
of 12 (or 121 a  quantity  of 12 (or f2').

Let M  be an  absolutely irreducible model over o. Let o* be
a ground ring extension of o. Then we can consider Mcgo*. Let
(P. ni) be a  sp o t o f  M .  Put i n  b e  a m inimal prime divisor of
m (Pa,o*) in  P O „o * . Then P *= (P O o o*). is  a spot over 0*, and
we shall call such a  sp o t P *  a  component o f  P  over o * .  Let 71- *
be a prim e element of 0 * . If P contains k, the length /(P*AnP*)
is denoted by i(P lo : P *Io*), a n d  if  P  dominates o, the symbol
i(P lo ; P *Io*) stands for the length /(P*/(7r*, in)P*)•

A  spo t (P, m ) o f  M  is called sim ple i f  P  is a  regular local
ring, and moreover if  a  p r im e  element 7r o f o  is not in  m2 , then
P  is called unramified s im p le . P  is called absolutely simple if  any
component o f P over o* is simple for any ground ring extension
o* of o.

A n element Z  of the free m odule generated by all spots of
M over the field of rational numbers is called a  generalized cycle
on M . For a generalized cycle Z =  c i P, (Pi  E M ), each P1 whose
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coefficient ci  is different from zero is called a component of Z .  If
ci  f o r  a ll i ,  we say that Z  is positive. A cycle is  a  generalized
cycle whose components are absolutely simple and the coefficients
are integers.

Let o* be a  ground ring extension of o, and let (P, ni) be a
spot of M . T hen w e denote by cr„v o ( P )  the generalized cycle
E i(Plo ; P*  o n P* , where P*  runs over all components of P  over
o*. By linearity, o-  a  homomorphism of the group of
the generalized cycles on M  into that of MO o*.

Let M and N  be two absolutely irreducible models over o and
le t  (P, i n )  an d  (Q, n )  b e  spots of M  and N  respectively. We
assume that ni(No — u n o . Let a be the ideal generated by ni and
n in  PO o Q  and let I, (i=1, ,  t )  be the minimal prime ideals of
a. T h e n  (PO 0 Q )--R 1 i s  a  spot o f M O N  fo r each i ,  and set
P x Q =  l ( R i laR i )R i . I f  P  and  Q  dominate k , PO ,,Q =PO ,Q
and hence by Lemma 3  rank P+ rank Q =rank R i fo r each i. If
P  and Q  dominate o, PO ,Q /(x )  is isomorphic to P/ (v) 0„ Q/ ( i t )

and hence it is easily seen, by Lem m a 3 ,  that rank P+rank Q
=rank R i -1-1  for each i.

L e t X = E ai Pi and  Y =  E b,Q, be generalized cycles in  M
and N  respectively, such that all th e  components o f  X  and Y
dominate the sam e place of o. Then we say that X x Y is well
defined and put X x Y= E x Q1 ).

R e m ark  : 1 )  Let M ' and N ' be open subsets of M and N, and
let P and Q be spots of M ' and N ' respectively. Then P x Q  is in-
variant, whether Px Q  is regarded as a generalized cycle in M O N
or in M 'O N '.

2 )  Let (Po ,  m e)  and (Qo , no)  b e  spots of M  and N  respec-
tively, such  that ybpo(M )  and 0,4 0 (N )  a r e  absolutely irreducible
models over ointo no=n/tio n o .  Let P  and Q be in M(P0) and N(Q0)
respectively, such that P x Q  is w ell defined . Let R  b e  a  com-
ponent of P x Q . On the other hand it is easily seen that Po x Qo

i s  a  sp o t  o f  M O N . T hen w e have from definitions that the
coefficient of R  in  P x Q  is equal to  that o f Opo gQ .(R ) in Opo (P)
).(4600(Q).
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PROPOSITION 1. L e t M  and N  be tw o absolutely  irreducible
models over o, and let X  and Y be generalized cycles on N  and N
respectively. T h e n  i f  X x  Y  is well defined, we have

rro .,„(X x  Y ) = ero h ,(X )x  ,

fo r  any  ground ring extension 0* o f O.

PROOF. It is sufficient to prove the case where X  and Y are
spots (P, in) and (Q, n) respectively. First we assume that P and
Q contain k. Let (R, I) be a component o f Px Q , and let (R*, 1*)
be a  component o f R  over 0 * . Then R  i s  a quotient ring of
PO 0 Q =P0 ,,Q  with respect to the prime ideal (PO „Q )nf  and R*
i s  the quotient ring of Roo * with respect to  the prime ideal
(R O c o n n t* , and hence R *  is  the quotient ring of (P(8),,Q)O k k*
with respect to  (PO k Q)O k k * n t* , where k * is  the quotient field
o f  o * . On the other hand i f  w e  regard PO k k *  and ROkk*
a s  subrings o f  (Pe),,Q)O k k *--(PO k k *)0 k .(Q® k k * ) ,  w e  put
m*= (PO k k*)n I* and n*= ( Q  k k*)n I*. Then we have nt*n P= in.

n Q = n, rank In =rank m * and rank n = rank n*, since we have
rank in* + rank n*= rank R *= rank R= rank in +rank n by Lemma 3.
Therefore P* ----(PO k k*)„r  and  Q*=(Q® k k*)„, are the only spots
such that they are components o f P  and Q  over o* respectively,
and their product has R * as a component.

Since R *  is  a quotient ring of R O k k * and (tu, n)R is  a pri-
mary ideal belonging to f, we have, by Lemma 2,

l(R*/(m, n)R*) = l(R*IIR*)1(R1(m,n)R).

Since w e can easily see that R * is a lso  a quotient ring of
P*0,,..Q* by Lemma 1, we have

/(R*/(nt, n)R*) = l(R*I(m*, n*)R*)l(P*ImP*)l(Q*InQ*).

Therefore the coefficient of R * in 0- 0 ,/ 0 (Px Q) is equal to that of
rr o* Ice )  X cr0"10(Q ).

Next we consider the case where P and Q dominate o. Let R*,
R, P* and Q* be as above. Let r t *  b e  a prime element of o * . Then,
calculating the length l(R* I (7r* , nt, u)R*)=I(R*1(7r*)1(m, n)R*1(7r*)),
we obtain the desired result. But the calculus is quite similar to
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the above case, and the details are omitted. q.e.d.
Let M  be an absolutely irreducible model over o. L e t  P  and

Q be spots of M  such that P  and Q  dominate the same place of
o, and  le t  (R, I )  b e  a  component o f  M(P)t-N M(Q) such that R
dominates the sam e place as P  and Q .  W e put 0=ROD 0 R  and
we understand by the diagonal ideal b(0) of O  the ideal generated
by the elements x 01-1 Ox in 0 .  Let m and n be the prime ideals
of R such that P=R „, and Q =R „. Then the ideal f' = (f 1 , b (0 ))0
is  a minimal prime divisor o f  (m01, 1 ® n ,  b (0 )) in  O. Then
putting 575 =D ' , we denote by ia (R  ; P•Q) the multiplicity e(b(0)$.7/
(nt® 1, 1® n)C). W e put P•R = ER i„(R ; P•Q)R , where R  runs
over all components M(P)n M(Q) dominating the same place as P
and Q .  Let X= E ai Pi  and Y= E koi  be two generalized cycles
on M such that all the components of X  and Y dominate the same
place of o. Then we say that the intersection cycle X •Y  of X  and
Y  is  well defined and we put X . Y = E ai bi (Pi •Qi ).

R em ark . Let (P0 , ma) be a spot of M such that M(P0) contains
P  and Q , and (f)p.(M )  i s  an absolutely irreducible model over
* n u t , .  T h e n  i t  i s  e a s y  t o  s e e  io (R ; P. Q) = n m„(4),, (R ) ;
4) P0 (P)*4) P0 (0 ) .

PROPOSITION 2.10) L e t  M  be an absolutely irreducible model over
o. Let 0* b e  a ground ring extension of o  and let X  and Y be
generalized cycles in M such that X •Y  is well defined. Then ive have

w o(X  Y) = cr0.10(X)-(7 0•10(Y) •

PROOF. It is sufficient to prove the case where X =(P, in) and
Y=(Q, n) are spots. Let R be a component of P Q  and let (R*, I*)
be a component o f R  over 0 * .  Put 0 *= R *0 0 /?*, let h* be the
diagonal ideal o f 0 * and let )77,* be the quotient ring of 0* with
respect to the prime ideal (I* 01, b*). Then -se* is also a quotient
ring of (R O 0 o*) & * (R 0 0 0 * ) .  First we assume that P, Q, and R
contain k. Then it is easy to see by Lemma 3 thal a ll the ninimal

1 0 ) This result and proof are essentially shown in Theorem 5. 4 in [51 . Notice
that this result gives compatibility of our definition with that of Samuel [6].
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prime divisors of (mR*O 1, 1 OnR*)5775* have the same rank equal
to rank in+ rank II, and hence their coranks a re  equal to each
others.'" Therefore we have, by Lemma 8 and Lemma 10,

e(b*7_5*/ (mR* 0 1, 1 0 nR*)C*)

e(b*S  Vh ) / rtiR* 0 1, 1 0 nR * )) ,

where Th runs all minimal prime divisors o f  (mR*0 1, 1 nR*).
Let (Pi*, nit) , ••• mn be all the components of P  over o*

which have R *  a s  a  specialization, and let (Q t, n ? ) ,  ..• , (QP, n?)
be all the components of Q over o*  which have R *  as  a  speciali-
zation. Then for each Vh there exists only a pair ( i, j)  such that
1771h dominates both P t  and Qt (cf. the proof of Proposition 1),
and we have, using Lemma 1 and Lemma 2,

/(r:th/(mR*01, 1 0 nR*))
= ( h/ (m' 01, 10 n .1)/(PNniPt) /(Qt/nqin .

Therefore we have, using again Lemma 8 and Lemma 10,
(mR* 0 1, 1 0 nR*)
= E e(b*Z7*/ ( n* 0 1, 1 (S) n*)5.7*) l(PtimPi*) 4(4 / nQ̀ ) .

On the other hand, ..572* is a quotient ring of Z 0 v o* and hence
+7* i s  a  quotient ring of Z O k k* in this c a se . Then because of

we have, for any positive integer n,

mR*01, 10nR*))
= /(.7.*/(101, b, mR*01, lgnR*))/(C/bn, in01, 10n))
= 1(R*111?*)l(5:751(bn, m01, 10n)),

applying Lemma 2 to (ri/(m01, 1 0 n ) ) 0 k k * .  H ence w e have

e(bC*/ (niR*0 1, 10 nR*)) = /(R*/IR*)e(bC/(ni (01, 1 On)) .
Therefore we have

( * )  i o(R  P .Q )i(R lo ; R *Io* )
= E ;  P a* •Qt)i(P I o  Pi* I 0* )i(Q 1 0 : 1 0 * ) •

I. I

1 1 ) " I f  43 is  a prime ideal o f a  spot P, then rank p corank p=rank P "  (Corollary
2  of Theorem 1 of Chapter 1  in [4 - I ]. )
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If P, Q and R  dominate o, then we consider the multiplicity
e(b*57,*/(z*, iiiR*(2)1, 1 nR*)) and we obtain the equality (*) in
the sim ilar way as above, but we omit the calculus. q.e.d.

L et M  and N  be two absolutely irreducible models over o
such that M dominates N , i.e., any spot of M  dominates a spot of
N .  L et P  be a spot of M  and let Q be the spot of N  which is
dominated by P ;  then Q is called the projection of P .  The alge-
braic projection PrmN ( P )  is defined to  be [O (P ) (PQ(Q)N .  For
any generalized cycle X , Prm N (X )  is defined by linearity.

Next we shall consider a  generalized cycle attached to an
element f  o f th e  function field L  o f an  absolutely irreducible
model M .  For any spot P  of rank 1 in the derived normal model
1-17 of M , let vp b e the normalized valuation defined by P .  Then
we put (f)r,f = E vp (f)P , where P  runs over all spots of rank 1 in
in  M . W e say that (f)r, is  the cycle of f  on M.

Moreover when we put Privfm ((f)T,)=( f ) , ,  w e say that ( f ) m

is  the generalized cycle of  f.
In  the above we defined some operations of generalized cycles

on absolutely irreducible models over a valuation r in g  o . However,
of course, these definitions are available for models defined over
a field K .  In this case any spot contains K .  Therefore products
and intersections of generalized cycles are always well defined,
and we use symbols :  •  )  and o-„,..,„( ) instead of io(  ;  •  )  and
(7 0.4

Let o be a  discrete valuation ring of a field k. Let M  be an
absolutely irreducible model over o. It should be noticed that
each operation o f generalized cycles on Mk  i s  invariant whether
Mk  is considered a s  a  model defined over a field k or as a  model
over a  valuation ring o.

§ 3. Operations p and p'

Let M  be an absolutely irreducible model over o. Then it is
easy to see that the set of a ll the spots in M  which dominate o is
a closed subset of M . Let P„ •••, P„ be the components of this closed
subset. Then each P1 is called a generating spot over p .  If Mk  is the
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reduced model o f  M  over k , M  i s  the union of M (P,), ••• , M(P„)
and M k. Moreover M k and M (Pi ) have no common spots for each i.

Let Q  b e  a  sp o t o f M k  and put M o (Q )=M (Q )n ( M (Pi)) .

Then M o (Q) is a closed subset of M .  Let (A , •••, Q; be the generat-
ing spots of the irreducible components o f  Mo(Q ) . Then the set
0 ,,(Q 1 ) , • • •  ,  (po (Q )  is the set of the generating spots over p of the
induced model cPQ (M ) .  We shall call (2; an induced spot of Q  over
p for each i. Now we shall show the following

PROPOSITION 3. Let M  be an absolutely irreducible m edel over
o , let (Q, n) be a spot of M , and le t (Q', n') be an induced spot of
Q  over p. T hen the transcendental degree o f Qui ov er k  is equal
to  that of Q '/ n ' over K =olp.

PROOF. Put f i= Q 'n n  and let 7r b e  a prim e elem ent of o.
Then (7r, n )Q ' i s  a  primary ideal belonging to n'. Since rank Q'
=rank 11 -i-corank Ft and corank ri = 1, w e have rank Q'— l= rank Q.
On the other hand it is known that (trans. deg. of L lk )=(trans.
deg. of (Q1n)1k) + rank Q  = (trans. deg. of (Q 'In ') IK ) -1 + rank Q','"
where L  is the function field of M . Hence we have our proposition.

q.e.d.
Let (Q', n') be an induced spot of a spot (Q, n) o f M k .  Now

we define a m ultiplicity  p (Q  ; Q ') of Q ' as an induced spot of Q.
Let 7r be a prime element o f  o .  Then (7r)Q1Q'n n  is  a primary
ideal belonging to n '/Q 'nn  and hence the multiplicity e(n-Q1Q'n n)
is w ell defined . T hen  w e put p(Q ; Q ')=e(n-Q '/Q'nn). In  parti-
cular i f  Q is  the function field L  of M , we write ik(q )  instead of
P ( L ; Q ') .  The following proposition i s  a direct consequence of
definitions.

PROPOSMON 4. Let M  be an absolutely irreducible model over
o  and le t Q  be a spot o f  M k .  Let P  be a spot o f  M k  such that
M (P) contains Q . T hen spot Q ' in M  is  an induced spot of Q  if
and only i f  Op(Q') is  that o f (1)p(Q), and moreover we have p(Q ; Q')

=10P(Q ); (f rp(q)).

1 2 )  See Corollary 3 o f Theorem 1 of Chapter 1 in [4-4].
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R em ark . In  th e  above w e treat the case  where M  i s  an
absolutely irreducible model over o. But it is easy to see that the
notion of induced spots can also be defined on any model over o,
and Propositions 3 and 4 are true even i f  w e replace absolutely
irreducible models by models over o.

L et M  be an  absolutely irreducible model over o. Now we
shall define an operation p , which is a  homomorphism of the group
of generalized cycles in  Mk  into that of M— M k . i f  Q  is  a spot
of Mk, then we put p(Q)= EQ/ P (Q  Q ')Q ', where Q ' runs over all
the induced spots of Q  over 13. I f  X— E a i Qi  i s  the generalized
cycle on M k, then we put p(X )= E a,p(Q,).

Now it should be shown that the operation p  does not depend
on ground rin gs. In  fact we have the following

PROPOSITION 5. L et M  be an  irreducible model over o  and let
o* be a ground ring extension o f  o. Then f o r any generalized cycle
X  in  A lk  we have 0-

0 .,0 (p(X ))=

PROOF. We may assume that X  is  a spot (Q, n). Let (Q', n')
be an induced spot of Q  and let S  be a  component of Q' over o*
Moreover let R „  ,  R ,  be all the components of Q  over 0* which
have S  as an  induced spot over 0 * .  Then S  is  a quotient ring of
Q'cg o o* with respect to a prime id ea l I . Let ii b e  the prime ideal
n OQ' and put S '=S /(f i 0 1 )S .  It is clear that S ' is also a quotient
ring of 4,Q (0 0 0 0* with respect to a prime ideal l'.

Let 7r and 7r* b e  prime elements o f o  and o* respectively.
Then we have by Lemma 5

/(S77rS') l(S' 1 (ti (IC), 7r* )S')1(04)(q)1703Q(Q')) 1(0* 17ro* )
= 1(.31 (7r* , n' 0 1) S) 1(Q'l (1r, n) Q') 1(o* bro*) .

Since S ' is  of rank 1 and 7r is not a  zero divisor in  S ',  we have,
by Lemma 6, l(S ' 7rS 1--= e(rS '). S im ila r ly  w e  h av e  1(0*1 7ro*)
=e(iro*). Therefore we have

e(n-S') =  i(Q' I o ; SI o*) p(Q ; Q')e(7ro*) .

On the other hand let q ,, --• , q, be the minimal prime divisors
of zero in 4 k ,(Q 10 0 o *  which are  contained in q„ ••• , q, cor-
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respond naturally to R„ •••, R 1 . Therefore corank q i in  S ' is one
for each i ,  and hence we have by Lemma 8  and Lemma 10

e(rrs') = e(ms'ic)i(SO

=  E  e(7r(f) .(S))1(R-Ink)

— e(71- (1'R i (S ))i(Q10: R i lo*).

I f  w e  put /(7ro*)=/(7r*"o*)=u, w e have e(TIPRi (S ))--=e(7r*"(PRi(S))
— ue(,*4), ; (S ))=up(R

(
;  S ) .  Therefore we have

i(Q 10 ; Sio*)it(Q ;  Q') — S ) i(Qlo ; R i l o * ) .  q.e.d.

Next we shall give a  criterion for unramified simplicity. The
next lemma is necessary in the proof.

LEMMA 1 1 .  Let L  be a function field over a  ground ring o such
that L  is  a  separable extension of  the quotient f ie ld  o f  o .  L e t  P
be a  spot o f  L  and  le t 7z- be a non-unit of  P. S uppose that

(i) 7TP has only  one m inimal prim e div isor m  and  77-P„11 i s  the
m axim al ideal of  P .

(ii) Pint is  normal.
Then rn=7rP and  P  is  norm al itself.

For the proof, see Lemma 4  in  [ 2 ] .  Although in  Lemma 4
of [ 2 ]  o  is assumed to satisfy the finiteness condition for integral
extensions, the proof is also available for our Lemma 1 1 .  For the
derived normal ring of P  is a  finite P- -module, since L is a  separ-
able extension over o.

PROPOSITION 6. L e t M  be an  absolutely irreducible model over
o, and let R  be a s p o t  o f  M  which dominates o. Then R  is un-
ramified sim ple if  and only  if  the following conditions are satisfied:

(i) T here ex ists only  one generating spot P  over s u c h  t h a t
M (P) contains R . M oreover p(P)=1.

(ii) (f)p(R) is  a  regular local ring.

PROOF. First le t R  be unramified simple and let (77-, t, , ••• t r )
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be a  regular system o f  parameters containing a  p rim e  element
o f  o .  Then in = 7r R  is a prime ideal and R„, is the unique generating
spot over p  satisfy ing (i). T hen ( i i )  is also evidently satisfied.
Conversely we assum e th a t the  conditions a re  sa tisfied . B y  (i),
7- I? has on ly one m inim al prim e ideal in  an d  7rR1 ,= mR„, . Since
R  satisfies also  the  cond itions in  Lemma 1 1 . R  i s  norm al and
hence rl? h as n o  imbedded prim e ideal. T herefore 7r R =  ,  and
hence R  is  unramified s im p le . q.e.d.

L e t  M  b e  a n  absolutely irreducible model over o. Then we
sh a ll ca ll M  to  b e  absolutely irreducible modulo p, i f  M  has only
one generating spot P, over p and if (f),,,,(M ) is absolutely irreducible
over ',D ip .  Moreover if ti.(P0) --1, we shall call M to be a  p-simple
model over o.

L et M  be a n  absolutely irreducible model m odulo p  and  le t
Po be the unique generating spot over p. Then M  is  a  d isjo in t sum
of M k  a n d  M (P„), an d  M (Po)  has a  o n e  to one correspondence (Pp 0
with Opo (M ) .  Therefore M  can be considered as a  complex notion
o f  two models M k  a n d  610 ( M ) .  w hich a r e  models defined over
different fields k  an d  K=0/1.1 respectively.

Now we shall define a n  operation p ' which is obtained natur-
ally from  p. L e t M  be a n  absolutely irreducible model modulo p
with the  unique generating spo t Po  over p. For any spot P of Mk,
w e p u t  f l(P)=q)p o (p (P ) ) . Then p i(P )  i s  a  generalized cyc le  on
(f)1,0(M ) .  By linearity we define p ' for any generalized cycle on M k .

We shall terminate this section by showing that the multiplicity
Q ') o n  a  p  simple model M  can be interpreted a s  a n  inter-

section multiplicity.
L et A be an open subset of M  such that A  is  a n  affine model

over o and contains Q and  Q '.  L e t °Ex, •••  , x j be th e  affine ring
o f  A .  Then A  i s  a n  induced model o f  a  model B  defined by a
polynomial ring o [X , •-• , X J .  L et R  be the  spot of B  such that
A  4)R (B ), a n d  le t  (Q „ n ,) a n d  (V ,  u ;)  b e  th e  s p o ts  o f  B  such
that cf),(Q,)=Q a n d  , f)„,(V ) = Q '.  T h en  w e  kn o w  th a t p,(Q,

ik (Q; V ).
W e p u t C ,= V I O ,,Q ; and  we denote by b , the  d iagonal ideal

of Z . T h e n  h, is generated by n  elements d i = X ,0 1 - 1 0 X ,,  • • •  ,
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d„— X„(2:1 —1:2')X„. Let be the quotient ring of 0 , with res-
pect to the prime ideal (n'01, b 1 ) and ii, = Q In n „  If 7  is  a prime
element of 0, (7) orX„ • X „71  is the prime ideal corresponding to
the unique generating spot P, of B .  Since V . is a  component of
B (Q )" E (P ,), (b„ 7r, fi 1 g 1 ) ,7 1 i s  a  prim ary ideal belonging to
(h i, 11 ',0 1 ) 1 .  T herefore e((b,, 7r, R,01)=71/(n,01)C,) is  w e ll
de5r_ed. On the other hand  w e easily  see by Proposition 3 and
the re lations betw een  ranks an d  coranks o f  spots that rank
Z.:J(1' 1 0 1 ) is  eq u a l to  n - 1 .  Hence (d ,, ••• , d „, 7r) is  a  system of
parameters of :71 ( 1,0 1 ) .  By Lemma 9 we have

e((b i , 7r, ii, 01).57i/(fii2) 1 )) = c((b„ ii 3 O1)?" i(b,.11,01)/ (Ili 0 1))
x e((t1„ r ,  Ïi 1 ® 1 ) r 1 /(h 1 ,  fl, 0 1 )).

Since C i a,1 ,ii1g 11(1110 1 ) is  a  regular local ring, the first factor of
the righ t hand  side of the above equality is one. O n the other
hand since (h „  fi l oi)ifd(b i . ii 1 0 1 )  is isom orphic to 7Q1/ -W i
the second factor of the right hand side of the above equality is
equal to ; Q1).

L e t  in, , b e  a l l  th e  m in im a l p r im e  divisors of
(7r, 11, 01 )s7 1 . Then it is evident that the coranks of mi  a re  equal
to each other. By Lem m a 9 w e have

e((b„ r ,  ri 3 O1)37 1/(fi 1 0 1 ))

— e((7r, e((b,

Since Z.:„„ i /(ii 3 O 1 ) i s  an  integral domain o f rank 1, we have by
Lemma 6  e((7r, mi/ (n10 1)) = /(Zini i /(7r, 0 1 ) ) .  There-
fore w e have, by Lemma 8 and Lemma 10.

e((b„ 7r, fi,(53)1)7.,/(fi 3 O1))

= e((b,, ins) ins) ii, 1))

= e((b„ r ,  fl1 0 1 )/ (7 r ,  1i1 0 1 ))

and hence it,(Q i :  Qi)=e((b„ 7r, Ft101),Z511(7r, i1 Ø 1 )) .
N ow we put 0 = Q 1 0 0 Q ' and let b be the diagonal ideal of

Z .  Let n and n ' b e  the prime ideals o f Q ' corresponding to Q
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and Q '.  If we put (h%,(h„
is  iso m o rp h ic  to  (b, 77-, it ® nO1) a n d  h en ce  w e  have
i t ( Q  Ql=e((b, 7r, 1101):C/(7r, nØ1)).

T h e  r ig h t h an d  s id e  o f  th is equality m ay be denoted by
io(Q ': P o .Q ) i f  w e abuse the symbol. Therefore we may consider
p(Q ; Q') as an intersection multiplicity of Q ' of two spots Po  and Q.

§ 4 .  Properties o f p'

In th is section w e sha ll show relations between p ' and oper-
ations of cycles defined in  § .

PROPOSITION 7. L e t  M  an d  N  be tw o absolutely  irreducible
models modulo p. T h e n  M O N  is  also  a n  absolutely irreducible
model modulo P. M oreov er if  P, Q  and R are generating spots over
p o f  M , N  and M ON respectively , then we have p(R )=P(P)j(Q ).

PROOF. L et (P, in) and (Q, it) be generating spots of M  and
N  over p respectively. By assumptions Pint and Q/n are regular
extensions o ver K =o/p . Therefore PhnO.Q/11 i s  a n  integral
domain and hence (in, n) is  a prime ideal of PCDo Q .  This means
th a t M O N  h as o n ly  one generating spot over P. which will be
denoted by (R, I). S in c e  R/1 is  the quotient field of P/1110„Q/n,
RIT is also  regular over K. Therefore (1 (M O N )  is  an  absolutely
irreducible model over IC. On the other hand we have by Lemma
5 and definitions

A R ) = l(R  I 7T-R )  l ( R  I (in, n) R )1(P P) l(Q 7rQ)  p (P)  p (Q )  .

q.e.d.

COROLLARY. I f  M  and  N  are p--sim ple m odels ov er o, then
M O N  is also  a  0-simple model over V.

THEOREM 1. Let M  and N  be two absolutely irreducible models
modulo p, an d  le t  X  an d  Y  be generalized cycles belonging to Mk
and Nk resppectiv ely . Then we have p'(X x Y )=p'(X ) X p'(Y ).

PROOF. It is sufficient to show p(P)x  p(Q)= p(P x Q) for a spot
(P, n i) of M k and  a spo t (Q, it) o f N k .  Let S  be a  component of
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p(PxQ), and let R „  , R , be all the components of Px Q, which
have S as an induced spot over p .  Then Ri  i s  a quotient ring of
P a ,Q  with respect to  a prime ideal and is  a lso  a quotient ring
of S with respect to  a prime ideal Ii o f  S .  It is easy to  see that
Sn (m01) R,= - S n ( m 0 1 ) R , .  This ideal of S will be denoted
by T t .  Sim ilarly we shall denote Sr\ (10 n)R i  b y  n. Let (P', in')
and (Q', it') be the projections of S on M and on N  respectively.
Since S  i s  a  specialization o f Ri and the projections of R i  on M
and on N are P  and Q respectively, it is easy to see that P ' and
Q' are specializations of P and Q respectively. M oreover we have
rank P= rank P '  and rank Q --- rank Q '.  Therefore P '  and Q ' are
only induced spots of P  and Q respectively, whose product cycle
has S as a component. Put S*=Si(Tfl, ii). Then .5* is  o f rank 1
and 7rS* is a primary ideal belonging to the m axim al ideal. Since
E, , ••• , (, are a l l  the minimal prime divisors of (ni, n), w e have by
Lemma 8 and Lemma 10

e(-rs*) -- Ci)S*RiS*)1(Std(m, 10)

E  AR;  S )/ (R i bil (Di, 1 n)) .
1=1

On the other hand S * is also  a quotient ring of (P'inin P')
Q ') w ith  respect to a prime ideal. Therefore w e have,

by Lemma 5 and Lemma 6,

e(7z-S*)- l(S*17rS*) l(S*1(m', it')S*)/(P'1(7r, ni -\P'))l(Q7(7r, tir\Q'))

l(S1(111 ' ,  1 1 '))1 (P  P ')A Q  : Q ')

Therefore the coefficient o f  S  in  p(Px Q) is  e q u a l to  th a t  of
p (P )xp (Q ). q.e.d.

Let M  be an absolutely irreducible model over o of the func-
tion field L .  Then M  is called  to  be n- dimensional if the trans-
cendental degree o f  L  over o is  n .  A  spot (P, ni) of M  is called
to  b e  r  dim ensional i f  th e  transcendental degree o f P lm  over
oinir.o is  r. Let P  and Q be tw o spots of M  such that 13 .62 is
well defined, and let n, r and s be the dimensions of M, P and Q
respectively. Then a component R  o f P•Q is called to be proper
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if R . is absolutely simple and (r +s—n)-dimensional. Moreover let
X =  E a i P i  and Y= E b,Q .,  be two positive generalized cycles of M
that X •Y  is well defined. Then a component R  of X •Y  is called
to be a  proper component of X •Y  i f  R  is a proper component of
P i •Q.,  such that M(P i )r\ M(Q ; )  contains R.

PROPOSITION 8. L e t  M  b e  an  n -d im en s io n a l absolutely irre-
ducible model over o , and let (P, in) and (Q, II) be two spots in Mk

of dimensions r  and s  respectively . Let (R ,1 ) be a component of
p(P )•p(Q ) such that R is (r+ s— n)-d im en sion a l and, if h is  the dia-
gonal ideal o f  R & R ,b (R O R ) ( b ,1,3 1)  is  gen erated  by  n  elements

, d„. Then the coefficient of R  in  p(P )•p (Q ) is equal to that
o f p(P-Q).

PROOF. P u t S--(R/iiir\RO o kiiin R1,(b.le 1)/(m n R. n .  By as-
sumptions it is easy to see that rank S  is equal to n+ 1 , and hence
(7r, d 1 , ••• , d „ ) is a system of parameters o f S. I f  f„ ••• , I, are all
the minimal prime divisors o f bS, they correspond naturally to the
components (R,, , ••• , ID  o f  P .O . which have R  as a
specialization. In fact we have I, —(b, (V, n JO® 1 )S .  Each R i has
evidently S  as an induced spot over p, and hence If, , L have
the same rank and the corank. Therefore we have by Lemma 9

e((7 , b)S) e(bSth)e((n-, f h )S/f,,)

P •Q )p (R „ : R ).

On the other hand let q 1 , ••• , q, b e  a ll the minimal prime
divisors o f n.S. Then we have again by Lemma 9

e((7r, b)S) e(mSq.)e((b, q u )S/q,,).

Let (PÇ, • ( P ,  nip') be all the induced spots of P  over
0, which have R  as a specialization, and let (Q1, , (Q;,
be all the induced spots of Q over p, which have R  as a speciali-
zation. Then for each u , there exists only one pair ( i ,  j )  such that
Sq .  is  a  component of P  x Q'j  o n  M O N .  In fact we easily see
that q„n (R ®  1), and q „r (l  O R ) correspond to P ;  and Q", (cf. the
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proof of Proposition 1). Then Sq .  is a quotient ring of (Mtn n P;)
(2)0 (q ,In n q ,), and hence by Lemma 5 and Lemma 6 we have

e(7rSq „) = l(Sq .1(7r)) = l(S4 „1(nt; , it'i ))4P;1(7r, PÇ n 4(41 7r, Q'i nn)) .

W e have also by Lemma 8 and Lemma 10, fo r a  fixed (i. j),

i o (R; e(bS/(in'i n ii))

T 081

% n/) e((b, '„) S/ /(Sq„ , ICJ )).

Therefore we have

c((7r, b)S) io(R: PaP(Q : Vs)

and hence

i o (Rh ; P-Q)p(Rh; R) = E /.Q;),a(P : P)P(Q : (.,) •
h - i1 ,

q.e.d.

THEOREM 2. Let M  be a p--simple model otter o and let P. be
tlw unique generating spot over p. Let X  and Y be two positive
generalized cycles on M k  and let R  be a  spot o f M(13 . )  such that
(pp.(R) is  a proper component of  p '(X )•p '(Y ). T hen the coefficient
o f (Pe o (R ) in p'(X )•p '(Y ) is equal to that o f p'(X•Y).

PROOF. Since (1)p0 (R) is absolutely sim p le on  4 0(M ), there
exists a  specialization R ' o f  R  such that (f)p.(R') is absolutely
sim ple on tiV o (M )  an d  zero-dimensional. Then th e  residue class
field K

* o f  R ' is a  finite algebraic extension over K = o / p . K *  may
be contained in  the universal domain 12' of K . Then there exists
a  ground r in g  (0*, to') extended over o, whose residue class field
is K * .  It is easy to see that there exists a  component (R'*, 1'*)
of R ' over o* whose residue class field is K * .  Put M * =MO o *  and
le t P :  be the unique extension of Po over o*. Then M * is a p '-
simple model over o* by Proposition 5. Since (1)4(R'*) is simple,
R '* is unramified simple by Proposition 6. Therefore there exists
a  system (7*, d••• ,d„) of parameters containing a  prime element
T

* o f  o*.
L et (R*. f* )  be a  component of R over 0* such that R * has

R '*  a s  a  specialization. L e t h and  h' be the diagonal ideals of
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R *0 0.R *  and R '0 0 . R '*  respectively. The residue class field of
R '*  is K* = o*/ p*, we have b' = (d i 1  —  1  d „ - • • d „  1 — 1 d„)
+( f '* 0 1 ,  1 f ' * ) ' "  for any positive integer n i ,  and hence we see
easily that b'(R' * 00-1? / * )(a'.1, -01) is generated by n  elements
d, ®  1-1 O d ,  ••• d „ 0 1 - 10d .-

On the other hand, by Lemma 1, we see that (R * 0 0 . R
*is a quotient ring of (R '*® ,,R .'*) (1,•.1, •e l, and (b) is generatedb .1 ®bly)

n  elements d10 1 — d „ • • •  , d „0 1 - 1 0 d „ in  (R*0,,..R*)(b,1.01).
Let P  and Q  be components o f X  and Y  respectively such

that R  is a  component of P . Q .  If P *  and Q * are components of
P  and Q over o*  respectively such that p(P*)•p(Q*) has R *  as a
component, the coefficient of R *  in  p(P*)•p(Q *) is equal to that
of p(P* .Q *) by Proposition 8 .  This fact means that the coefficient
of R *  in 0-

0 ./ 0 (p(P)•p(Q )) is equal to that of 0-
0 ./0 (p(P•Q)), since we

have (3 -03100(P) -  P(Q)) ‘ 7 0.10(p(P)). 6 - 0.10()(Q)) k ro - to (P)) . P ( 0 - 0,10(0 )
and p(cre i 0 (P)•(7 0 , 1 0 (Q))— p(0-

0 ,,0 (P•Q ))=0 -
0 .1 0 (p (P•Q )) . Therefore the

coefficient of R  in p(P)•p(Q ) is equal to that of p(P•Q ), since R  is
the only spot of M  whose components over 0* contain R * .  From
this we can deduce our theorem. q.e.d.

R em ark . L et M  be an  absolutely irreducible model over o.
Then even if  M  is not P-simple, a  similar result as in Theorem 2
is obtained. Let P and Q be spots of M k .  Let R  be an unramified
simple spot of M -  M k , and put P0 =R ( „) R ,  where 71' is  a  prime
element o f o . I f  (Ppo (M )  is absolutely irreducible over K—oip and
if (frpo(R) is a proper component of Opo (p(P))•(Pp o (p(Q)), the coefficient
of R  in  p(P)•p(Q ) is equal to that of p(P•Q).

In  fact le t  P, • - •  , P., be all the generating spots of M  over

p, which are different from P .  Then M — (0  M (P i ) )  is  an open
8= 1

subset of M  containing R , P and Q, and a n--simple model over ir).
Therefore our assertion is obtained if we apply Theorem 2 to this
open subset.

PROPOSITION 9. L e t M  and N  be tw o absolutely  irreducible
models over o  such that M  dominates N. Suppose th at  M  i s  an
af f ine model defined by  o [ x ] .  Let P  and Q  be a spot o f  M , and
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i t s  projection on N k  respectiv ely , such that Dp(P): q5 Q (Q )]< cc .
I f  Q' is an induced spot of Q over p such that O ,(o [x ]) is integral
over (f)0 ( Q ) .  Then the coef f icient of  Q ' in p(Prm N (P ) )  is equal to
that o f Pr" N (p(P)).

P R O O F . P u t  (Pp(o[x])---  o [X ] a n d  S=4) ( ;,(q ) [ . q .  Then S  i s  a
finite thQ (Q')-module and the m axim al ideals q„ •-• , q r  o f  S corre-
spond to the spots P„ ••• . Pr  o f  M  projected to Q '.  Then we have
by Lemma 7

e(7r0Q(Q')) D p(P ) (1)(4(Q)1 r1, 1(.7rS 56o (V ))

=  Ê  e ( T S )  D i , (Pi) :550 2 ' ) ]  =  e ( -1-5br(Pi))EOp i (P i):0 0 '(q )]

and  hence

,(Q ; Q')E6 , (P )  , f, e(Q)] : P.))Dp 1(P i) 00 W ) ]
q.e.d.

THEOREM 3. Let M and N be two absolutely irreducible models
modulo p  such  that M  is complete and dominates N . L e t  P  be a
spot of M k and let Q be its projection on N. Let Q ' be an induced
spot of Q  over p  such that if  P ,,  ,  P „  a r e  all the induced spots
o f P  over p whose projections on N are Q'. Suppose that there exists
an open subset A of M which is an affine model and contains P„ .••,P„.
T hen the coefficient of CPQ.(Q ' )  in Prm i

 N i(p '(P )) is equal to that of
p'(PrmN (P )), where Q„ is the  unique generating spot of N over p  and
where NI' and N' are the induced models of M  and N  with respect
to the generating spots.

P R O O F. W e m ay assum e that [4 (P ): 4 ) 0 (Q )]< 0 .0 . L et o[x]
be th e  affine r in g  o f  A .  Then it is sufficient by Proposition 9 to
show  that Op(o[x]) is integral over (1)0 (Q'). I f  it is not so , there
exists a valuation ring v of Op(P) which dominates tk,(Q') and does
not contain p ( o [ x ] ) .  Since M is complete, there exists a  sp o t P '
o f  M  such that P '  is contained in  M (P ) and  (Pp(P') is dominated
by y. Since P ' dominates Q', the dimension of P ' is not less than
that o f  Q '.  On th e  other hand since P ' is  a  specialization o f  P.
th e  dimension o f  P ' is not m ore than that o f  P , an d  hence they
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a re  equal to each other. Therefore P ' is an induced spot o f  P
over p. Since P ' does not contain o [x ],  P ' is different from any
P. (i=1 ,  ••• ,n). T h is  is  a  con trad ic tion . q.e.d.

COROLLARY. Let M  and N  be two absolutely irreducible models
modulo p  such  that M  dominates N .  I f  M  is  a projective model,
then fo r  any  spot of Mk, we have Pe"' N , (p'(P))=p'(Prm N (P)), where
M ' and N ' are the induced models o f M  and N  with respect to  the
generating spots over p  respectively.

L et A l be a n  absolutely irreducible model modulo p  with the
generating spo t P„ over P. Now we assume that Po is norm al. L et
f  be a n  element of th e  function field L  o f  M . Then P„ contains
f  o r  1/f, since Po i s  a  valuation r in g .  Therefore we can define a
generalized quantity f  o f th e  function field  of 6 , 0(M ) over K. In
this situation we have  the  following

THEOREM 4. Let M  be an absolutely irreducible model modulo
with the generating spot P o over p. Suppose that P o i s  normal.

Let f  be an element of the function fie ld  o f M , such that I is  an
element o f  the function field of 4)p0 (M ) other than zero. Then we
have P'((f)m )=P(PO(T);p 0 ' M  •

Proof. L e t  R  b e  a  s p o t  o f  M  corresponding to a  s p o t  f ? of
rank 1 in  (Ppo (M ) .  Then R  is o f  rank 2. First w e assum e that f
is contained i n  R .  By assumptions f  is not contained in  th e
m inim al prim e divisor ni o f  (7 r)R , since 141 i s  P „ .  Therefore if  f
is not a  unit o f R , (7r, f )  is a system o f  parameters o f  R  an d  hence
we have, by Lemma 9,

e((7r, f))R) = e((7)R„1)e((7r, f)R1m)

e((f)Rq i ) e((z , cliM/qt)

where q„ •-• , q„ a r e  a l l  the  m inim al prim e divisors o f  ( f ) R .  If
we denote by  v ( J )  (resp. vR i ( f ) )  the coefficient of  l  in ( / )  (resp.

that o f  R i  i n  ( f ) ) ,  th e  above relation means that

ik(Pu)vTA.T) = vRi (f )p(R i ; R ),
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i f  we put R 1 = R 1 . Therefore we easily see that the coefficient of
of A' in p'((f)m ) is equal to that of it(P0)(1),,,p  (m ) .

If f  is  a un it o f R , then the coefficients in both generalized
cycles are zero.

If f  is not contained in R , we may put f= t,/ t„  where t, and
t. are  elements of R  not contained in  in. In fact f  is contained
in  Po = R„, and not in  inR,„. Therefore we have

/4(P0)V (t 1) = vR i(t,)p,(R'i  R )
J-1

and

AP 0) rTz(1 2) = R,j(t OA ; R)

where R ; (j-=1. ••• , r) a re  a ll the spots corresponding to the
minimal prime divisors of (t ,)R  or (t 2 )R.

On the other hand it is easy to see that

v ( 11) =  vi(7)+z7A10
and

V R / (t =  V R I( f)±  V ie ( t2 )  •

Therefore we have

A N u A f ) v ie(PA R ; ; R)
j -,1

This means our theorem. q.e.d.

COROLLARY. Let M be a p simple model over o with the generat-
ing spot P. over p. Let f  be an element of the function fie ld  o f M.

Then if f  is  an element of the function field o f  (f)p.(M )  different

from  zero, we have p'((f) m )=(f) o p o c m ) .

§ 5. Relation between models over o  and P- varieties

L et ( L I ,  p )  be a  discrete valuation r in g  o f  rank 1 with the
quotient field k. L e t V  be an affine variety defined over k  and
le t  (x ) be a  generic point of V  over k. Then it is easy to see
that the set of all the specialization rings of points of V in k(x)
is an affine model defined by k[xl, which will be denoted by M k ( V).
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Now we consider the affine ring o [x ] over o. Let M (V ) be the
affine model defined by o [x ] .  Then the reduced model of M(V)
over k  is obviously Mk (V ) .  I f  V  is  the bunch obtained from V
by the reduction with respect of p in the sense of [8 ] ,  then it is
easily seen that M(V)—Mk (V ) is the set of all the specialization
rings of points of V in k (x ). Moreover the generating spots of M(V)
over p  correspond to  the generic points of the prim e rational
components o f  V  over K =0/p. Conversely le t  M  b e  a n  affine
model defined by o[x], which is assumed to be absolutely irreducible
over o. Then if we denote by V the locus of (x) over k , then Mk

i s  M k(17 ), and M (V ) is nothing else than M . W e shall call a
complex notion of V and V  an  aff ine P-variety , and we denote it
by (V, V).

L e t V ' be an affine variety defined over k  and let (x ') be a
generic point of V ' over k. Then it should be noticed that even
i f  k [x ]=k [f ],  we have not always o [x ]= o [x l and hence M(V)
is not always equal to M (V '). We have M (V )=M (V ') if and only
if (V , V ) corresponds to  (V ', V ') b iregu larly  everywhere o n  V
and V'.

Let (a) be a po in t o f V or V . Then we denote by M(V),„,
the locus of the spot corresponding to (a).

A p-variety  in the sense of [ 8 ]  is defined as follows :
( 1 )  There a r e  given a  finite number o f  affine P--varieties

( V,, V ,), ••• , (V„, V„) satisfying the following conditions :
(i) There exist generic points (x,) , , (x„) o f V„ ••• , V„ over

k  respectively such that k (x ,)= ••• =k (x „)=L . We shall denote by
M1 the affine model defined by o[x i ]  for each i.

(ii) For each i, there exist a  finite number of points (au )  of
(V 1 ,  V1)  such that the union of n  models M Mi —( V  At k a )  is

also a  model M  in L  defined over o.
( 2 )  Let M I, be the reduced model of M  over k , and we denote

b y  V  an  abstract variety defined over k  corresponding to Mk in
th e  sense o f  [4 ]. ( V  is  a n  abstract variety defined by affine
representatives V„ ••• , V„ with some frontiers).

(3) Let P,,•••,P„, be the generating spots of Mover p, and let
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Wi be an algebraic set, i.e., an algebraic variety in the sense of
of Serre [7 ] ,  which corresponds to the induced model ( i (M ) for
each i. We shall denote by V  the union W „  ,  Wm . V is also
an algebraic set defined over op.

( 4 )  A ti-variety is defined as a  complex notion of V and V .'"
We shall denote henceforce a P--variety thus defined by (V , 17).

When a  p-variety (V. V) is given, we shall denote by M(V, 17)
the model obtained in  (1)-(ii).

Conversely le t  M  be an absolutely irreducible model over o,
and let A , ,  •-• , A n b e  affine models which cover M . L e t ( Vi , 171)
be the affine p-variety corresponding to A i  fo r each i. Then it is
easy to see that there exists a  p-variety ( V , V ) with an affine
open covering (1/1 ,  Vi )  such that M  is equal to the model M (V , 17 ).

It is also easily seen that fo r two 1-varieties (V , V ) and
(V ', 17 '), which h ave th e  same function field over k ,  w e have
M (V , V)--=M (V', V ')  if  an d  on ly i f  there exists a n  everywhere
biregular birational correspondence between ( V , V ) and (V ', V').

Next we shall show that the operation p ' defined in  § 3  is
equivalent to the operation p  defined in  [8 ] . In  order to  do so,
we shall consider to represent the multiplicity of a proper speciali-
zation"' over o by that of a primary ideal of its specialization ring.

Theorem  5•
1"  L et ( t )  be a se t o f  quantities in  n  and let (T)

be a  finite specialization o f  ( t)  over o ,  w hich is a se t o f  quantities
in  112'. L et (s) be a se t  o f  quantities in 12 , algebraic over k (t) and
le t (0) be a proper specialization o f  (s) over the specialization ring

Ut) — *H i  L e t  (R, m ) an d  (S, r )  be the specializ ation rings

[(t)---■ (T)] and [(s, t) (0-, 7 - ) ]  respectively. T h e n  the multiplicity
o f  ( a )  a s  a  proper specializ ation o f  (s) ov er R  is  eq u al to
e(mS)[K(T, 0): K ern if  th e  following conditions are satisfied:

13) This definition is not apparently the same one as given in  [ 8 ] ,  but attentive
readers will find easily that they are essentially the same.

14) As for the definition, see § 2  in  [8 ] .
1 5 )  T his theorem gives more precise result than the theorem 2  in  [ 8 ] ,  and the

theorem 3  in [ 8 ]  will be obtained from this theorem using Lemma 7.
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(i) o [t ] is integrally  closed and o [t , s i  is integral over 4 1 1
(ii) R  is  a simple spot.
(iii) k (t) is separably generated over k  and k (t, s) is separable

algebraic over k(t).
Moreover ( i i i )  is not necessary i f  o  satisf ies the finiteness con-

dition f o r integral extensions."'

PROOF.")  F ir s t  w e  assume that k (t, s) is separable extension
o f  k(t). L e t ( t )  b e  (t„ ••• , t„) a n d  le t  ( s )  b e  (s,, ••• , s,„). Let
u „ ••• , u„_„, be independent variables over k ( t ) .  Then if  we put

=u t  + u n + i si ,  it is  e a sy  to  se e  th a t k(u, t, s, , ••• , s,„)

=k(u, t, On the other hand let z , ,  fi, , „  be independent
ovariables over K(rr) and let o' be the specialization ring [(u) — ÷ (a)].

Then (I-, 0- )  is also a  specialization o f ( t , s )  over o'. Let (R ', ne)

b e  th e  specialization r in g  [(t) '(r)]. Now we notice that if
• • •  , c4 . , i )  and (al , ••• , cr )  are specializations of (s,. ••• , s„,.,)

over R ', (0• = (o - " )  if and only if
Let f (X )=X `i -i-c,X d - I+ +c d  be the irreducible equation for

s„,,, over k(u, t). Then by assumptions all the ci  a re  in  o[t, u].
Therefore we can consider the equation .T (X ) in  K (7, ii)[X ] ob-
ained from f (X )  by reduction of coefficients modulo p.

Let ( s 1') , ••• ,(s ( d) )  b e the complete set of conjugates of (s)

over k(t). If we put u iti+  2 then (s T , i  . •-•
1 - 1

i s  the complete set of conjugates of s„,_, over k(u, t). Therefore
the multiplicity X  o f (0- )  in  the specialization (0- `") , ••• ,

 ( a d ) )  o f
( s " ) ,  , (..54 ) )  is  equal to  that of O- „, , a s  a  root of j(X ) , where
O m s i  = f i t r i+ _„(Ti. On the other hand let g(X ) be the equa-,-1
tion for over r e ( r ,  a). Then f (X )= g(X ) / h(X ), where h(X ) is
an equation in K (7, f i)[X ] such that h(m _,) 1-0. Therefore if
is  a  root of g(X ) of multiplicity we have X = X 'p . .  Let S ' and

0o' ,
SÇ b e the specialization rings [(t, s) a ) ]  an d  [(t , s,„+ ,) —÷

16) As for the definition, see the introduction of [4 -I].
17) The original idea of this proof is due to the proof of Theorem 5 . 1 6  in  [5 ] .
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a-„, respectively. T hen S'i i s  a  quotient o f  R Is„,,,], which
is isomorphic to R T X ]l( f ( X ) ) .  Since R ' is  sim ple, the unmixed-
ness theorem holds in  R '"  and hence in  S . 1 .̀ S in c e  S ; is  a local
ring, any system  o f  parameters in SÇ is  a distinct system o f  para-
m eters."  S ince R ' is regular an d  rank R '=S 'i ,  the m axim al ideal
in ' o f  R ' is generated by rank  SÇ e lem ents a n d  hence we have
e(iii'S',)=/(SUin'S'1). M o re o v e r  it  is  e a s ily  s e e n  th a t  SUin'Sf
is  isom orph ic to  (K ( f i ,  7 ) [X ]/ (g (X )k ) ) , . Therefore we have
e(in'SD = X' and hence X = X ',L6= e(iit'S a f f ( a ,  '7, m .„ ) .  Since
(s )  has the  un ique  specialization ((r) over S Ç ,  S '  is integral over
SÇ . The quotient field  of S ' is that of SÇ and  hence, by assump-
tions, S' is  a  finite S'i -module. Therefore, by Lemma 7, it is easy
to see that

e(ne =  r tn ( n t 'S '; e(it'S`)Eic(rt, 0 - ) :  IC07, 7 , rf m . , i ) ]

Since K(fi, 7 , 0 - )  is purely inseparable over T , X  is equal
to  e(iii'S')EK(Ii. 7, : (ii. T ) ] ; .

 I t  is  e v id e n t  th a t  e(inS)--e(nt' S ')
u /C‘ T ,  ( T ,  1C‘ 7 , , i = 7 , : KV( , ,a n d  r ( ( r ( 7 a n d  hence w e obtain

X = e(iitS)Etc(T, c r ) :  K e rn ,
I f  k (t, s)  is not separab le over k (t), l e t  L  b e  th e  separable

closure of k (t)  in  k (t, s) a n d  A  the intersection of L  and  itt, s].
Then A is an affine r in g  r[t ,  r] over o  and  o[t, s ]  is integral over
A .  Therefore a  un ique  specialization (7 ,  p) o f  (t, r ) is determined
by a specialization (7 ,  (r) o f  (t, s) over o and conversely any speciali-
zation (7 ,  p) o f  (t, r)  over o  is extended to (7 ,  a l  o f  (t, s) uniquely.
I f  X0 i s  th e  multiplicity o f  (p) i n  a  specialization o f  th e  complete
set of conjugates o f  (r) over k (t), the  mutliplicity o f  (OE) in  a  com-
plete set of conjugates o f  (s )  over k(t) is equal to X „Lk(t, s): k(t, r)].

I f  S , i s  t h e  specialization r in g  [(t, r) (T, p)],X o  is  e q u a l to
e(InS0) pc(7-, p )  KM] ;  b y  t h e  above in v e s t ig a t io n . O n  th e  other
h an d  it  is  e a sy  to  se e  th a t S  is in tegral over S,,. Since now o
satisfies th e  finiteness condition for integral extensions and  So i s

18) See Theorem 6  in [3 ] .
19) See Propositions 8  and 9 , and Remark 1  of p. 211 in [3 ] .
2 0 )  See Theorems 4  and 5  in [3 ] .
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a spot over o, S  is  a finite Se --module. Therefore, by Lemma 7,
we have

X = Xe [k(t, s): k (t, r ) ]  =  e(mS„)[K(r, p ) :  K (T ) I [k ( t ,  s ) :  k ( t ,  r)]
ovr, 0- , : K  j i= e(n1S)[ic(r,0 - ): K e r ,  p a [ K ( r ,  p):K(T)] ;  = e(niS)1 (

q.e.d.
Now we shall show that our multiplicity It( )  is equivalent

to  p (  ;  )  defined in  [ 8 ] . ' ) It is  su ffic ien t to  treat o n ly  affine
varieties.

Let V" be a prime rational cycle over k  in an affine space A",
where a system of coordinates is fixed, and let C  be a prime com-
ponent of the bunch of varieties obtained from V by the canonical
reduction with respect to this system o f coordinates. Let P "  be
a projective space containing A " and let Ve b e  the closure o f V
in P " .  Let V° be the bunch of varieties obtained from Vo b y  the
reduction with respect to p. Now we may assume that the residue
class field K  o f  o  is  no t fin ite . In fact i f  K  is finite, let t  and T

be independent variables over k  and over K  respectively. Then o
is extended to the functional valuation o f k (t) having the residue
class field tc(r). It is evident that we may replace k  by k(t).

Therefore there exists a hyperplane H  in P "  such that r i in
P" does not contain any component o f  Vo .  Let A ' and V' be an
affine space P"—  H and a prime rational cycle 17, —H in A ' respec-
t iv e ly . Let C ' be the prime rational cycle over K  in  P"—Ti cor-
responding to C .  Then it is sufficient to investigate V' and C' in
place of V  and C , since the treated properties are local.

Let (P, in) and (Q, n )  be the spots in M (A ') corresponding to
V' and C ' respectively. Then we have to show it,(P; /.6(V/ ; C'),
where the right hand side is the multiplicity defined in L8].

First w e assume th a t V ' h as no multiple components. Let
(x )  and ( )  be generic poin ts o f V ' and  C ' respectively. Let

(1=1 ,—  ,r; j=1 ,  • • •  ,n )  be independent variables over k(x)
and 711 (1 -1 , ••• , r  j = 1 , , n )  independent variables over K(0.

2 1 )  This is shown in [2] in the case when e satisfies the finiteness condition for
integral extensions,
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Put tifx; and 'r i i e;  fo r  e a c h  1. Moreover we put

- tiC (.1" Then it is easy to see that (x) is integral and
separable over 0*[t 1 , ••• t r i .  L et R  b e  th e  specialization ring

0*
[(t) (7 ) ]  and  le t S  be the specialization ring [(t, (7, e)].

0*
Then (71-)R  is the maximal ideal of R and S is equal to [(x)

If X is  the multiplicity o f (e) a s  a  specialization of (x) over R,
then by Theorem 5 we have X= e (M S ) [K (7 ,- i • :  K ( 7  , On
the other hand it is easy to see that e(xS) is equal to the multi-
p licity o f  th e  ideal generated  by ;-/- in  th e  specialization ring

[(x) (e)] and hence to Ab(P; Q) in  our sen se . Moreover it is
easy to  see [K(e): — , 7 ,  0 :  K ( 7 1 1  ,  7 ) ] ;  and hence we have
e(7,, )=x 1[,(0 :

However X/[K(e): K], is , by definition, equal to the multiplicity
p(V' ; C ') in the sense of [8].

Next we consider the case where V ' has multiple components.
L et (x ) and (e) b e a s  above, and let k* be a  purely inseparable
finite extension of k such that k*(x) is separable over k * .  Let 0*
be the unique extension of o  in  k* and let K* be the residue class
field of 0 *. Then K

*  is also purely inseparable over K. Let V(
be the locus o f (x )  over k * and  let C ( be that o f (e) over K

*

Let P, and Q, be the spots over 0* corresponding to V ; and C(
respectively. Then we have 1 ( 1, 1 ; Q,)=,a(V( ; C().

On the other hand p (V ') and p '(P ) are compatible with exten-
sion of ground r in g s . Therefore the equa lity  (P1 : 1 )  t6 ( 17 1:
means the equality p (P ; Q)= p(V ' ; C ').
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