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Let 0o be a discrete valuation ring of a field k# and let p be
the maximal ideal of o. Then the notion of a model over o,
defined by Nagata in [4], may be considered in a sense as a
complex notion of two models defined over different fields # and
o/p respectively. Let M be a model defined over o. Then M is
a set of spots which dominate o or k If we denote by M, the
set of all the spots in M which dominate k M, is an open subset
of M and is a model defined over k. On the other hand the closed
subset M— M, corresponds naturally to a (not necessarily irre-
ducible) model defined over o/p. Moreover each spot of M— M,
is obtained as a specialization of one of M, over o. Then there
arises naturally a question that how the structure of M, as a model
over k is reflected in that of M— M, as a model over o/p in this
specialization process over o. This work is initiated by this
question.

On the other hand. an algebraic variety defined over k is
equivalent to a model defined over k (cf. Chapter 1. §9 in [4]),
and a theory of the reduction of algebraic varieties of any dimen-
sion with respect to a valuation b of a basic field # was developed
by Shimura in [8]. In Shimura’s theory, the reduction of a variety
V is naturally obtained, roughly spoken, by the reduction of
defining equations for V, if V is an affine variety or a projective
variety with a “fixed system of coordinates”. However when V
is an abstract variety, the reduction of V depends on a choice of
affine representatives of V. In other words it is impossible to
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define a ‘“‘canonical” reduction of V. On the contrary our theory
treats, from the first, a model defined over o and the reduction
process is uniquely determined on a given model. From our point
of view, the construction of a p-variety by Shimura can be con-
sidered as follows: Let V be a variety defined over k and let M,
be the model over k. which is equivalent to V. Then the
construction of a p-variety having V as its underlying variety is
essentially nothing but to construct a model M over o such that
M contains M, as an open subset and each spot of M—M, domi-
nates o. Grothendieck indicates also this standpoint in [1] (cf.
Chap. I, 3.7). For example, let V be an affine variety with a
generic point (x,, .-+, x,) over k. Then the canonical reduction of
V with respect to this system of coordinates is nothing but to con-
struct the affine model over o defined by the affine ring of x,, .-, x,].

From this point of view, our standpoint seems to be quite
natural. Moreover, it is not worthless to point out that our re-
duction theory may be regarded in some point as an intersection
theory of generalized cycles on models over o (cf. §3).

Shimura’s method in [8] depends on the theory of multiplicity
of proper specializations over a local domain, which is a generali-
zation of the specialization theory with respect to a field developed
by Weil in [9]. On the contrary our method makes extensive
use of the theory of multiplicity in local rings.

In §0, we shall recall the terminologies and the notations on
models defined in [4]. In §1, we shall summarize the preliminary
results, which will be necessary in the other sections. In §2, we
shall investigate some calculi of generalized cycles on models over
a discrete valuation ring. In §3. we shall first define an induced
spot @ of a spot @ which does not dominate the ground ring,
and then we shall define a multiplicity #(Q;®’). Using this
multiplicity we shall define two operations p and p’, which cor-
respond to the operation p defined in [8]. Moreover we shall see
that if the treated model is p-simple, #Q ; Q") may be considered
as a multiplicity of €’ as a component of intersection of @ and
the generating spot P, of the model over p. In §4, compatibility
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of p’ with calculi of generalized cycles will be discussed. In §5,
we shall show first that the notion of a p-variety in the sense of
[8] is equivalent to that of a model over o, and that the operation
p’ is equivalent to the operation p defined in [8]. Theorem 5
will play an essential role in the proof.

Here the author wishes to express his hearty thanks to Prof.
Y. Nakai for his encouragement and his suggestions during the

period for completing this work.

§0. Terminologies and notations

We use generally the terminologies and the notations in Nagata
[4] but we summarize some basic notations for convenience of the
readers.

A ring R is called /oca/ if it is a commutative Noetherian
ring with unit and it has a unique maximal ideal m. To denote
these facts we shall simply say that (R, m) is a local ring. Let
(R, m) be a local ring and let (S. n) be a local ring contained in
R, then we say that (R, m) dominates (S, n) if mnS=n.

Let 7 be a Dedekind domain or a field. Let L be a finitely
generated field over the quotient field of . A ring A is called
an affine ring of L over I if A is a finitely generated subring of
L over I and has L as the quotient field. A spot P of L is a
quotient ring of an affine ring A of L with respect to a prime
ideal of A. Then the set of all spots L which are rings of
quotients of A is called an affine model defined by A. A model
M of L is a set of spots of L satisfying the following conditions :
M is a union of a finite number of affine models over 7 and, for
any two spots P and P’ of M, we have P=P’ if and only if they
correspond, i.e.. there exists a valuation ring of L which dominates
both P and P’. L is called the function field of M. It is known
that an affine model is a model.”

A spot (P’, m’) is called a specialization of a spot (P, m) if P
contains P’ and P=P}, .. Let P be a spot of a model M. Then

1) See Lemma 1 of Chapter 2, §11 in [4-1].
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we denote by M(P) the set of all spots of M which are speciali-
zations of P. M(P) is called the locus of P in M. Let & be the
family of the sets which are unions of a finite number of loci of
spots in M. Then we can introduce a topology in M such that 3
is the family of the closed sets in this topology.®

Let (P, m) be a spot of M and let ¢, be the natural homomor-
phism of P onto P/m. Let P’ be a specialization of P in M.
Then ¢p(P’) is a spot of Pfm over ¢p(I), and it is known that
the set of such spots ¢p(P’) is a model in P/m over ¢p(/). This
model is called the induced model defined by P. Let I be a dis-
crete valuation ring with the quotient field £ Let M, be the set
of spots of M which contain k. Then M, is a model of L over &,
and is called the reduced model of M over k> M, is an open
set of M.

Let L and K be two function fields contained in a field. If
P and @ are spots of L and K respectively over I, the set of
spots which are rings of quotients of P[Q] and dominate both P
and Q is called the join of P and @ ; it will be denoted by J(P, Q).
Let M and N be models of L and K respectively. Then the union
of all J(P, Q), where P and @ run over all spots in M and N
respectively, is called the join of M and N and will be denoted
by J(M, N). It is known that J(M, N) is a model of L(K) over I.”

If the function field L of a model M over [ is a regular ex-
tension over the quotient field of /I, we say that M is an absolutely
irreducible model over I. Let M and N be two absolutely irre-
ducible models over I of the function fields L and K respectively.
Then L®,K has no zero-divisor. Let L* be the field of quotients
of L&,K and we regard L and K as subfields of L* in a natural
way. Then the join of M and N in L* is called the product model
of M and N and is denoted by MQQN.*

Let L be a function field over I, and we assume that L is
separable over the quotient field of I. Let L’ be a finite separable

2) See Chapter 2, §7 in [4-1].
3) See Chapter 2, §8 in [4-1].
4) See Chapter 2, §4 in [4-1].
5) See Chapter 5, §2 in [4-III].
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extension of L. Let P be a spot of L and let P be the integral
closure of P in L’. Then we denote by N(F;L’) the set of all
the spots which are rings of quotients of P with respect to the
maximal ideals of P. If M is a model of L, the union of all
N(P: L) where P runs over all spots in M, will be called the
derived normal model of M in L’ and denoted by N(M:L’). Then
it is known that N(M; L") is a model of L’ over I.*

Let M be an absolutely irreducible model of the function field
L over I. Let M be the union of affine models with affine rings
A; (1=1,2,-,n). Let I* be a Dedekind domain or a field con-
taining 7 and let L* be the quotient field of L&,I*. Let
A¥ be the affine ring A;R,;I* over I'* (i=1,2, .--,n). Then the
union M* of the affine models defined by A¥ is a model of L*
over I*. M¥* is called the extension of M over I* and is denoted
by MEI*.”

A valuation ring or a field which is a ring of quotients of /
is called a place of I. When L is a function field over /, a valua-
tion ring v of L is called a place of L if v dominates some place
of I. Let M be a model of L. Let v be a place of L. Then if
v dominates some spot P of M, P is uniquely determined and is
called the centre of v in M. A model of L is called to be complete
if every place of L has a centre in M.

Let x,=1, x,, -, x, be elements of a function field L such
that I[x,,-,x,] is an affine ring of L. Let M be the union of
affine models defined by affine rings I[x,/%:, -, x,/x;] such that

x;=0, respectively. Then M is a complete model of L over [/ and
is called the projective model of L defined by the affine coordinates
(xl » " x").a)

§1. Algebraic preliminaries

LemMma 1. Let R and R’ be two commutative rings with a
common subring R”. Let S and S’ be multiplicatively closed sets in

6) See Chapter 2, §5 in [4-1].
7} See Chapter 5, §1 in [4-III].
8) See Theorem 5 of Chapter 2, §2 in [4-1].
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R and R’ respectively. Moreover SQS’ be the set of the elements
sQs’ in RQuR', where s and s’ run over all the elements of S
and S’ respectively. Then, RsQp'R's is canonically isomorphic to
(RQr"R)sgs

The proof of this lemma has no essential difficulty. There-
fore we omit the proof.

Let R be a ring. Then we denote by /(R) the length of R
as R-module. 1f Sis an R-module, then we denote by /(S: R) or
I(S) the length of S as R-module.

LEMMA 2. Let (R, m) and (R, W) be two local rings with a
common subfield b and we assume that A=RQ,R’ is Noetherian.
Let q and q’ be primary ideals belonging to m and m’ respectively
and let R be a minimal prime divisor of (m, m)A. Then we have

{(An/(q, q") Ag) = I(As/m, m") Ag)/(R/a)/(R’[q") .

Proor. We shall prove by induction on /(R/q)+#(R’[/q’). If
UR[a)+I(R’/q')=2, then m=q and m’=q’ and hence we have
nothing to prove. Let /(K/q)+/(R’/q’) be larger than 2. Then we
may assume m==q and q=q’=0. Let q be a minimal m-primary
ideal of R different from 0. Then if @ is a non-zero element of §,
we have aR=q and 0:a4R=m, and hence aR is isomorphic to R/m
as R-module. Therefore, by induction hypothesis, we have as
Ag-module

(Ag) = l(QR®R)u) = I((RIM@R")a) = (Au/(in, m) Ag)/(R").
Again by induction hypothesis we have

I(Ag) = I(An[/aAs)+1(qAg)
= l(Ag/(m, M)AR(RYU(R/a)+ 1)
= I(Ag/(m, MYAN(RY(R).

This means that our lemma is true. q.e.d.

LEMMA 3. Let the notations and assumptions be the same as
in Lemma 2. Then we have

rank Ay = rank K+~rank R’.

PROOF. Since (m*", m*)Ag < (i, m")** Aa T (m", m'™) Ay for any



Reduction of models over a discrete valuation ring 129

positive integer n, we have by Lemma 2

I(Ag/(m, m") A){(R/m*™) (R’ m"*™) = I(Ag/(m, m')™" Ag)
= I(Ag/(m, m") Ap)(Rfm™) (R’ fm’™).

On the other hand it is known that there exist polynomials
fAX), g(X) and (X) such that f(#)=NIR/m"), gn)=I{R’/m'") and
h(n)=I(Ag/(m, nt")* Ag) for any sufficiently large ». It is also known
that the degrees of f. g and / are rank R. rank R’ and rank Ag
respectively.® Then the above inequality means that rank Ay is
equal to rank R+rank R’. q.e.d.

LemMA 4. Let the notations and assumptions be the same as in
Lemma 2. Then (m, M )RQR,R’ has no imbedded prime divisors.

For the proof, see the lemma 2, Chap. 5 in Nagata [4 III].

Lemma 5. Let (R, m) and (R’, w’) be two local rings with a
common discrete valuation ring o of rank 1. We assume that
A=RQ,R’ is Noetherian and let B be a minimal prime divisor of
(m, mYA. Let = be a prime element of v and we assume that =R
and 7R’ are primary ideals belonging to maximal ideals of R and R’
respectively. Then we have

I(Ag/=Az) = KAg/(m. w")Ag){(R/=R)I(R' | =R") .

Proof. This is a direct consequence of Lemma 2, if we notice
that A/=A is isomorphic to R/#R@ R’/=R’, where « is the residue
class field of o.

Next we shall list well known results on multiplicities of
local rings.

Let (R, m) be a local ring of rank d and let q be a primary
ideal belonging to m. Then there exists a polynomial o(q; ») of
degree d such that, for any sufficiently large #, o(q: n)=IR/q").
Let a be the coefficient of #7 in o{q: n). Then (d!)a is called
the multiplicity of a and is denoted by e(q).®

Let R’ be a semi-local ring with the maximal ideals mj, ---, m’
and let (R, m) be a local subring of R’ such that 1) each m/ lies

9) See §4 in [3]
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ovor m, i.e., miNR=m, and 2) each R’/m, is a finite module over
R/m. Let q; be a primary ideal belonging to m) for each i/ and
set '=qiN-+Nq;. Then R’/q’ can be regarded as an R-module,
and the length /(R’/q’"; R) as R-module is defined. It is known
that there exists a polynomial o(q’, R; n) such that o(q’, R: n)
=/(R’/q’"; R) for any sufficiently large n. Let d be the degree of
a(q’, R; n) and let @ be the coefficient of #* in o(q’, R; n). The
integer (d!)a is called the relative multiplicity of q’ with respect
to R and is denoted by rm(q’; R).®

LEMMA 6. Let (R, m) be a local ring of rank 1, let q be a
primary ideal belonging to m and assume that x is a superficial
element of q. Then if x is not a zero-divisor, e(Q)=e(xR)=I(R/xR).

For the proof, see the lemma 5.3 in Nagata [3].

LEmMMA 7. (The Extension Formula) Let (R, m) be a local
domain, and let R' be an integral domain containing R such that
R’ is a finite R-module. Let K and K’ be the quotient fields of R
and R’ respectively. Then, for aiy primary ideal q of R belonging
to m, it holds that rm(qR’; R)=[K’: K]e(q).

For the proof, see the corollary 2 of the theorem 2 in Nagata
(3]

LEmMMmA 8. (The Theorem of Additivity) Let (R, m) be a local
ring and let p,, -, v, be all of prime divisors of zero; we renumber
them so that co-rank p;=rank R if and only if i=<r. Letq,, -, q,

be primary components of zero belonging to b,, -, D, respectively.
Then, for any primary ideal q belonging to wm, it holds the equality

e(@)= > e((a +a:)/(a:)
For the proof, see the theorem 3 in Nagata [3].

LEMMA 9. (The Associativity Formula) Let x,,--,x, be a
system of parameters of a local ring R and set q= 3§ xR,
a= D% x;R. Then we have the equality

e(q) = 2 elaRy)e((a+p)/p).
»

where p runs over all (minimal) prime divisors of a such that
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co-rank p=d—s and rank p=s.
For the proof, see the theorem 8 in Nagata [3].

LemMma 10. (The Reduction Theorem) Let (R, m) be a local
ring and assume that the zero ideal of R is primary. Let b be the
prime divisor of zero. Then, for any primary ideal q belonging to
m, we have e(q)=e((q+P)/P)(R,).

For the proof, see the theorem 9 in Nagata [3].

§2. Cycles on models over discrete valuation rings

Let k be a field, and let (v, p) be a discrete valuation ring of
k of rank 1. We shall denote by x the residue class field of o.
For convenience we consider two ‘“universal domains” Q and Q'
which are algebraically closed fields of infinite degree of trans-
cendency over k and «, respectively. When we speak of a ground
ring extension v* of o, we always assume that o* is a discrete
valuation ring of rank 1 in €, which dominates o, and that the
residue class field is a subfield of Q'. We shall call an element
of Q (or Q) a quantity of Q (or Q).

Let M be an absolutely irreducible model over o. Let o* be
a ground ring extension of o. Then we can consider M@o*. Let
(P, m) be a spot of M. Put m* be a minimal prime divisor of
M(PR,0*) in PR,0*. Then P*=(P®,0*) is a spot over o*, and
we shall call such a spot P* a component of P over o*. Let =*
be a prime element of o*. If P contains k, the length /(P*/mP¥*)
is denoted by i{(P/o: P*[0*), and if P dominates o, the symbol
i(Pfo; P*/o*) stands for the length /(P*/(=*, m)P*),

A spot (P,m) of M is called simple if P is a regular local
ring, and moreover if a prime element = of o is not in m’, then
P is called unramified simple. P is called absolutely simple if any
component of P over v* is simple for any ground ring extension
o¥ of o.

An element Z of the free module generated by all spots of
M over the field of rational numbers is called a generalized cycle
on M. For a generalized cycle Z= 3 ¢;P; (P;€ M), each P; whose



132 Hiroshi Yanagihara

coefficient ¢; is different from zero is called a component of Z, 1If
¢; =0 for all i, we say that Z is positive. A cycle is a generalized
cycle whose components are absolutely simple and the coefficients
are integers.

Let o* be a ground ring extension of o, and let (P, m) be a
spot of M. Then we denote by o, (P) the generalized cycle
Si(P[o; P*/o*)P*, where P* runs over all components of P over
o*. By linearity, o, defines a homomorphism of the group of
the generalized cycles on M into that of M@ o*.

Let M and N be two absolutely irreducible models over o and
let (P, m) and (@, n) be spots of M and N respectively. We
assume that mno=nno. Let a be the ideal generated by m and
1 in P®,Q and let I; (i=1, ---, ¢) be the minimal prime ideals of
a. Then (PQ®,Q),=R; is a spot of M@N for each i, and set
PxQ= Y IR;/aR)R;. If P and @ dominate k, PR,Q=PR.Q
and hence by Lemma 3 rank P+rank @=rank R; for each {. If
P and Q dominate o, PQ,Q/(x) is isomorphic to P/(x)R, Q/(x)
and hence it is easily seen, by Lemma 3, that rank P+rank @
=rank R;+1 for each 1.

Let X=3Ya;,P; and Y= 31b;Q, be generalized cycles in M
and N respectively, such that all the components of X and V
dominate the same place of 0. Then we say that Xx Y is well
defined and put Xx Y= 3 ab,(P;xQ),).

Remark: 1) Let M’ and N’ be open subsets of M and N, and
let P and @ be spots of M’ and N’ respectively. Then Px @ is in-
variant, whether Px @ is regarded as a generalized cycle in M N
or in MQN".

2) Let (£, m,) and (Q,, 1) be spots of M and N respec-
tively, such that ¢p (M) and ¢o (N) are absolutely irreducible
models over o/m,Nno=0cf/n,np. Let P and Q be in M(P,) and N(Q,)
respectively, such that Px@ is well defined. Let R be a com-
ponent of Px¢. On the other hand it is easily seen that P,x@Q,
is a spot of MQ@QN. Then we have from definitions that the
coefficient of R in Px@Q is equal to that of ¢p xo,(R) in ¢p (P)
X¢Q°(Q)-
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ProrosITION 1. Let M and N be two absolutely irreducible
models over o, and let X and Y be generalized cycles on N and N
respectively. Then if XX Y is well defined. we have

o'o'/o(XX Y) = "'o‘lo(X) xo—v*/D(Y) ,
for any ground ring extemsion o* of o.

Proor. It is sufficient to prove the case where X and Y are
spots (P, m) and (@, n) respectively. First we assume that P and
@ contain k. Let (R, I) be a component of PX@, and let (R*, [*)
be a component of R over o, Then R is a quotient ring of
PR,Q=PR,Q with respect to the prime ideal (P®,Q)N! and R*
is the quotient ring of R®,0* with respect to the prime ideal
(R®,o*)NI*, and hence R* is the quotient ring of (PQ,Q)R,.~k*
with respect to (PQR,Q)R.Ek*N1* where k* is the quotient field
of v*. On the other hand if we regard P®,k* and Q@,k*
as subrings of (PQ,Q)Q:k*=(PR,k*)Q,(QR,k*). we put
m* = (PR E)NI* and k= (QQk*)NI*. Then we have m¥*n P=m.
wNQ=u, rank m=rank m* and rank n=rank *, since we have
rank m* +rank n¥*=rank R*¥*=rank R=rank m-+rank n by Lemma 3.
Therefore P*¥=(PQ k") and Q*=(Q ®,k*¥),- are the only spots
such that they are components of P and @ over o* respectively,
and their product has R* as a component.

Since R* is a quotient ring of R®,k* and (m, n)R is a pri-
mary ideal belonging to [, we have. by Lemma 2,

HR*[(m, n)R*) = I(R*[IR*)(R/(m, n)R).

Since we can easily see that R* is also a quotient ring of
P*®,.Q* by Lemma 1, we have

[(R*/(m, n) R*¥) = [(R*[(m*, ¥) R¥)/(P*/mP*)[(Q*/nQ¥*) .

Therefore the coefficient of R* in o, (Px Q) is equal to that of
Tortol P) X 507 Q).

Next we consider the case where P and € dominate 0. Let R*,
R, P* and Q* be as above. Let z* be a prime element of o*. Then,
calculating the length J(R*/(=*, m, WR*)=I(R*/(z*)/(m, W)R*/(z*)),
we obtain the desired result. But the calculus is quite similar to
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the above case, and the details are omitted. q.e.d.

Let M be an absolutely irreducible model over 0. Let P and
@ be spots of M such that P and @ dominate the same place of
o, and let (R, I) be a component of M(P)nM(Q) such that R
dominates the same place as P and Q. We put O=R®,R and
we understand by the diagonal ideal () of O the ideal generated
by the elements x@1—-1®x in O. Let m and n be the prime ideals
of R such that P=R, and @=R,. Then the ideal I'=(®1, d(D))O
is a minimal prime divisor of (n®1, 1®n, dO)) in O. Then
putting O=O/, we denote by i,(R; P-Q) the multiplicity e(d(D)T/
m®1, 1QW)L). We put P-R=S,i(R; P-Q)R, where R runs
over all components M(P)NM(Q) dominating the same place as P
and Q. Let X=3a;P; and Y= 3>}b;Q; be two generalized cycles
on M such that all the components of X and Y dominate the same
place of o. Then we say that the intersection cycle X-Y of X and
Y is well defined and we put XY= 31 ab,(P;-Q;).

Remark. Let (P,, m,) be a spot of M such that M(P,) contains
P and @, and ¢p(M) is an absolutely irreducible model over
o/onm,. Then it is easy to see i (R; P-Q)=iypam(Pr(R);
'f’Po(P )'¢P0(Q))-

PrROPOSITION 2.' Let M be an absolutely irreducible model over
o. Let o* be a ground ring extension of o and let X and Y be
generalized cycles in M such that XY is well defined. Then we have

Fono X+ Y) = 050 X)050,(Y) .

Proor. It is sufficient to prove the case where X=(P, m) and
Y=(Q, n) are spots. Let R be a component of P-Q and let (R*, [*)
be a component of R over o*. Put O*=R*®,.R*, let b* be the
diagonal ideal of O* and let T* be the quotient ring of O* with
respect to the prime ideal (I*®1, b*). Then £* is also a quotient
ring of (R®,0*) R (R®,O*). First we assume that P, Q, and R
contain k. Then it is easy to see by Lemma 3 thal all the ninimal

10) This result and proof are essentially shown in Theorem 5.4 in [5]. Notice
that this result gives compatibility of our definition with that of Samuel [6].
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prime divisors of (MR*®1, 1@ uR*)T* have the same rank equal
to rank m+rank n, and hence their coranks are equal to each
others.' Therefore we have, by Lemma 8 and Lemma 10,

e(d*T*/(MR*® 1, 1QnR*)T*)
= 31 0T/ ) [(SHe,(MR* @1, 1QR*),

where }, runs all minimal prime divisors of (MR*®1, 1 @ nR*).

Let (P¥, m¥), .-, (P¥* m¥*) be all the components of P over o*
which have R* as a specialization, and let (Q¥, n¥), -, (Q¥ n¥)
be all the components of @ over o* which have R* as a speciali-
zation. Then for each P, there exists only a pair (7, j) such that
%, dominates both P* and Q¥ (cf. the proof of Proposition 1),
and we have, using Lemma 1 and Lemma 2,

UTE,/(MR*R1, 1®@nR*))
= I(TF,/(m¥Q1, 1QuNUP¥/mP¥)IQF/nQY).
Therefore we have, using again Lemma 8 and Lemma 10,
e(M*T*/(mMR*®1, 1QnR*)T*)
= 2, e(d*T*/(m*® 1, 1Q@n¥)TH)1(PX/mPF) Q¥ /nQ¥).

On the other hand, T* is a quotient ring of T ®,0* and hence
O* is a quotient ring of T ®,k* in this case. Then because of
p*=0LC* we have, for any positive integer »,
HE*/(0*, mR*®1, 1QnR*))
=KTH/(I®1, b, mR*®1, 1QuR*NIC/d", m®1, 1®n))
= [(R*/IR®I(T/(®", m®1, 1@n)),
applying Lemma 2 to (T/(n®1, 1@n))R.k*. Hence we have
e(dT*/(MR*QR 1, 1QnR*)) = I(R*/IRF)e(d3T/(m®1, 1Qn)).
Therefore we have
() i(R; P-@)i(R[o; R*[o*)
= ;io‘(R*: FQ)i(Plo; P¥o*)i(Q[o0: QF/o*).

11) “If p is a prime ideal of a spot P, then rank p+corank p=rank P” (Corollary
2 of Theorem 1 of Chapter 1 in [4-I].)
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If P, @ and R dominate o, then we consider the multiplicity
e(d*TH*/(=*, mR*®1, 1®nR*)) and we obtain the equality () in
the similar way as above, but we omit the calculus. q.e.d.

Let M and N be two absolutely irreducible models over o
such that M dominates N, i.e.,, any spot of M dominates a spot of
N. Let P be a spot of M and let @ be the spot of N which is
dominated by P; then @ is called the projection of P. The alge-
braic projection PrMy(P) is defined to be [¢p(P): $o(Q)]Q. For
any generalized cycle X, Pr¥,(X) is defined by linearity.

Next we shall consider a generalized cycle attached to an
element f of the function field L of an absolutely irreducible
model M. For any spot P of rank 1 in the derived normal model
M of M, let vp be the normalized valuation defined by P. Then
we put (m= X ve(f)P, where P runs over all spots of rank1 in
in M. We say that (f)s is the cycle of f on M.

Moreover when we put Pr¥,(()am)=(f)u, we say that (f)u
is the generalized cycle of f.

In the above we defined some operations of generalized cycles
on absolutely irreducible models over a valuation ring o. However,
of course, these definitions are available for models defined over
a field K. In this case any spot contains K. Therefore products
and intersections of generalized cycles are always well defined,
and we use symbols ig( ; - ) and og+x( ) instead of iy( ; - ) and
T ool )-

Let o be a discrete valuation ring of a field .. Let M be an
absolutely irreducible model over o. It should be noticed that
each operation of generalized cycles on M, is invariant whether
M, is considered as a model defined over a field %4 or as a model
over a valuation ring o.

§3. Operations p and p’

Let M be an absolutely irreducible model over o. Then it is
easy to see that the set of all the spots in M which dominate o is
a closed subset of M. Let P,, .-+, P, be the components of this closed
subset. Then each P; is called a generating spot over p. 1f M, is the
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reduced model of M over k, M is the union of M(P), -, M(P,)
and M,. Moreover M, and M(P),) have no common spots for each .
Let @ be a spot of M, and put My(Q)=M@Q)N( v M(P)).

Then M(Q) is a closed subset of M. Let Qi, ---, @; be the generat-
ing spots of the irreducible components of M(Q). Then the set
Po(@Q)), -+, Bo(RQ?) is the set of the generating spots over p of the
induced model ¢o(M). We shall call @, an induced spot of @ over
p for each i. Now we shall show the following

ProOpPOSITION 3. Let M be an absolutely irreducible medel over
o, let (Q, n) be a spot of M, and let (Q', n) be an induced spot of
Q over p. Then the transcendental degree of Q/n over k is equal
to that of Q' /v over x=o/fp.

Proor. Put i=@Q’~n and let = be a prime element of o.
Then (= 1)@’ is a primary ideal belonging to n’. Since rank @’
=rank fi4+-corank it and corank i=1, we have rank @ —1=rank Q.
On the other hand it is known that (trans.deg.of L/k)=(trans.
deg. of (Q/n)/k) + rank @ = (trans. deg. of (Q'/n’)/x) — 1 + rank @',
where L is the function field of M. Hence we have our proposition.

q.e.d.

Let (@', n") be an induced spot of a spot (@, n) of M,. Now
we define a multiplicity »(Q ; @) of @ as an induced spot of Q.
Let = be a prime element of v. Then (z)Q'/@Q Nn is a primary
ideal belonging to n’/Q’nn and hence the multiplicity e(=Q’'/Q Nn)
is well defined. Then we put #(Q; @)=e(zQ’/Q'Nn). In parti-
cular if Q is the function field L of M, we write #(Q’) instead of
#(L; Q). The following proposition is a direct consequence of
definitions.

PROPOSITION 4. Let M be an absolutely irreducible model over
o and let Q be a spot of M,. Let P be a spot of M, such that
M(P) contains Q. Then spot @ in M is an induced spot of Q if
and only if ¢p(Q) is that of ¢p(Q), and moreover we have H(Q ; Q')
= {(Pp(Q) : Pp(Q)).

12) See Corollary 3 of Theorem 1 of Chapter 1 in [4-I].
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Remark. In the above we treat the case where M is an
absolutely irreducible model over 0. But it is easy to see that the
notion of induced spots can also be defined on any model over o,
and Propositions 3 and 4 are true even if we replace absolutely
irreducible models by models over o.

Let M be an absolutely irreducible model over o. Now we
shall define an operation p, which is a homomorphism of the group
of generalized cycles in M, into that of M—M,. If Q is a spot
of M,, then we put p(Q)= 3¢’ M(Q : Q)Q’, where @ runs over all
the induced spots of @ over p. If X= > a,Q; is the generalized
cycle on M,, then we put p(X)= 3 a;0(Q)).

Now it should be shown that the operation p does not depend
on ground rings. In fact we have the following

PrROPOSITION 5. Let M be an irreducible model over o and let
o* be a ground ring extension of o. Then for any generalized cycle
X in M, we have 0 y4,(p(X)) = p(a5o(X)).

Proor. We may assume that X is a spot (Q, n). Let (', n)
be an induced spot of @ and let S be a component of @ over v*
Moreover let R,, ---, R, be all the components of Q over o* which
have S as an induced spot over p*. Then S is a quotient ring of
Q' R,0* with respect to a prime ideal I. Let i1 be the prime ideal
n®E’ and put S’=S/(M®1)S. It is clear that S’ is also a quotient
ring of Po(@)R,0* with respect to a prime ideal V.

Let » and »* be prime elements of o and o* respectively.
Then we have by Lemma 5

IS’} =S") = IS’ [(bo(M), 7*) SV bo(Q)] wdbe(Q'))(0* [ 0*)
= I(S/(=* v @1)S)Q'/(x. n)Q)(0*/z0*).
Since S’ is of rank 1 and = is not a zero divisor in S’, we have,
by Lemma 6, /(S'/xS")=e(=S’). Similarly we have /[(o*/=0*)
=e(wx0*). Therefore we have

e(zS’) = i(Q'/0; S[o*)MQ; @)e(z0*).

On the other hand let q,, ---, q, be the minimal prime divisors
of zero in ¢y(Q)®,0* which are contained in I'. q,,--,q, cor-
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respond naturally to K,, ---, R,. Therefore corank g, in S’ is one
for each i, and hence we have by Lemma 8 and Lemma 10

e(xS") = 32 e(=S'[0) (S})
= 3 elarSHUR/R)
= 3 ey (Vi@ Rifo*) .

If we put /(zo*)=/(z*"0*)=u, we have e(z),(S))=e(z"Pg/(S))
=ue(z*¢(S))=um(R;: S). Therefore we have

i(Qfo; S/ ; Q) = }?/”(R.-: S) i(@/v: R;/o¥). q.ed.

e

Next we shall give a criterion for unramified simplicity. The
next lemma is necessary in the proof.

LEmma 11, Let L be a function field over a ground ring v such
that L is a separable extension of the quotient field of o. Let P
be a spot of L and let = be a non-unit of P. Suppose that

(i) =P has only one minimal prime divisor m and =P, is the
maximal ideal of P,.

(i) P/wm is normal.

Then m=x=P and P is normal itself.

For the proof, see Lemma 4 in [2]. Although in Lemma 4
of [2] o is assumed to satisfy the finiteness condition for integral
extensions, the proof is also available for our Lemma 11. For the
derived normal ring of P is a finite P> -module, since L is a separ-
able extension over o.

PrROPOSITION 6. Let M be an absolutely irreducible model over
o, and let R be a spot of M which dominates o. Then R is un-
ramified simple if and only if the following conditions are satisfied :

(i) There exists only one generating spot P over » such that
M(P) contains R. Moreover p(P)=1.

(i) Sp(R) is a regular local ring.

Proor. First let R be unramified simple and let (=, £,, -+, ¢,)
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be a regular system of parameters containing a prime element =
of v. Then m==R is a prime ideal and R, is the unique generating
spot over p satisfying (i). Then (ii) is also evidently satisfied.
Conversely we assume that the conditions are satisfied. By (i),
xR has only one minimal prime ideal m and =R,=mR,. Since
R satisfies also the conditions in Lemma 11, K is normal and
hence =R has no imbedded prime ideal. Therefore »R=m, and
hence KR is unramified simple. q.e.d.

Let M be an absolutely irreducible model over o. Then we
shall call M to be absolutely irreducible modulo b, if M has only
one generating spot P, over b and if ¢» (M) is absolutely irreducible
over x=o0/p. Moreover if {(P,)=1, we shall call M to be a p-simple
model over o.

Let M be an absolutely irreducible model modulo p and let
P, be the unique generating spot over p. Then M is a disjoint sum
of M, and M(P,), and M(P,) has a one to one correspondence ¢p,
with ¢p (M). Therefore M can be considered as a complex notion
of two models M, and ¢p (M), which are models defined over
different fields # and «=o0/p respectively.

Now we shall define an operation p’ which is obtained natur-
ally from p. Let M be an absolutely irreducible model modulo p
with the unique generating spot P, over p. For any spot P of M,
we put p'(P)=d¢p (n(P)). Then p’(P) is a generalized cycle on
¢p (M). By linearity we define p’ for any generalized cycle on M,.

We shall terminate this section by showing that the multiplicity
#Q: Q) on a p-simple model M can be interpreted as an inter-
section multiplicity.

Let A be an open subset of M such that A is an affine model

over o and contains @ and . Let o[x,. -, x,] be the affine ring
of A. Then A is an induced model of a model B defined by a
polynomial ring o[ X,. -, X,]. Let R be the spot of B such that

A=¢4(B), and let (Q,, n,) and (@7, n;) be the spots of B such
that $,(Q,)=8Q and $(Q)=Q. Then we know that w(Q,: Q)
=mQ; ).

We put ©,=01®,Q1 and we denote by d, the diagonal ideal
of ©,. Then ?, is generated by » elements d, =X,®1-1®X,, -,
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d,=X,%1-1%X,. Let T, be the quotient ring of O, with res-
pect to the prime ideal (W®1, b)) and ii,=Qinn,. If = is a prime
element of o, (z)o[ X,, -+, X, ] is the prime ideal corresponding to
the unique generating spot P, of B. Since @ is a component of
BQ)~ B(P), (b,, =, 1,1, is a primary ideal belonging to
(b, MfQ@N1L,. Therefore e((d,, = 1, ®1)T,/(M,Q1L,) is well
defired. On the other hand we easily see by Proposition 3 and
the relations between ranks and coranks of spots that rank
/(1 ®1) is equal to n~1. Hence (d,.--.d,, =) is a system of
parameters of T,/(i,&®1). By Lemma 9 we have

e((bv T, ﬁ1®1)§1/(ﬁ1®1» = e((bn il!®1)E‘Tl(bl.ill®1>/(ﬁx®1))
< e((dy, 7, [QDT,/(b,. 1,®1)).

Since 5“‘,“;‘,@1}/(;’11®1) is a regular local ring, the first factor of
the right hand side of the above equality is one. On the other
hand since (b,, = {,@1)LT,/(d,. 11,®1) is isomorphic to ~Q;/MQ1,
the second factor of the right hand side of the above equality is
equal to w(Q,; @1).

Let m,.---.m, be all the minimal prime divisors of
(7. 1, ®1)<T,. Then it is evident that the coranks of m; are equal
to each other. By Lemma 9 we have

e((b]' T ﬁx®1)§xl(ﬁ\®1))
= 3 e, M DT,/ (1, BD) e((d,, m)T,/m)).
Since T,,,/(1,®1) is an integral domain of rank 1, we have by

Lemma 6 e((""r ﬁ1®1)§1m,~/(ﬁ1®1))=l(slm,'/("” ﬁ1®1))- There-
fore we have, by Lemma 8 and Lemma 10,

e((d,. =, ﬁ1®1)§1/(ﬁ1®1»
= re((d,. m)D/m) S i/ (7. RAD)
= ¢((b,, =, ﬁ1®1)§:/(”» ﬁ1®1))

and hence #(Q,: Q)=e((d,, =, L,QNDT,/(x, N,Q1)).
Now we put O=Q'®,Q" and let d be the diagonal ideal of
9. Let n and n’ be the prime ideals of @ corresponding to
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and . If we put —(Q D@ )w.eny. (0, 7 TR,/ (7, 1,651)
is isomorphic to (b, », n®1)T/(x, n®1) and hence we have
MR @)=e((d, 7, nQ1)T/(=, n@1)).

The right bhand side of this equality may be denoted by
i(Q; P,»Q) if we abuse the symbol, Therefore we may consider
(@ ; @) as an intersection multiplicity of Q" of two spots P, and Q.

§4. Properties of p’

In this section we shall show relations between p’ and oper-
ations of cycles defined in §2.

PrOPOSITION 7. Let M and N be two absolutely irreducible
models modulo p. Then M@N is also an absolutely irreducible
model modulo p. Moreover if P, Q and R are generating spots over
vof M, N and MQN respectively, then we have (R)= p(P)u(Q).

Proor. Let (P, m) and (@, n) be generating spots of M and
N over p respectively. By assumptions P/m and @/n are regular
extensions over x«=o/p. Therefore P/fm®@ Q/n is an integral
domain and hence (m, 1) is a prime ideal of P®,Q. This means
that M@N has only one generating spot over p, which will be
denoted by (R, ). Since R/! is the quotient field of P/m®, Q/n,
R/l is also regular over . Therefore (M Q@ N) is an absolutely
irreducible model over . On the other hand we have by Lemma
5 and definitions

KR) = UR/=R) = I(R/(m, W) R)I(P|=P)(Q] Q) = p(P) Q).
q.e.d.

COROLLARY. If M and N are Y-simple models over o, then
MQ@N is also a p-simple model over o.

THEOREM 1. Let M and N be two absolutely irreducible models
modulo p, and let X and Y be generalized cycles belonging to M,
and N, resppectively. Then we have p'(Xx Y)=p'(X)xp'(Y).

Proor. It is sufficient to show p(P)x p(Q)=p(Px Q) for a spot
(P, m) of M, and a spot (@, n) of N,. Let S be a component of
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p(PxQ), and let R,, -, R, be all the components of Px, which
have S as an induced spot over p. Then R; is a quotient ring of
P®,Q with respect to a prime ideal and is also a quotient ring
of S with respect to a prime ideal [; of S. It is easy to see that
SAn(m@LR,= - =SN"(m@1L)R,. This ideal of S will be denoted
by m. Similarly we shall denote SN(1@u)R; by n. Let (P’, m’)
and (Q’. ) be the projections of S on M and on N respectively.
Since S is a specialization of R; and the projections of R; on M
and on N are P and @ respectively, it is easy to see that P’ and
Q’ are specializations of P and @ respectively. Moreover we have
rank P=rank P’ and rank @=rank@’. Therefore P’ and @ are
only induced spots of P and @ respectively, whose product cycle
has S as a component., Put S*=S/(m, ). Then S* is of rankl
and =S* is a primary ideal belonging to the maximal ideal. Since
I,,--, [, are all the minimal prime divisors of (. n), we have by
Lemma 8 and Lemma 10

6’(?[5*) = ge((n» [:‘)S*/IIS*)I(S;’:/(:U, n))
- g,,(R,.; SY(R/m®1, 1R)).

On the other hand S* is also a quotient ring of (P’/mnP’)
R (@ /@) with respect to a prime ideal. Therefore we have,
by Lemma 5 and Lemma 6,

e(zS*)={(S*[xS*) - {(S*[(w/, W)S¥)I(P'[(m. MNP NUQ (=, uN Q"))
IS/ W)Y (P PY@Q: Q).

Therefore the coefficient of S in p(Px®) is equal to that of
pP(P)xp(Q). q.e.d.

Let M be an absolutely irreducible model over o of the func-
tion field L. Then M is called to be n-dimensional if the trans-
cendental degree of L over v is n. A spot (P, m) of M is called
to be r dimensional if the transcendental degree of P/m over
o/mrois r. Let P and @ be two spots of M such that P.Q is
well defined. and let n, r and s be the dimensions of M, P and @
respectively. Then a component R of P-Q is called to be proper
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if ‘R is absolutely simple and (» +s—n)-dimensional. Moreover let
X=2 a;P; and Y= 3 b,Q; be two positive generalized cycles of M
that X.Y is well defined. Then a component R of X.Y is called
to be a proper component of XY if R is a proper component of
P;«Q; such that M(P,)NAM(Q,) contains K.

PrROPOSITION 8. Let M be an n-dimensional absolutely irre-
ducible model over o, and let (P, m) and (Q. n) be two spots in M,
of dimensions r and s respectively. Let (R, 1) be a component of
P(P)-p(Q) such that R is (r+s—n)-dimensional and, if b is the dia-
gonal ideal of R@,R, MRQ,R)w.1g1y is generated by n elements
d,,-,d,. Then the coefficient of R in p(P)+p(Q) is equal to that
of p(P-Q).

Proor. Put S=(R/mNRQ,R/MAR)p.1@)/mnR. nary. By as-
sumptions it is easy to see that rank S is equal to n+1, and hence
(=, d,, - ,d,) is a system of parameters of S. If I,, -+ [, are all
the minimal prime divisors of bS, they correspond naturally to the
components (K,, I1), . (R, ) of P-Q, which have R as a
specialization. In fact we have I;=(d, (IInR)®1)S. Each R; has
evidently S as an induced spot over p, and hence [,, ---, [, have
the same rank and the corank. Therefore we have by Lemma 9

e((. 2)S) = hﬁ e(dSy,) e((=. 1,)S/1,)
— iRy P-@uRy: R).

On the other hand let q,.---,q, be all the minimal prime
divisors of #zS. Then we have again by Lemma 9

e(m, )S) = 3 elwSa,) el(®, 0.)S/a.) -

Let (P1, my), --- . (P,, m}) be all the induced spots of P over
b, which have K as a specialization, and let (@7, nj). - . (Q., n))
be all the induced spots of @ over p, which have KR as a speciali-
zation. Then for each u, there exists only one pair (7, j) such that
Sq, is a component of P{x@; on MPN. In fact we easily see
that q,N(R®1), and q,~(1®R) correspond to P! and Q) (cf. the
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proof of Proposition 1). Then S, is a quotient ring of (Pi/mn Pj})
®,(Q;/nNQ%). and hence by Lemma 5 and Lemma 6 we have

e(7Sa,) = I(Sa,/ () = I(Su, /s, WNIPI/(x, PiAm) @)/ =, Qyn).
We have also by Lemma 8 and Lemma 10, for a fixed (. j),

io(R; Pi-Q}) = e(dS/(m}, 1))
= X el(® a)S/a) (S, /(mi, 1))

a, 'y ')

Therefore we have
e((w. 0)8) = iR Pie@Q) (P P @ QF)

and hence

2 0o(Ry: Pr@Q) (R, R) = 22005 Pi-Qy) (P POu@: Q).

-1 7

»

q.ed.

TueorEM 2. Let M be a p-simple model ouer v and let P, be
the unique generating spot over p. Let X and Y be two positive
generalized cycles on M, and let R be a spot of M(P,) such that
dp(R) is a proper component of p'(X)p(Y). Then the coefficient
of $e(R) in p'(X)-p'(Y) is equal to that of p'(X-Y).

Proor. Since ¢p (R) is absolutely simple on ¢p (M) there
exists a specialization R’ of K such that ¢ (K’) is absolutely
simple on ¢, (M) and zero-dimensional. Then the residue class
field «* of R’ is a finite algebraic extension over x=o/p. «* may
be contained in the universal domain ' of «. Then there exists
a ground ring (o*, p*) extended over o, whose residue class field
is «*. It is easy to see that there exists a component (R’*, ['*)
of R’ over o* whose residue class field is «*. Put M*=M®®o* and
let P§ be the unique extension of P, over o*. Then M* is a p*-
simple model over o* by Proposition 5. Since §,¥(R"*) is simple,
R’* is unramified simple by Proposition 6. Therefore there exists
a system (=z*. d,. -, d,) of parameters containing a prime element
¥ of o¥,

Let (R*. [*) be a component of R over o* such that K* has
R'* as a specialization. Let b and d be the diagonal ideals of
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R*®.,.R* and R’'@®,R'* respectively. The residue class field of
R’* is «*=0%/p*, we have V=Wd,Q1-1Qd,, - .d,Q1-1Rd,)
+(I"*®1, 1Q"*)" for any positive integer m, and hence we see
easily that V(R™*Q®, R'*)w .1~g is generated by » elements
d,®1-1®4d,, - ,d,R1-1R4d,.

On the other hand, by Lemma 1, we see that (R* Qg R*).101)
is a quotient ring of (R*®R*)w .1+g1, and (d) is generated by
n elements d,Q1-1Q4d,, - .d,Q1-1Qd, in (R*Qu R*)p.1201-

Let P and @ be components of X and Y respectively such
that R is a component of P-Q. If P* and Q* are components of
P and @ over o* respectively such that p(P*)-p(Q*) has R* as a
component, the coefficient of R* in p(P*).p(Q*) is equal to that
of p(P*.Q*) by Proposition 8. This fact means that the coefficient
of R* in a5, (p(P)-p(Q)) is equal to that of o4, (p(P-Q)), since we
have o'o‘/o(p(P)'P(Q)) = ‘To‘/o(P(P))'a'o‘lo(l’(Q)) = P(‘To*/o(P))‘P("'o'/o(Q))
and  p(ogero(P) e 0om(R)) = pP(75/o( P+ Q) = 0 5eso(p(P-Q)). Therefore the
coefficient of R in p(P).p(Q) is equal to that of p(P-Q), since R is
the only spot of M whose components over o* contain R*. From
this we can deduce our theorem. q.e.d.

Remark. Let M be an absolutely irreducible model over o.
Then even if M is not p-simple, a similar result as in Theorem 2
is obtained. Let P and @ be spots of M,. Let R be an unramified
simple spot of M—M,, and put P,=K.,,, where = is a prime
element of o. If ¢, (M) is absolutely irreducible over «=o0/p and
if ¢p(R) is a proper component of ¢p (2(P))+dp (p(Q)), the coefficient
of R in p(P)-p(Q) is equal to that of p(P-Q).

In fact let P,,.--, P, be all the generating spots of M over

p, which are different from F,. Then M—(\:/M(P;)) is an open
subset of M containing R, P and @, and a p-simple model over .

Therefore our assertion is obtained if we apply Theorem 2 to this
open subset.

PrOPOSITION 9. Let M and N be two absolutely irreducible
models over v such that M dominates N. Suppose that M is an
affine model defined by o|x]. Let P and @ be a spot of M, and
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its projection on N, respectively, such that [¢p(P): ¢o(Q)]< o=
If Q' is an induced spot of Q over p such that ¢p(o[x]) is integral
over $o(Q). Then the coefficient of @ in p(Pr™y(P)) is equal to
that of Pr¥(p(P)).

Proor. Put ¢Pp(o[x])=0o[%] and S=¢o(@)[x). Then S is a
finite $4o(Q")-module and the maximal ideals q,, ---,q, of S corre-
spond to the spots P,,---. P, of M projected to . Then we have
by Lemma 7

(bl @D [$r(P) : ba(@)] = rm(S; $o(Q)
= S e(xSa) [$rdP) : $0(Q)] = 3 elwbr(PY) [6rPy) : $0(Q")]

and hence

MQ: QV[4p(P) : ba(@] = TP PI[6r P : d/@)].
q.e.d.

THEOREM 3. Let M and N be two absolutely irreducible models
modulo Y such that M is complete and dominates N. Let P be a
spot of M, and let Q be its projection on N. Let Q' be an induced
spot of Q over b such that if P,, -, P, are all the induced spots
of P over p whose projections on N are Q. Suppose that there exists
an open subset A of M which is an affine model and contains P,, -, P,,.
Then the coefficient of $q(Q") in Pr™’  A(p'(P)) is equal to that of
p'(PrMy(P)), where Q, is the unique generating spot of N over p and
where M’ and N’ are the induced models of M and N with respect
to the generating spois.

Proor. We may assume that [$pp(P): do(@)]<oo. Let v[x]
be the affine ring of A. Then it is sufficient by Proposition 9 to
show that ¢p(ofx]) is integral over ¢o(Q’). If it is not so, there
exists a valuation ring v of $p(P) which dominates ¢y(@") and does
not contain ¢p(o[x]). Since M is complete, there exists a spot P’
of M such that P’ is contained in M(P) and ¢p(F’) is dominated
by ». Since P’ dominates &', the dimension of P’ is not less than
that of @’. On the other hand since P’ is a specialization of P,
the dimension of P’ is not more than that of P, and hence they
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are equal to each other. Therefore P’ is an induced spot of- P’
over p. Since P’ does not contain o[x], P’ is different from any
P; (i=1,..,n). This is a contradiction. q.e.d.

COROLLARY. Let M and N be two absolutely irreducible models
modulo v such that M dominates N. If M is a projective model,
then for any spot of M,, we have Pr™ y(p'(P))=p'(Pr™y(P)), where
M’ and N’ are the induced models of M and N with respect to the
generating spots over Y respectively.

Let M be an absolutely irreducible model modulo p with the
generating spot P, over p. Now we assume that P, is normal. Let
f be an element of the function field L of M. Then P, contains
f or 1/f, since P, is a valuation ring. Therefore we can define a
generalized quantity f of the function field of ¢, (M) over «. In
this situation we have the following

THEOREM 4. Let M be an absolutely irreducible model modulo
p with the generating spot P, over p. Suppose that P, is normal.
Let f be an element of the function field of M, such that f is an
element of the function field of ¢p (M) other than zero. Then we
have I)’((f)M)zfl'(Pﬂ)(f_)'ﬁpo‘ M-

Proof. Let R be a spot of M corresponding to a spot R of
rank 1 in $p (M). Then R is of rank 2. First we assume that f
is contained in K. By assumptions f is not contained in the
minimal prime divisor m of (z)R, since R, is P,. Therefore if f
is not a unit of R, (=, f) is a system of parameters of R and hence
we have, by Lemma 9,

e((m, fHR) = e((7)Ry) el(z, fIR/m)
= T el(HR) el(z, 0) R/ |
where q,, -+, q, are all the minimal prime divisors of (f)R. If

we denote by vz(f) (resp. vg{f)) the coefficient of R in (f) (resp.
that of R; in (f)), the above relation means that

MPYURF) = 2 v )R : R),
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if we put Ry;=R;. Therefore we easily see that the coefficient of
of R in p’((f)a) is equal to that of u(P)( f)"m"""

If f is a unit of K, then the coefficients in both generalized
cycles are zero.

If f is not contained in K, we may put f=t¢,/¢,, where ¢, and
¢, are elements of R not contained in m. In fact f is contained
in P,=K,, and not in mR,. Therefore we have

MPYORT) = 2 owt) R R)

and
PR E) = 3 vt w(RS ; R),

where Rj (j=1.--+.,r) are all the spots corresponding to the
minimal prime divisors of (¢,)R or (f,)R.
On the other hand it is easy to see that

vi(E) = vR(f)+vr(E.)
and
l’Rg(l,) = UR;(f)““UR;(tz) .

Therefore we have
MP)vR(f) = Py vei( )RS R).
This means our theorem. q.e.d.

COROLLARY. Let M be a p simpie model over o with the generat-
ing spot P, over p. Let f be an element of the function field of M.
Then if f is an element of the function field of bp (M) different
from zero, we have p'((f)u)=(F ),,«,PO(M,.

§5. Relation between models over o and p-varieties

Let (o, p) be a discrete valuation ring of rank1l with the
quotient field k. Let V be an afline variety defined over %, and
let (x) be a generic point of V over k£ Then it is easy to see
that the set of all the specialization rings of points of V in k(x)
is an afline model defined by k[ x], which will be denoted by M,(V).
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Now we consider the affine ring o[x] over o. Let M(V) be the
affine model defined by o[x]. Then the reduced model of M(V)
over k is obviously M(V). If V is the bunch obtained from V
by the reduction with respect of p in the sense of [8], then it is
easily seen that M(V)—M,(V) is the set of all the specialization
rings of points of Vin k(x). Moreover the generating spots of M(V)
over p correspond to the generic points of the prime rational
components of V over «=o/p. Conversely let M be an affine
model defined by o[ x], which is assumed to be absolutely irreducible
over o. Then if we denote by V the locus of (x) over k, then M,
is M(V), and M(V) is nothing else than M. We shall call a
complex notion of V and V an affine p-variety, and we denote it
by (V, V).

Let V’/ be an affine variety defined over % and let (x’) be a
generic point of V’ over k. Then it should be noticed that even
if k[x]=k[x"], we have not always o[x]=o[x"] and hence M(V)
is not always equal to M(V’). We have M(V)=M(V’) if and only
if (V, V) corresponds to (V’, V') biregularly everywhere on V
and V.

Let (@) be a point of V or V. Then we denote by M(V)y,,
the locus of the spot corresponding to (a).

A p-variety in the sense of [8] is defined as follows:

(1) There are given a finite number of affine p-varieties
(V,, V), -, (V., V) satisfying the following conditions :

(i) There exist generic points (x,), -+, (x,) of V,, .-, V, over
k respectively such that k(x,)= --- =k(x,)=L. We shall denote by
M, the affine model defined by of x;] for each i.

(ii) For each i, there exist a finite number of points (a;;) of
(V:, V) such that the union of n models M'P=M,—(\J M;,,;) is

also a model M in L defined over o.

(2) Let M, be the reduced model of M over k&, and we denote
by V an abstract variety defined over k corresponding to M, in
the sense of [4]. (V is an abstract variety defined by affine
representatives V,, ..., V, with some frontiers).

(3) Let P, .- P, be the generating spots of M over b, and let
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W; be an algebraic set, i.e., an algebraic variety in the sense of
of Serre [7]. which corresponds to the induced model ¢p (M) for
each i. We shall denote by V the union W,,---. W,,. V is also
an algebraic set defined over o/p.

(4) A p-variety is defined as a complex notion of V and V.

We shall denote henceforce a p-variety thus defined by (V, V).
When a p-variety (V. V) is given, we shall denote by M(V, V)
the model obtained in (1)-(ii).

Conversely let M be an absolutely irreducible model over o,
and let A,,---, A, be affine models which cover M. Let (V.. V)
be the affine p-variety corresponding to A; for each i. Then it is
easy to see that there exists a p-variety (V, V) with an affine
open covering (V;, V.) such that M is equal to the model M(V, V).

It is also easily seen that for two p-varieties (V, V) and
(V', V%), which have the same function field over k we have
M(V, V)=M(V’, V') if and only if there exists an everywhere
biregular birational correspondence between (V, V) and (V’, V).

Next we shall show that the operation p’ defined in §3 is
equivalent to the operation p defined in [8]. In order to do so.
we shall consider to represent the multiplicity of a proper speciali-
zation'® over o by that of a primary ideal of its specialization ring.

Theorem 5. Let (t) be a set of quantities in Q and let (1)
be a finite specialization of (1) over v, which is a set of quantities
in Q. Let (s) be a set of quantities in (), algebraic over k(t) and
let (o) be a proper specialization of (s) over the specialization ring

[(t)—0>(r.-)]. Let (R, m) and (S,v) be the specialization rings

Al
L&) 2. ()] and [(s, t) = (o, )] respectively. Then the multiplicity
of (o) as a proper specialization of (s) over R is equal 1o
e(mS)[«(r, o) : (7)) if the following conditions are satisfied

13) This definition is not apparently the same one as given in [8], but attentive
readers will find easily that they are essentially the same.

14) As for the definition, see §2 in [8].

15) This theorem gives more precise result than the theorem 2 in [8], and the
theorem 3 in [8] will be obtained from this theorem using Lemma 7.
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(i) o[¢] is integrally closed and o[t s is integral over oft].

(i) R is a simple spot.

(iii) A(¢) is separably generated over k and k(t, s) is separable
algebraic over k(t).

Morcover (iil) is not necessary if o satisfies the finiteness con-
dition for integral extensions."

Proor.™ First we assume that k(f, s) is separable extension
of k(f). Let (¢) be (¢,,:-,t,) and let (s) be (s,.---,s,). Let
u,, -, u, , be independent variables over A(#). Then if we put

” wm
Spr= 2, Wi+ 2 U,.;S;, it is easy to see that k(. ¢, s, --,s,)
=

=k(u, ¢, s,...)- On the other hand let #,, -+, &,_, be independent

0
variables over «(7) and let o” be the specialization ring [(«) — (i7)].
Then (7, o) is also a specialization of (¢, s) over o’. Let (I, m)

’

be the specialization ring [(t)—n-”(-r)]. Now we notice that if
(71, +,0ms1) and (o7, --+, omy) are specializations of (s,.-,s,,.,)
over R’, (¢/)=(o") if and only if &,,=05,,.

Let f(X)=XY+¢,X? '+ -+ +¢, be the irreducible equation for
S+ over k(u, t). Then by assumptions all the ¢; are in o[, u].
Therefore we can consider the equation f(X) in «(r, ©)[X] ob-
ained from f(X) by reduction of coefficients modulo b.

Let (s®), -+, (s“°) be the complete set of conjugates of (s)
over k(t). If we put si),= iu;t;+ ‘2 U,:;8§7, then (sl -, sty
i=1 j=1

is the complete set of conjugates of s,., over k(u, t). Therefore
the multiplicity A of (¢) in the specialization (%), ---, (c°4’) of
(s™), -, (s) is equal to that of &, , as a root of f(X). where

Oy = 2 i+ i #t;.,0;. On the other hand let g(X) be the equa-
=1

i=l
tion for o,,., over «(r, 7). Then f(X)=g(X) h(X), where I(X) is
an equation in «(7, #)[ X] such that i(s,_,):1-0. Therefore if o,,_,
is a root of g(X) of multiplicity u#, we have A=X\p. Let S’ and

t4 ’

0 0
S1 be the specialization rings [(¢, s) — (7. )] and [(¢, s,.4.) —

16) As for the definition, see the introduction of [4-1].
17) The original idea of this proof is due to the proof of Theorem 5. 16 in [5].
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(7, 7, )] respectively. Then S; is a quotient of R'[s,,.,]. which
is isomorphic to R TX])/(f(X)). Since R’ is simple, the unmixed-
ness theorem holds in R’*™ and hence in Si.™ Since Si is a local
ring, any system of parameters in Si is a distinct system of para-
meters.” Since K’ is regular and rank R'=S1, the maximal ideal
m’ of R’ is generated by rank S{ elements and hence we have
e’ S)=/(S7/m’S}). Moreover it is easily seen that Si/m’S{
is isomorphic to («(it, 7)[X 1/(g(X)"))gx-- Therefore we have
e(m’S{)=)\ and hence M=\p=e(’'S)[«(#, =, 0,,.,) : «(it, 7)];. Since
(s) has the unique specialization (o' over S;, S’ is integral over
S{. The quotient field of S’ is that of S] and hence, by assump-
tions, S’ is a finite S{-module. Therefore, by Lemma 7, it is easy
to see that

e(m’SY) = rm(m’'S”: S7) = e’ S)[«(a, =, o) : w(id, 7. 7,,.,)].

Since «(i7, 7, o) is purely inseparable over «(#, 7, 7,.)), A is equal
to e(m/S")[«(i. 7. o) 1 x(i7, 7)];. It is evident that e(mS)=e(m’S’)
and [«(7, 7)1 k(7)) ];=[«(@, 7. 7)1 k(it, 7)];, and hence we obtain
A=e(mS)[«(r, &) : x(7)];. :

If k(t, s) is not separable over k(?), let L be the separable
closure of k(¢#) in k(f, s) and A the intersection of L and o[¢, s].
Then A is an affine ring o[¢, 7] over o and of¢, s] is integral over
A. Therefore a unique specialization (7, p) of (¢, r) is determined
by a specialization (v, &) of (£, s) over v and conversely any speciali-
zation (r, p) of (¢, r) over o is extended to (7. ¢’) of (¢, s) uniquely.
If A, is the multiplicity of (p) in a specialization of the complete
set of conjugates of (#) over k(#), the mutliplicity of (¢) in a com-
plete set of conjugates of (s) over k(#) is equal to A\ [k(2, s): k(¢ 7)].

If S, is the specialization ring [(i, r)-o*('r, Y] X is equal to
e(mS,) [«(r, p) : x(v)]; by the above investigation. On the other
hand it is easy to see that S is integral over S,. Since now o
satisfies the finiteness condition for integral extensions and S, is

18) See Theorem 6 in [3].
19) See Propositions 8 and 9, and Remark 1 of p. 211 in [3].
20) See Theorems 4 and 5 in [3].
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a spot over v, S is a finite S-module. Therefore, by Lemma 7,
we have

A = N[k, 5) k(L 1)] = e(mS)[x(r, p) : e(7) ]:[R(2, ) - k(t, 7)]
= e(mS)[«(r,0) : k{7, p)L:[ (7, P) : e(7)]; = e(mS) [ (7. @) : x(7) ]; .

g.e.d.

Now we shall show that our multiplicity #( ; ) is equivalent
to x( ; ) defined in [8].*” It is sufficient to treat only affine
varieties.

Let V" be a prime rational cycle over % in an affine space A",
where a system of coordinates is fixed, and let C be a prime com-
ponent of the bunch of varieties obtained from V by the canonical
reduction with respect to this system of coordinates. Let P” be
a projective space containing A" and let V, be the closure of V
in P*. Let V, be the bunch of varieties obtained from V, by the
reduction with respect to p. Now we may assume that the residue
class field « of o is not finite. In fact if « is finite, let ¢ and ~
be independent variables over £ and over « respectively. Then o
is extended to the functional valuation of k(¢#) having the residue
class field «(7). It is evident that we may replace & by k().

Therefore there exists a hyperplane H in P” such that H in
™ does not contain any component of V,. Let A’ andV’ be an
affine space P”"— I and a prime rational cycle V,—H in A’ respec-
tively. Let C’ be the prime rational cycle over « in P"—H cor-
responding to C. Then it is sufficient to investigate V' and C’in
place of V and C, since the treated properties are local.

Let (P, m) and (@, n) be the spots in M(A’) corresponding to
V' and C’ respectively. Then we have to show u(P: Q)=u(V’; C"),
where the right hand side is the multiplicity defined in | 8].

First we assume that V’ has no multiple components. Let
() and (£) be generic points of V’ and C’ respectively. Let
t;; (i=1.-+,7r; j=1,-+,n) be independent variables over Fk(x)
and 7; (i=1,.:,r; j=1,-+,n) independent variables over «(£).

21) This is shown in [2] in the case when o satisfies the finiteness condition for
integral extensions,
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Put #,= > ¢t;x; and 7= 3 7;&; for each i. Moreover we put
i 1 j

0
0¥ [(:;) = (=;;)]. Then it is easy to see that (x) is integral and

separable over o*[¢,,.-,f,]. Let R be the specialization ring
0¥ o* .
[(#) — (7)] and let S be the specialization ring [(¢. x) — (=, §)].

*
Then (z)R is the maximal ideal of R and S is equal to [(x) 2. ®1].
If X is the multiplicity of (§) as a specialization of (x) over R,
then by Theorem 5 we have A=e(zS)[«(r;;. 7, &) :x(r;;, 7)];. On
the other hand it is easy to see that e(zS) is equal to the multi-
plicity of the ideal generated by = in the specialization ring

l:(x)—')*(&)] and hence to w(P; @) in our sense. Moreover it is
easy to see [«(§):«] =[«(7;;, 7. &) :x(7;;, 7)]; and hence we have
e(xS)=\/[x(&) : «]..

However M/[«(§):«], is, by definition, equal to the multiplicity
MV’': C’) in the sense of [8].

Next we consider the case where V’ has multiple components.
Let (x) and (§) be as above, and let #* be a purely inseparable
finite extension of % such that k*(x) is separable over £*. Let o*
be the unique extension of v in k* and let «* be the residue class
field of o*. Then «* is also purely inseparable over «. Let V;
be the locus of (x) over k* and let C{ be that of (&) over «*.
Let P, and @, be the spots over v* corresponding to V| and C;
respectively. Then we have w(P,; Q)=u(V{;: C).

On the other hand p(V’) and p’(P) are compatible with exten-
sion of ground rings. Therefore the equality u(P,: Q,)=u(V{: C})
means the equality u(P; @)=V’ C’).
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