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Introduction

In the differential geometry, the notion of a tangent space
bundle which may be defined by a soudure structure palys an im-
portant rôle.

In this paper, we consider some geometric structures closely
related to the soudure, and research into their existences. In § 2,
considering extensions of linear maps of vector bundles, we make
preparations for the later sections. Moreover, we need some results
on connections and on extensions of tensorial forms described re-
spectively in § 4 and in § 5. We introduce in § 6 the notion of a
(G, p)-structure and its structure tensor. A soudure may be regarded
as a special case of (G, p)-structures. Combining a connection and
a soudure under a suitable conditon, w e get the notion of a Cartan
connection. In the la s t section, we make remarks on the Cartan
structure tensor of a soudure.

It will be shown that the obstruction classes of the existences
of such structures in the complex analytic case may be represented
by differential forms through the theorem of Dolbeault.

§ 1. Fibre bundles

Throughout this paper, w e  assume that any differentiable
manifold is  paracompact, and that any fibre bundle is of class C-

or complex analytic.
Let P(M, G ) b e  a principal G -bunale over M  with projecton
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7t: P  M .  Then, by definition, it satisfies the following conditions.
( i ) The structural group G is  a right transformation group

on P  which operates simply transitive on each fibre G = 7 .1 (x ) of
P  over xE  M.

(ii)) There exists a local section s: U P ,  7ro5=1, on a neigh-
borhood U of any point x E M , where 1 denotes the identical map.

The operation of G  will be expressed as multiplication

P x G  P  ,  (p , g)—> fig .

Then, taking a point pE P and an element gE  G, we have dif-
feomorphisms

p :  G  G , ( 1 ) , g — > p g , and Rg : p  p g ,

called respectively an admissible map and a right translation . The
right translation gives a diffeomorphism G ,-- ›G , on each fibre
Gx  fo r x E M .  Moreover, there exists an open covering 11/11 i e /  o f
M  and a system of local sections

{S i}  yEi , S i :  U1 - - > P, z o s i -= 1.

Then, we have uniquely a system o f maps

g1 5 : U i  n  U5G ,  s 5 (x) = s 1(x)g 15 (x ) ,  x  E Ui r\ U1 ,

clearly satisfying the conditions

g11 (x )= e , x E l_1 1 , and  g i i (x)g i k (x) g i k (x) , x E U i r\ Uj r\ Uk ,

where e denotes the unit element of the group G .  Let G  denote the
sheaf of germs of local G-valued functions on M .  Then, the 1-
cocycle {g15} determ ines a  cohomology class E HAM, G), and it
is well-known that the cohomology set 11'(M, G) can be regarded
as the set of all G-bundle structures on M.

Now, let G be a  le ft transformation group on a manifold F,
and express its operation as multiplication

G xF— >F, (g ,y )— >gy.

An associated bundle B=  P>< G E of P(M , G) with fibre F  is defined
as a quotient space of P x F  by the equivalent relation

(pg,y )— (p, g y ) ,  p E P  ,  g E G , y E F ,
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Namely, its natural projection being also expressed as multiplication

P  x F  B  ,  (p, y) P y  ,

is characterized by the relation (pg)y =p(gy ) for p E P, g E G  and
y E F .  Moreover, the projection pt': B  M  of the bundle B  is de-
fined by n./(py)=7r(p) for p E P  and y E F .  Then, we can regard a
point p E P  as a diffeomorphism

where Fx --71-'- '(x ) is  a fibre of B  over x= z(P)E M.
Let p: G---> -G  b e  a homomorphism of Lie groups, and let

P(M, G), 13 (M, G- )  be principal bundles over M .  A  differentiable
map p: P—.13  is called a homomorphism o f bundles, i f  it satisfies
the relation

p (p g )= p (p )p (g ) , p E P , g E G .

When such a map p  is given, we call P an extension o f P, and P
a restriction of P . The homomorphism of groups p: G— .G-  induces
a homomomorphism of sheaves p :  G  a and hence a  map of
cohomology sets

p: 11 1(M, G) H i ( M ,

which maps each G-bundle structure to its extension. Thus, to any
G-bundle P, corresponds a unique extension P by p  given by an
associated bundle P=Px ,, G ,C . However, a G-bundle P has not in
general its restriction b y  p. When P has a restriction P  by p,
we may suppose that the structural group of P can be reduced
to its subgroup p(G).

Let P(M , G) be a principal bundle with projection 7r, and let
p : M ' , M  be a  differentiable map. Then, we obtain uniquely a
principal bundle Pi(M ', G) with projection 7 / and a m a p  : P '  P
such that

7roo = 99.7r' , ( p 'g )  =  ( p i ) g ,  p ' E  PI , g E G .

The bundle P ' is called an induced bundle o f P  by (p. It is easy
to see that the map q , induces a map
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q)* : IP(M, G) 111 (M', G) ,

which maps each bundle structure on M  to its induced bundle
structure on M ' by p .  Moreover, let B(M, F, G) be a fibre bundle,
and let yo : M ' - M  be a  differentiable m ap . Taking an associated
principal bundle P(M, G) of B, we obtain an induced bundle P'(M', G)
of P .  Then the induced bundle B'(M' , F, G) of B  is defined as an
associated bundle B' = P' x  G F.

§ 2. Vector bundles

A fibre bundle B(M, E, G) over M  is called a  vector bundle, if
the fibre E  is  a  vector space and the group G operates on E  as a
linear transformation group. Then, each fibre E x  over x E M  be-
comes also a vector space. Let P(M, G) be a principal bundle, and
le t  p : G , GL (E) b e  a  representaion o f G  o n  a  vecter space E.
Then, an associated bundle B= P x p cG ,E  becomes a  vector bundle.
Moreover, denoting by p* =tp - ' : G-.GL (E*) the dual representation
o f p  on the dual space E *  of E , w e have an associated vector
bundle B* P x ,* ( G ) E * called the dual v ector bundle of B .  Let
B(M, E, G), 131(M , E', G') be two vector bundles over M with projec-
tions 7r, 71-' respectively. A  differentiable map a: B '  is called
a  linear m ap of vector bundles, if  7-c'oa = 7r and a induces a  linear
m ap a: E ;  of fibres at each point x E M  Moreover, we have
vector bundles over M

BEBB' = E x E D E  , B O B ' =  E x 0E ; ,
EM

called respectively th e  Whitney su m  and  the tensor product of
vector bundles B  and B '.  Let Horn (E, E') denote the module of all
linear maps of E  into E ' .  Then, we have a vector bundle over M

Horn (B, B') = Hom (Ex , E;) B *  O B ' .

A  linear map of vector bundles a :  B  B ' can be regarded as a
global section of the vector bundle a:  M ,  Horn (B , B '). Let us
denote by Eck', E c k ) respectively the exterior k-vector spaces over E
and over E * .  For a vector bundle B(M, E, G), we have associated
k-vector bundles
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B ( k) (M) ---- , B c h ) (M ) -  V  E x ch).
xEAI xEAL

Let W (M) -> V (M) be a linear map o f vector bundles over
M , and let B (M ) be a  vector bundle over M .  Then, the map
induces linear maps o f vector bundles over M

0  H o m  (B , W ) H o m  (B , V ) ,  y  e  o p  ,
0 *  Hom (V, B) -> How (W , B ) , qp , k o o

Let V (M) be a vector bundle over M .  We denote by Pc.,(M , V),
Ph (M , V ) respectively, the module of all C-  sections of V (M ), and
the module of all complex analytic sections of V (M ), when they
are well defined. One of them will be denoted simply by P(M , V).
Moreover, we denote by V ,  V h respectively, the sh ea f o f germs
of local C -  sections of V (M ), and the sheaf o f  germs of local
holomorphic sections of V (M ). One of them will be denoted simply
by  V . A s  well-known the 0-dimensional cohomology groups with
coefficients in V ,  are given by respectively

H°(M, Vc.,) P(M , V c.,) P ( M ,  V) ,
H°(M, V  h ) P ( M ,  V  h ) h(M , V) .

Now, we consider an exact sequence o f vector bundles over M

0 -> K(M) -> W(M) ---> V(M) -->0 .

For a given linear map o f vector bundles y: B (M )-> V (M ), a
linear map o f vector bundles qr: B (M )-->W (M ) is called an ex-
tension of y  over W (M ), if T o * = y .  Applying a functor Hom (B, *)
to  the sequence, we have an exact sequence o f  vector bundles
over M

0 Hom (B, K) Hom  (B , W ) --> Hom  (B , V) -> 0 .

Taking the sheaves o f germs of their local sections, we obtain an
exact sequence of sheaves on M

0 ---> Hom(B, K) ---> Hom (B, W ) --> Hom (B , V )  0

and its cohomology sequence
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8
—> P(M, Horn (B , W )) r ( M ,  Hom (B , V)) —> Hi(M, Horn (B, K))

 —> (7)  Sq).

Then, by the exactness of this sequence, there exists an extension
E r(M , Horn (B , W )) of p  if  an d  only if  aq, =O. Therefore, the

class ap E HA M, Horn (B, K )) may be regarded as the obstruction
class of extension of p  over W (M ). In  the case of C -  vector
bundles, since the sheaf Horn (B, K)0. is  fine, the class 893 always
vanishes, and so there exists a  C -  extension jrA of p .  In the case
o f  complex analytic vector bundles, the obstruction class ap  of
analytic extension of an analytic linear map p appears in generel.

Let us take a  linear map of vector bundles 0: T(M)— > B(M).
Then, it induces an exact and commutative diagram of sheaves

7
0 Hom (B, K) Horn (B, W) Horn (B, V) —› 0

10* 10*
10*

0 Hom (T, K) H o m  (T  , W ) H o m  (T , V) —> 0

and their cohomology sequences

7 8
—> F(M, Horn (B, W)) —> 1'(M, Horn (B , V)) —> 111(M , Horn (B, K)) —>

18* 18* 10*
8

—> r(M, Hom (T, W )) — > r(M, Hom (T , V)) —> HA M, Horn (T, K)) —>
(7,00 —> Ong,.

Thus, the following relation holds.

Proposition 2. 1. 8 (q).0) O n p , p  E  r(m, Hom (B , V)),
E r(m, Hom (T, B)).

Again, we consider the exact sequence of vector bundles

0 K(M) — > W (M) — > V (M) 0 .

F o r  a  given linear map of vector bundles [6: K (M )—  L (M ), a
linear map of vector bundles 1) : W (M)— > L(M) is also called an
ex tension o f  1.6 o v e r  W (M ), i f  v .  = th. Applying th e  functor
Horn (*, L ) to  the sequence, we have an exact sequence of vector
bundles
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7 . * t
*

Horn (V, L) —> Horn ( W, L) Hom (K, L) —> O.

Taking the exact sequence o f sheaves of germs o f their local sec-
tions, we obtain its cohomology sequence

8*
r(M , Horn ( W, L)) —> mu, Horn (K, L)) —> 11 1 (M, Horn (V, L)) —>

 8 *

Then, there exists an extension v E r(M , Horn ( W , L)) of p ,  if and
only if  8*,, , o. Thus, the class 8 *  E fP (M , H om  ( V , L )) may be
regarded as the obstruction class o f extension o f tt, over W(M).

Let us take a linear map o f vector bundles K : L(M)—> J(M).
Then, it induces a commutative diagram o f cohomology sequences

* 8*
r(M , Horn ( W, L)) —> r(M, Hom (K, L)) —> 11 1 (M, Horn (V, L)) —>

FC

4 8*
—> r(M, Hom ( W, J)) r ( M ,  Hom (K, J ) )  — > 111 (M, Horn (V, J ))

Kop, 

Thus, the following relation holds.

P ro p o s it io n  2. 2. *(,Co /J) K8*1-6, E r(M, Horn (K, L)),
K E r(M , Horn (L, J)).

Consider an exact sequence of vector bundles

: K(M) —> W (M) --> V(M)—> 0 .

A linear map of vector bundles 'y: V(M)—> W(M) is called a split-
ting of i f  707 = 1 .  And a linear map Co :  W (M )— K (M ) is also
called a splitting of i f  coo 6= 1 .  Such splittings 7 and co may be
regarded as the same one, if they satisfy the relation

toco4-70T 1,

which determines a  one-to-one correspondence between ry and CO•

It is clear that a splitting of means to give a bijection W(M)
v(m).

Applying a functor Hom (V, *) to w e  have an exact sequence
of vector bundles

• 0 —> HMV (V, K ) H o m  (V , W) —> Hom (V, V) — O.
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Taking the exact sequence o f  sheaves o f germs o f  their local
sections, we obtain its cohomology sequence

r(m, Hom (V, W ))->  r(m, Horn ( V, V)) -> H'(M, Horn ( V, K)) ->
7   1   81.

Then, there exists a splitting 7 of if and only i f  8 1 =0 . Set

a () =  8 1  E I / 1 (M, Horn ( V, K)) ,

and we may regard a ( )  as the obstruction class of splittng of
Moreover, applying a functor H (*, K ) to we have an exact

sequence of vector bundles

0 Hom (V, K) -> Hom (W, K) -> Hom (K, K)-> 0 .

Taking the exact sequence o f  sheaves o f germs o f their local
sections, we obtain its cohomology sequence

8*
-> P(M, Horn ( W, K)) -> r(m, Horn (K, K)) RA M , Horn (V, K ))->

co  1 

Then, we get another obstruction class 8*1 G H l (M, Horn ( V, K ))  of
splitting of

Proposition 2.3. 1+ *1=O, that is, .3*1=
Pro o f . There exists always a local splitting over a neighbor-

hood o f any point x E M . Hence, we can take an open covering
11= {Ui } i u  o f  M  and a 0-cochain

E C (U , Hom ( V, W ) )  such that Toy i  -= 1

Then, by definition o f the coboundary homomorphism we have
a 1-cocycle

{au } E ci (11, Horn ( V, K)),a 1 =

which represents the class 81 E Hom ( V, K ) ) .  On the other
hand, we can take a 0-cochain

{cod E C (U , Horn ( W, K)) , coi ct = 1,

determined by the relation toco1 +7 107= 1, and we obtain a 1-cocycle
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{ at}  E C l (U , Horn (V, K )) ,a  =  (co -  co ; ).7- - 1  ,

which represents the class 6*1 E IF(M , Horn ( V, K ) ) .  Then, we have

a 1 =  1 , - 1 0 {(7i -ry 407- + to(a) 07-1

=  1- 1 0(1 - 1)0T - 1 =  O.

This proves that al +a*i =O.
Moreover, in the Propositions 2. 1 and 2. 2, setting p =1 and

a = 1  respectively, we get the followings.

Proposition 2. 4 . Let a ( )  be the obstruction class o f splitting
o f  the exact sequence

10 8 0  =  0 * a ( )  , 0 E lA M , Horn (T , V)) .
2° S*K , E r(m, Hom (K, J)) .

Now, we consider two exact sequences of vector bundles

7-
: 0 --> K(M) -> W(M) -> V(M) ---> 0

: 0 ->  K (M )± > W (M ) 1--> V(M) 0 .

A bijection 0 :  W(M)-->VV(M) is called an isomorphism of and
-8 , if 0 .t="i and T- 0/61 , --7- .

Proposition 2 . 5. T here ex ists an isomorphism of and -8,
i f  and only  if  a ( ) = a ( - - ).

P ro o f . If :  W(M)-->W(M) is  an  isomorphism of a n d
then it induces a commutative diagram of cohomology sequences

t 7 a
,  r(M , Hom (V, W )) ->  JAM, Horn (V, V)) - -> 111(M, Hom (V, K)) ->

7,.—F(l, Hom (V, W)) --> 11(M, Hom (V , V)) -> IP(M , Hom  ( V, K)) -> .

Hence, a() = 81 = -81 = a( - ). Conversely, assume that a ( ) =  a ( ) .
We can take an open covering {Ui} iu  o f M  and local splittings

{co i
}
 E  C (U, Horn (W , K)) , CO 0 t  =  1

E Horn (V, W )) , 0 = _  1,

of respectively, and we have 1-cocycles
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{at} , {au } E C i (U, Horn (V, K)) ,

a t  = - (t);)°T =  7  1 °(5.'i -`?;)

which represent the classes - a ( s ), a( - ) respectively. Since a ( ) =
a( - - ), we can choose the 0-cochains {(0,}, such that at + ai i  =O.
Then, taking a 0-cochain

{/ }  C (U , Hom(W,W)) , ,

we see that

l
e

i  - Of 
= 7, 0 (0 1)07 = O.

Hence, we obtain a bijection 8 : W (M)-->W (M) such that 0 - 0 i  in
which gives an isomorphism of and
Thus, we can regard the class a ( ) -  a ( - ) E HAM, Horn ( V, K ))

as the obstruction class of isomorphism of and

§ 3 .  T a n g e n t  vector bundles

Let M  be a differentiable manifold. We denote by A (U) and
by A x  respectively, the ring of all differentiable functions on an
open set U ( M , and the ring of germs of A (U) on a point x E M.
A tangent vector X  of M at x E M is by definition a map X: R
satisfying the conditions

( i ) X (c ,f ,+c ,f ,)  = c ,X f ,+c ,X f „ c„ c ,  E R ,   f „  f  E A ,
( i i )  X (fg ) =  (X f)g (x )+  f(x )(X g ) , f, g E A .

When M is complex analytic, we must take the complex number
field C  in stead of the real number field R in the above definition.

Let T (M ) ,  T (M )  denote respectively the tangent vector space
a t a point x E M  and the tangent vector bundle over M . For two
manifolds M , N , we have natural bijections

T (M x N )  T (M )x T (N )  , Tx(M)EDT,(N).

As well-known, a differentiable map a: M ->  N  induces a map

a : T (M )  T (N )  ,  (a X ) f  =  X ( f o a ) ,  f  E  A ,  y E N ,

which we shall denote by the sam e le tte r a . In particular, for a
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differentiable map expressed as multiplication

Mx N --> K  , (x , y) -> xy ,

taking a point a E M  or bE N , we get a map

a : N - > K ,  y  ay , or h* :  M  K , x  -> x b  ,

whose induced map may be also expressed as multiplication

a: T ( N )  - > T ( K ) ,  Y  -> aY  , or h* : T ( M ) - > T ( K )  ,  X  X b  .

Then, the induced map of the multiplication th  is given by

1,6
 :  T (M )x  T (N ) -> T (K ) , (X , Y ) -> X y + xY  ,

where X E T (M ), Y E T y (N )  and x E M , y E N .  Now, we set

T k ( M )  xym T  ( U) , T g M )  T x (M )E D ••• T (M ).

Then, Tk(M ) becomes an associated bundle o f T ( M ) .  Let E  be a
vector space. A n  E-v alued k -f orm  çp  o n  M  is by definition a
differentiable map

: T k (M ) -> E , (X „ ,  X k ) -> p(X „ ••• , X k ) ,

being m ultilinear and alternate with respect to vectors X „••• , X k E
T x (M ) for x E M.

Let U, V  and W  be vector spaces, and let F : U x V , W  be
a bilinear m ap. Two forms

(73 : T r( M ) - > U  and  *  :  Y A M ) V

on M  can be substituted into F , and we have a form

F(p, :  T ( M )  W
on M  defined by

*)(X i, • •• Xr+3)

E  sign (0- )F((p(X,,-(1), • • • , Xo-Cr)), l ir ( • • • Xo - Cr+s)))(r + s)!

for X „ ••• , X r, E  T (M ),  where the summation is extended over all
permutations of a set of numbers {1, 2, • • • , r +.3} . We remark that
the exterior product o f real or complex valued forms is a special
case when F(x , y )- x y .

Moreover, we can define the exterior derivation d  which maps
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each E-valued k-form 0  to an E-valued (k+1)-form  dB, satisfying
the following conditions.

( i ) d(01 +0 2 ) clOi+d0 2-
(ii) dF(p,*) = F(dp,*)+(-1)rF(p, d1P).
(iii) clod O.
(iv) df (X )  X f , , for f  E A ,  X E  T x (M) .

Let G be a Lie group, and let g denote its Lie algebra being
identified with the tangent vector space T e (G) at the unit element
e E G .  Any point g E G defines diffeomorphisms of G

x - >g x , and Rg .: G ->-G , x ->x g ,

called respectively le f t  and rig h t translations. It is notable that
the tangent vector bundle of G becomes a product bundle such as

G x g  T ( G ) ,  ( x ,  A ) -> x A  , x E G  , A E g .

Thereby, we have a g-valued 1-form on G

c o : T ( G ) - >g ,  x A - >A , x E G , A E g,

called the M aurer-Cartan f o rm  o f G , which satisfies clearly the
relations

0)04 , w o R g  a d ( g - 1 )co , g E G  ,

where we denote by ad: G -->GL(g) the adjoint representation of
G, that is,

ad(x ): g g  ,  A -> xAx - i, x  E G

A homomorphism of Lie groups p: G  G ' induces a homomor-
phism of their Lie algebras

p: g g' , A  -> pA .

In particular, the adjoint representation ad: G-> GL (g) induces a
representation ad : g g r ( g )  given by

ad(A )B  = [A , B ], A , B E  g .

It is well-known that the exterior derivative do) of the Maurer-
Cartan form co of G  is given by

dco - [c o , U )],
2
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so called the structure equation of Cartan.
Let G be a closed subgroup of a Lie group C .  Take a homo-

geneous space F=0 IG, and denote by '7-  :  - - >  F its natural projec-
tion. Then, we have a principal bundle 6(F, G) with projection T,
whose right translation is given by

Rg .t  =  g g , g E G , 2 E 6 .

Taking the Lie algebras ri = T ), g  T e (G), and the tangent vector
space f= T r e (F ), we get an exact and commutative diagram of
vector spaces

T
0 — > f

I ad(g)lad(g) lis(g)

O- - >  g f 0

for gEG, where we denote by is : G—>GL(f) the isotropy represen-
tation.

Let B(M, F, G) be a fibre bundle with projection 7r. A tangent
vector X E T(B ) of B is said to be vertical, if 7-tX= O. Let P(M, G)
be a principal bundle. Then the vertical vector bundle V(P ) of
P  becomes a product bundle such as

X :  P x g  V (P ) , (p ,A )— p A ,  P E P ,  A e g ,

and hence we have an injection X :  P x g  T (P ) .  Since pg(g - 1  fig)
—(pA)g for g E G , dividing the spaces Px g and T (P ) by G , we
obtain an exact sequence of vector bundles over M

X 7t
: - - >  L(M) —> Q(M) --> T(M) —> 0 ,

where L(M )= Px 
a c i ( G A  is an associated bundle o f P  determined

by the adjoint representation of G, and Q(M)= T(P)/G denotes a
quotient space of T (P ) by the equivalent relation X---Xg for g E G.
The sequence i s  c a l l e d  the fundam ental sequence o f P(M, G).
In particular, let us consider a  homogeneous space F=G7G and
the principal bundle C(F, G). Since T(C) = x zA, dividing the
sequence

L,Cxril->Cxf
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by G, we obtain the fundamental sequence o f C(F, G)

0 ---> L(F) Q(F) --> T(F) —> 0 .

This proves that Q(F)--_-_,  Cx a and T(F) ,:-_-_Cx i , G ) f• Hence, the
structural group of the tangent bundle o f a  homogeneous space
F=CIG  can be reduced to its isotropy group is(G).

Let P(m, 6 )  be a principal bundle, and let G be a closed sub-
group o f C. Then, we have an associated bundle B=P/G—Px oF
of P(M, C) with fibre F---01G, and a principal bundle P(B, G) over
B .  Let W(P), W(P) and V(B) denote respectively the vertical vector
bundles of P (B, G), P(M , 6 )  and B(M, F, 0 ) .  Since W (P )= /3 x
and Tr(P)=P x :4 , dividing the sequence

--> Pxg—t->/3 x4 -7 ->Pxf-->

by G, we obtain an exact sequence o f vector bundles over B

0 W(P)IG ±>TV(P)I G  71> V(B) —> .

This shows that V(B) 1S(G)f. Hence, the structural group of
the vertical vector bundle V(B) of B=P/G can be reduced to the
isotropy group is(G).

Let P(M, G) be a principal bundle with projection 7 r , and let
p: G—>GL(E) be a  representation o f G  on a vector space E .  An
E -v a lu e d  k - fo rm  : Tie(P) —> E on P  is said to be a  con travarian t
k - fo rm  on P(M, G) of type (p, E), i f  it satisfies the condition :

( i ) 0.1?, p (g - 1 )0 , g  EG

Moreover, a  contravariant k-form  0  is said to be tensorial, i f  it
satisfies the condition :

( i i )  0(X„ ••• Xk )  =  0  for X„ ••• , X,, G T p (P) , i f  7rX, = 0.

In particular, a tensorial 0-form is called a  ten so r. In this case,
the condition (ii) is not necessary.

Let us take an associated vector bundle V (M )=Px,, G ) E  of
P(M, G), and let Ak(M, V), Ak(M,V) denote respectively the module
o f a ll contravariant k-form s on P(M, G ) of type (p , E ) and the
module of all tensorial k-form s on P(M, G ) of type (p , E ) . Let
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X
L ( M )  Q ( M )  T ( M )  0

be the fundamental sequence of P(M , G ).  In general, an E-valued
k -fo rm  : T k (P)--  E  on P  can be regarded as a  linear map of
vector bundles over P  such as
0 : T c k ) (P ) - . P x E  , u (p, 0 ( u ) ) ,  u  = E X i A ••• A X h E T ," (P) .

I f  0  i s  a  contravariant form  on  P(M , G ) o f ty p e  (p , E ) , then
dividing T ( P )  and P x  E  by G, we can regard 0 as a linear map
of vector bundles over M

0: Qck ) (M )  V (M )  = P  x p ( G ) E

Moreover, i f  0  is tensorial, then it can be regarded as a linear map
of vector bundles

O: T ( M )  V ( M )  .

Thus, we obtain the following.

Proposition 3. 1. There exist natural bijections :

A k(M, V) P(M, Hom ( Q ) , V )) , A k (M , V) _LIM , Horn (Tck ) ,V)) .

In the sense of this proposition, a tensorial k-form on P(M , G)
of type (p , E ) is called sometimes a  V (M )-v alued k -form  on M.

We remark that the exterior derivative de o f a  contravariant
form 0  is clearly contravariant, but de is not tensorial in general
even though 0  is tensorial.

Here, let us consider a complex analytic vector bundles V(M)
over a complex analytic manifold M .  In this case, we have modules
o f holomorphic r-forms or C-  (r, s)-forms such as

Â.r(M, V) r h (M, Hom (QC r ) , V)) ,
A r(M , V) r h (M, Horn (TcrJ, V))
A rs(M, V) rc.0(m, Horn (Qcr) ®Qcs ) ,  V))
A rs(M, V) = roo(M, Horn (T ' ®  i ,  V))

where 0- (M )  and T (M ) denote respectively the conjugate vector
bundles o f Q(M ) and T(M).

The exterior derivative de of a  contravariant (r, s)-form O E
,Ar s(M, V) is decomposed uniquely as
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dB -= 0' +0" , 0 G A P V )  , 0 " r , s  Hi(m , V).

Thereby, setting d'0 =0' and d"0=0", w e  have differentiations

d ' : Ars(M, V) -> Ar'''s(M, V) ,
A rs(m ,  T7) A r,s±i(m , V ),

which satisfy the relations

d'od' ---- O , = 0 , = 0 .

Moreover, we can see that the derivative d"0 of a tensorial
form 0 G A"(M , V ) is also tensorial, and we have a cochain complex

Ar*(M, V ) = E A"(M , V ), d" : A "(M , V )  A r,s+ i(m
,

 - 17)

Let u s  take the sheaves on A/

A r  =  Hom ( Tc' ) , V) h  , A r s  =  Horn ( Tc r ) O T ( s ) , ,

which denote respectively the sheaf of germs of local holomophic
tensorial r-forms and the sheaf o f germs of local C-  tensorial
(r , s)-forms. Then, we have a fine resolution of A r

j d" d" d " d"
0 -> Ar  --> Ar° —  > — •  — > A" ••• ,

and hence the Dolbeault isomorphism

Hs(M, Ar) H s(A r*(M , V)) = Z r 5 (111, V)I d" Ar (M, V) , s >  1,

w here Z "(M , V )  denotes the module of a l l  (r, s)-cocycles of
Ar*(M, V ) by d"-cohomology.

Let us show explicitly this isomorphism when s = 1 .  Take an
exact sequence of sheaves

j d"
O- - -> A r  —>

and its  cohomology sequence
d" 8"

-> Ar°(M, V ) ->  Z '(M , V) -> Hl(M, A r )  — >  ,

where H'(M, A r ° ) = 0 ,  since A "  is  fine. Then , certainly we obtain
the Dolbeault isomorphism

: 1-11 (Ar*(M, V )) = Zn(M, V)I d"Ar°(M, V) Hi(M, A r ) .
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§ 4. Connections

Let P(M , G) be a principal bundle, and let us take its funda-
mental sequence

X 7r
: 0 L(M) —> Q(M) T (M )  - -> 0 .

A differentiable splitting co : Q (M )-L (M ), 00X =1 , is called a  con-
nection on P(M , G ) .  Then, the linear map of vector bundles a )  can
be regarded as a contravariant 1 -fo rm  :  T(P)---> g on P(M , G) of
type (ad, g) called the connection form.

Proposition 4. 1. The connection form co T(P)—> g is charac-
terized by  the following properties.

(i) cook  = ad(g - l)co , g  EG .
(ii) c o (p A ) = A ,  p E P ,  A E g .

P ro o f . The property (i) shows that a) is a contravariant 1-form
of type (ad, g). Hence, we can regard co a s  a  linear map of vector
bundles co :  Q(M )--> L (M ). T hen, the property ( i i )  means that
00X=1.

The curvature form  12 of the connection co is a g-valued 2-form
on P  given by the structure equation

12 =-  dco [co co]
2 '

It is known that 12 becomes a  tensorial 2-form of type (ad, g).
Let O : Th(P)— >E b e  a  tensorial k-form on P(M , G ) of type

( p ,  E ) .  The covariant derivative DO with respect to the connection
a)  i s  an E-valued (k+1)-form given by the formula

DO = de +p(co)O ,

where p : g-->gI(E) denotes the representation of Lie algebra induced
by p. With use of some formulas related to the L ie derivative
and the exterior derivative, we can see directly that DO becomes
a  tensorial ( k +1 ) - f o rm  o f  t y p e  (p, E). Applying a  functor
Hom (*, L ) to the fundamental sequence of P(M , G), we have an
exact sequence of vector bundles
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7r*X *
0  Horn (T, L) -> Horn (Q, L) ->  Hom (L, L) -> 0 .

Taking the sheaves o f germs o f their local sections, we obtain an
exact sequence o f sheaves

7t*X *
0 Hom(T, L) -> Hom (Q, L) -> Hom (L, L) -> 0 ,

and its cohomology sequence

7r* X* 8*r(m, Hom (Q, L)) -> JAM, Horn (L , L )) ->  H l(M , Horn ( T, L)) ->
CO —> 1 -> 8*i.

Hence, there exists a  connection Co on P (M , G ), if and only if
a*i= -  a ( )  = 0 .  Since H orn  (T, L)co is fine, we obtain the following
result.

On a C -  principal bundle there ex ists a C -  connection, and on
a  complex analytic principal bundle there ex ists a (1, 0)-connection,
which means that its connection form co becomes a (1,0)- form.

In  the case of a complex analytic principal bundle P(M , G),
the obstruction class a ( )  of the existence of analytic connection
is represented by a  (1, 1)-form through the Dolbeault isomorphism,
and we have the following result derived by Atiyah.

Theorem 4 .  1 .  L e t co be any  (1, 0)-connection o n  a  complex
analy tic principal bundle, and let 12 "  be the (1, 1)-component of  its
curvature form  12. Then, the class [S P] corresponds to the obstruc-
t io n  c las s  a( )  o f  the  ex istence  o f  analy tic connection under the
Dolbeault isomorphism, that is,

111 (M, Horn (T, L) h ) H 1 (11.1 *(M, L ) )  ,  a ( )  - ->  [n u ] -

P r o o f .  Setting AI = Hom (Q, L ) ,  A l  = H orn  (T , L ) h ,  an d  A "
Hom (T, L) o.„ we have exact sequences o f sheaves on M

7r* - X*
0 -4 A l -> A l -> Hom (L , L ) h  -> 0 ,

j d"
0 --> A l -> A" ->  Z" ->  0 ,

and their cohomology sequences
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7t* ,... X* 8* iz*
—> A'(M, L) --> l'h(M , Horn (L, L)) — > Hl(M, A ') —>
j d"6 "_„. N ow ,  L )  _ ,  z ii(m ,  4 _ , H ,(m ,  A 1 ) ,  0.

For a (1, 0)-connection w G Â"(M, L ), it holds that

•••

1 12 11 _ (dco+ [ w , \ 1 1

2 )
= d"co E Z "(M , L )

I f  co, co, G /21- 1 °(M , L ) are tw o (1, 0)-connections, then the form  p-
c°, —co becomes a tensorial (1, 0)-form of type (ad, g), and we see
that

1211 c r w  = _  (rip,
 ç p E A 1 0 ( M ,

 L ) .

This shows that the class [ a l  G 1-1 1 (A 1 *(M , L )) does not depend on
the choice o f  (1, 0)-connection co. T a k e  an open covering
of M  and local holomorphic splittings of

{coi } E C°(U, A'), coi oX = 1 ,

and we obtain a  1-cocycle

E A 1 )  ,  a  =

which represents the obstruction class 8*1= — a ( ) .  On the other
hand, by definition o f the coboundary homomorphism 8", we can
take a  tensorial (1, 1)-form (T E Z "(M , L ) and a 0-cochain G
C°(1, A ") such that d "p 1 =c1) and a t— p i —pi . Then, the class
PI)] E 11 1 (A '* (M , L ))  corresponds t o  the class — a ( )  under the
Dolbeault isomorphism. Moreover, since coi  — co;  =cp i — (pi , we obtain
a (1, 0)-connection co G A- 1 °(M , L ) such that co =co,—cp i in (11 ,  and we
see that

1211 d i l w  c rc o i c rp i

since coi i s  holom orph ic . Th is  proves that th e  class [SP] G
1-P(A 1*(M , L )) corresponds to, the class a ( ) E  H '( M , A ')  under the
Dolbeault isomorphism. The theorem has been thus proved.

Moreover, we can see directly the class [n,"] E 1-11 (111 *(M, L))
express the obstruction of the existence of analytic connection on
P(M , G ). Assume that w is an analytic connection. Then, obviously
f21 1 —d"co = 0, and hence [ nh1] =O. Conversely, assume that E12111=0.
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Then, there exists a  tensorial (1, 0)-form E A.1" (M , L ) such that
d"q, = S2". Setting 65- co-p E  221.- " (M , L ), we obtain a n  analytic
connection 65, since d"63=0.

§ 5.. Extensions of tensorial forms

L et P(M , G ) be a principal bundle, an d  le t u s  consider an
exact sequence of associated vector bundles of P(M, G)

0 K(M ) -> W (M ) V (M ) ---> 0 .

An extension of a tensorial k-form 8 G A k (M, V) is by definition
a  tensorial k-form E A k (M, W ) such that Top=0. Applying a
functor Horn (Pk ) , * )  to w e  have an exact sequence of vector
bundles

7
0 -> HOM ( T( k) , K ) H om  (T ck ) , W) -> Hom (Tck ) , V ) -->  .

Taking the sheaves of germs of their local sections, we obtain an
exact sequence of sheaves

Hom (T ( k) , K) H o rn  (T m , W ) H o m  (Pk ) , V) -> 0,

and its cohomology sequence

8
A k (M, W )  Ak(M, V) ---)• H l(M , Horn ( Pk ) , K ))

 0  80.

Hence, there exists an extension p  of 0, if  an d  only i f  80 = O.
Since Horn ( Tck) , K ) oo is fine, we get the following result.

For an exact sequence t "  o f  C-  vector bundles there ex ists a C"
extension q, G A k (M, W) of a given C-  tensorial k- form  0 E Ak(M, V),
and for an exact sequence o f  com plex  analy tic vector bundles
there  ex ists a C -  (r, 0)-extension E A "(M , W ) o f  a  given C 0 .

tensorial (r, 0)-form  0 E A"(M, V).
Let P(M , G ) be a  complex analytic principal bundle, and let

p: G . -G L (E )  b e  a  complex analytic representation. Take an
associated vector bundle V(M)=P xp, G ,E  and a (1, 0)-connection w
on P(M , G ) .  The covariant derivative DO of an (r, s)-tensorial form
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O G A rs(M, V ) is also becomes a tensorial form, which is decomposed
uniquely as

DO = D'O+D"0, D 'O E A r+JA M , V ) ,  D"O E Ar 's " (M, V) .

Since DO is given by the formula D O =d0+ -p(c0)0, we have

D'û = d'O +p(c0)0 , D"O = d"O .

This shows that the derivation

D " = d" : A "(M , V) -> A r's±i(M, V)

does not depend on the choice of (1, 0)-connection, and we obtain
a  cochain complex

Ar * (M, V) E A rs(M, V ), d" : A rs(M, V) A r•"'(M , V) ,

on which we have remarked in  § 3.
Let us consider an exact sequence of complex analytic associ-

ated vector bundles of P(M , G)

: 0  -->  K(M ) -> W (M ) V ( M )  - >  0 .

Then, fo r  a  given analytic tensorial r-form OE A r(M , V ), the ob-
struction class

80 = O*a( - - ) E 11 1(M , Hom ( Tcr ) , K ) h )

o f analytic extension of O may be represented by an  (r, 1)-form
through the Dolbeault isomorphism.

Theorem 5. 1. L e t P(M , G ) be a  com plex  analy tic Principal
bundle, and let

: 0 K( M) W ( M )  - >  V ( M )  0

be an ex act sequence o f  complex analytic vector bundles associated
w ith P(M , G ). Fo r a given analy tic tensorial r- f orm  O E A r(M , V),
take an (r,0)-ex tension p  G A r°(M, W ) o f  O . Then the class [ - d " p ]
corresponds to  the obstruction class a0 o f  analy tic ex tension of  O
under the Dolbeault isomorphism, that is,

Iii(M , Horn ( Tcr ) , K),,) H i( A r* ( M , K ) )  8 0  - > [-  d " p ] .
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P r o o f .  Setting A r =Hom  ( T cr ) , K ) h a n d  A "=H om  ( T C"),
we have exact sequences of sheaves on M

A r  - > Horn ( T c r J, 14 )h - > Horn ( T ( 7 . ) , 0,
j d"

0 -> A r A r°  - -> Z r 1 - . 0 ,

and their cohomology sequences

-> A r(M , W ) -> A r(M , V ) --> TP(M, Ar ) - > ••• ,

d"
A r°(M , K ) -> Z '(M , K )  H l ( M ,  A r )  I> 0.

For an (r, 0)-extension E A "(M , W ) of 0 , it holds that

T d " p  d " T p  d " 0  0,

since 0  is analytic. This shows that d"p E Z ri(M , K ) . If
A r°(M , W ) are two (r, 0)-extensions of O. T h e n , we have

- p  E A "(M , K ) since Tx= 0- 0= 0, and we see that

d"p i - d " p  d " K  ,  i t  E A r°(M , K).

(P, (P, E
a  form

This shows that the class [d"p] E 1-1 1(A r*(M , K )) does not depend
on the choice of ( r ,  0)-extension q, of O. T a k e  an open covering
11= i e r  and local holomorphic extensions of 0

E C °(U , Horn ( T c" ) ,
 W  ) h ) , TYpi =  O ,

and we obtain a  1—cocycle

{ k J  E C1(U, A"), b i ;  

which represents the obstruction class 8 0  = 0 * a( ) . On the other
hand, by definition of 8", we can take an (r, 1)-form E Z '(M , K )
and a 0-cochain E C °(U, Ar ° )  such that d" qPi =4f  and bi y

Then, the class [W] e HI(A r*(M , K )) corresponds to  the class 80
under the Dolbeault isomorphism. Moreover, since p i -q) ; -
we obtain an (r , 0)-extension E Ar°(M, W) of 0 such that p = p i - lif i

in U 1 , and  we see that

d " p  d " p i -d"lf r i = .

This proves that the class [-d "(p ] E H'(A r*(M , K )) corresponds to
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the obstruction class 69 E IP(M, A r) under the Dolbeault isomorphism.
The theorem has been thus proved.

Moreover, we can see directly the class [d"p]E Hi(Ar*(M, K))
express the obstruction of analytic extension of 0. Assume that p
is  an analytic extension of O. T h e n , obviously d"p =0 , and so
[d"P] =0. Conversely, assume that [d"p]= 0. Then, there exists
a tensorial (r, 0)-form E A"(M , K ) such that d "Iff d "g ). Setting
t-p = q _ iJrEA'°(M, W), we obtain an analytic extension (p-  of 0, since
d"7=0 and 7- 0=0.

§ 6. (G, p)-structures

Let p: G ->GL(E) be a representation of a  L ie group G  on an
n-dimensional vector space E .  Then, it induces a  representation
of the Lie algebra o f G

p :  g ---> gi(E) Hom (E, E) E *  OE , A  -> pA , A E g= T e (G) ,

where E *  denotes the dual space of E .  Now, we define a  linear
map a as follows :

a : E *O g =  (E *  E * )0 E  ,
u0A  ->  -E  (u  v )0y  ,  A E ,  u , v E E * ,  yE E ,

where we set p(A )=E v oy  G E * O E . Taking the dual representa-
tion p*=tp' : G--->GL(E*) of p, we have representations

p, p *  Odd : G  GL(E*Og) ,
p2 ( p *  A p*)Op : G  GL(Pc2,)

of G .  Then, we get an exact and commutative diagram of vector
spaces

Xa
0 ---> Ker a E*Og Coker a 0

0 Ker E* ®q - ->  E -2 )C o k e r  a 0

for g E G .  Moreover, fo r  a  principal bundle P(M, G ) , taking its
associated vector bundles

p  g
Pl(g ) 1P 2 (  g)I P  2 gX -
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K(M) =- P x p i(G ) K e r  ,  L 1 (M ) P x  p,(G)(E * 0 0
V2 (M ) = P x J(M ) = P  X

 p 2 ( G )  Coker a,

we obtain an exact sequence of vector bundles.

0  K(M) -> L i (M) -> V,(M) -> J(M) --> 0 .

Now, let us consider the tangent frame bundle P'(M , GL (E)) of
an n-dimensional manifold M, and let p: G ->GL(E) be a representa-
t io n . A restriction P(M , G) of P ' by p  is called a (G, p)-structure
on M .  Namely, a (G, p)-structure on M  is defined, if a  homomor-
phism o f bundles

p : P(M , G) -> P'(M, GL(E)) ,
p(pg) = p(p)p(g) , p e P ,  g E G ,

is given. W e remark that, if there exists a (G, p)-structure on M,
then  the structural group GL (E) of the tangent vector bundle
T (M ) over M  must be reduced to its subgroup p(G ). Assume that
P(M, G) defines a (G, p)-structure on M .  Then, we obtain a natural
bijection of vector bundles

8 : T ( M )  P  x pcG , E ,  p(p)y , py ,  p e P ,  yE E ,

w hich can be regarded a s  a  tensorial 1-form : T (P)- > E on
P(M , G ) of type (p , E ) . The form  8 is called  the basic f orm  of
the (G, p)-structure.

Proposition  6 .1 .  T h e  b a s ic  f orm  O : T (P)- > E  o f  a  (G, p)-
structure on M  is characterized by  the following properties.

( j)  0 c ,R g  = p(g - ')0 , ge G
( i i )  8(X) 0 fo r  XE T (P), if and only  if  X  is vertical.

Pro o f . The properties (i), (ii) m ean that the form  0  i s  a
tensorial 1-form on P(M , G) of type (p , E ) . Hence, we can regard
0 as a  linear map o f vector bundles O: T(M)--> P x „( G ) E .  Then,
the property (ii) shows that O  is a bijection. This proves that
the principal bundle P(M , G ) defines a (G, p)-structure on M  with
basic form O.

Let O: T (P)->E  b e  the basic form of a (G, p)-structure on M.
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Then, to any tensorial k-form p  :  T k (P) - > W on P(M , G) of type
(0-, W), corresponds uniquely a tensor

f :  P -  Hom (Em , W ) = E ck )O W

on P(M , G) of type ( ( p *  • • •  A p*)gcr, E ( k ) Ø W ) such that

p  f 0 A  ••• A O.

Because, the form q , can be regarded as a  linear map o f vector
bundles

: T(M) ----> P X 0-(G)W

and by the Proposition 6. 1 the k-form

Ock) = OA • • •  A  : P k ) (P)-> .E ( k)

can be regarded as a bijection of vector bundles over M

V e): Tck)(M ) Px p(k) ( G ) E " )

N N

P X crCG) W  •

Hence, we have a one-to-one correspondence between and f .
From the definition o f th e  linear map o f  vector bundles

: L i (M) -> V 2(M), we can see easily the following.

P ro p o s it io n  6. 2. Assume th a t  a  principal bundle P(M , G)
gives a (G, p)-structure on M  w ith basic f o r m  : T (P ) -> E .  Let

: T (P)-> g be a tensorial 1-form  on P(M , G) of type (ad, g). Then,
the 2-f orm  p(p)0  becomes a  tensorial 2-form  on P(M , G) of type
(p, E), and is determ ined by  the relations :

t  = af  , JO, p (q ) )O =tO A O ,

where f ,  t  are tensors on P(M , G ) o f ty pes (P1, E * 0 ), (P2 , E ('2))
respectively.

Assume that P(M , G) gives a (G, p)-structure O on M , and take
a connection co on P(M , G ).  The covariant derivative of the basic
form

= DO = de + p(c0)0

is called the (G, p)-torsion f orm  of the connection co. Then, there



262 S eiz i Takizawa

exists a unique tensor T: P— > E6 on P(M , G) o f  type (P2, E W
such that e =  TO A O. The tensor T  is called the (G, p)-torsion of
the connection (0. Moreover, we obtain a tensor

S  = KT : P —> Coker a

on P(M , G) of type (P2, Coker a ) called the structure tensor of the
(G, p)-structure.

Theorem 6. 1. A ssume that a principal bundle P(M , G) gives
a (G , p )-struc ture  on  M . T hen , i t s  structure  tensor S  does not
depend on the choice o f  connection on P(M, G).

P ro o f . L e t co, (0, b e  tw o  connections o n  P(M , G), and set
p=--coi — co. Then, tp becomes a tensorial 1-form on P(M, G) of type
(ad, g), and there exists a unique tensor f :  P-->E*Og on P(M, G)
of type  (P1, E * O g) such that p = f O. Let 0=  TO A 0, 0 1 = T,O A 0
denote respectively the (G, p)-torsion forms of co, co,. Then,

0 1 - 0 (d0+p(co1)0) — (d0+P(c0)0) P(061 .

It follows from the Proposition 6. 2 that T ,— T  = af  and hence
KT,— KT = Koaf = 0 .

This proves that KT,= KT =S.
Here, w e m ake som e rem arks on the existence of (G, p)--

structure on a manifold M .  Let p: G —> GL(E) be a representation,
and set N = K er p, G ' = Im  p. Taking sheaves o f germs of local
functions on M  w ith values in N , G, G' respectively, we have an
exact sequence of sheaves on M

X p
0 N  G  — > G ' --> 0 ,

and its  cohomology sequence

IP(M, N) --> Hi(M, G) 12> 111(M, G')

Assume th a t  the structural group GL (E) of the tangent vector
bundle T (M ) o f M  is reduced to its subgroup G ', and let e' E
111(M , G') be its bundle structure. Then, there exists a  (G, p)-
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structure on M , if E 1m p. For instance, if there exists a homo-
morphism o f groups j :  G '- . G  such that poj =1, then the bundle
structure e= O'E I-11 (M, G) gives a (G, p)-structure on M .  I f  N  is
contained in the center o f G, the cohomology sequence can be
defined as far as the next term

8
- .1 1 1 (M , G) -> HA M, N ),

and we obtain the obstruction c la ss  8 /  E RA M, N ) of the existence
o f (G, p)-structure on M.

Now, we research into connections with a given (G, p)-torsion.
Assume th a t a principal bundle P(M , G ) defines a  (G, p)-

structure 0 on M .  Take a connection coo on P(M , G), and then any
connection co on P(M , G) is uniquely given by co =co o +f 0 , where f
is any tensor on P(M , G ) of type (p„ E *O g ). In  fact, for two
connections co„ co on P(M , G), the form ço - co - co, becomes a tensorial
1-form on P(M , G ) of type (ad, g) which is uniquely given by

=

In  th e  ca se  o f a  complex analytic (G, p)-structure, take a
(1, 0)-connection co, on P(M , G), and then any (1, 0)-connection co
on P(M , G ) is uniquely given by co =co o ±f0 , where f  is  a n y  C-

tensor on P(M , G) of type (p„ E *O g ). Moreover, since the form
0  is analytic, the (G, p)-torsion form o f any (1, 0)-connection co
on P(M , G) becomes a (2, 0)-form, and is given by 0= TO A 0, where
T  is  a C -  tensor on P(M , G) of type ( 0 2 ,  Et21).

Proposition 6. 3. Assume that a principal bundle P(M , G) gives
a (G, p)-structure 0 on M , and take a connection co, on P(M , G) with
(G, p ) - to rs io n  T ,.  Then, any connection co on P(M , G) w ith (G, p)-
torsion T  is given by co co o + fO, where f  is a tensor on P(M , G) of
type (p„ E*Og) such  that û f = T - T o .

P ro o f . Take respectively the (G, p)-torsion forms 0 o = T 0 0 A 0,
0 =  TO .  0  o f two connections coo , co on P(M , G) and set, co =coo + fO.
Then, we have the relation 0 -0 ,---p (p 9 )0  which is equivalent to
T -  T o = a f  by the Proposition 6 .2.

Assume th a t P(M , G ) g ives a  (G, p)-structure on  M  with
structure tensor S , and consider the exact sequence of vector bundles
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X
0 ---> K(M )-> L i (M) 172 (M ) J(M ) ---> 0 .

Setting Im  a=I(M ), w e have exact sequences o f vector bundles
over M

a
0 —> K(M) —> LAM) --> I(M) --> 0 ,

0 / ( M )  V , ( M )  J ( M )  0 .

Taking sheaves of germs of their local sections, we obtain exact
sequences of sheaves

X a
O —> K --> L 1 ->  I —> O,

t
0 — > 1 —> 0 ,

and their cohomology sequences

Xa 8
0 —> 1.1 (M,K)--> P(M, L 1 ) P ( M ,  I )  —> 1P(M, K )  — >

t 

I' (M, I )  mu, V2 )  -  P(M, J)—> 11'(M, I )  —>
--> S.

L e t  T  b e  a  tensor on  P(M , G ) of type (13 2, E 6 ) ,  namely T E
P(M, V 2 ). I f  T  becomes the (G, p)-torsion o f any connection on
P(M , G), it is necessary that K T =S  by definition of the structure
tensor. Take a  connection co, on P(M , G ) with (G, p)-torsion To,
and  set t = T — T o E P(M, I ) .  Then, there exists a  connection (0—
(00 + 0  on P(M , G ) with given (G, p)-torsion T , if  a n d  only if
there exists a  tensor f  E JAM, L ,) such that a f= t. Therefore, we
obtain the obstruction class St E H'(M , K )  of the existence of
connection with given (G, p)-torsion T.

Proposition 6. 4. The obstruction class St E Hi(M , K )  does not
depend on the choice o f connection co, on P(M , G).

P ro o f. Let coo , co, be two connections on P(M , G ) with (G, p)-
torsions T ,,  T , respectively. Then, w e can  se t co, =coo +gO, gE
11 (M, L 1 ). For a given tensor T E r(m, V,) such that KT =S , setting
t --= T —To , t '=T — T „ we see that
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t —t' T  —  T o =  a g  ,  and 8t —8t1 = 8.(xg = 0 .

This proves that at =at' E I / 1 (M, K ).
In the case of a C-  (G, p)-structure, the class 8t always vanishes,

since K .  i s  fine and so  IP(M , K o 0 ) = 0 .  Thereby, we obtain the
following result.

Assume that a C-  principal budle P(M , G ) giv es a  C "  (G, p)-
structure on M  w ith structure tensor S . L e t  T  be a C " tensor on
P(M , G ) of type (p2 ,  E U  such  that K T  =S . Then, there ex ists a
C-  connection on P(M ,G) with given (G, p)-torsion T. In particular,
there ex ists a  C " connection on P(M , G ) without (G, p)-torsion, i f
and only i f  S =0.

Now, w e  assume th a t a  complex analytic principal bundle
P(M , G ) gives an analytic (G, p)-structure on M .  Then, its  basic
form 0 is analytic. Moreover, the (G, p)-torsion T  of any holomor-
phic connection co is also holomorphic. Since P(M , G ) has a local
holomorphic connection co over a neighborhood of any point x E M,
and since the structure tensor S= KT does not depend on the choice
of connection, S  can be defined globally and becomes an analytic
tensor.

Theorem 6. 2. Assume that a complex analytic principal bundle
P(M, G ) giv es an analy tic (G, p)-structure 0 on M  w ith structure
tensor S.

1 °  Let T  be a C-  tensor on P(M , G) of type (P2, E lc2)) such that
K T  =S . Then, there ex ists a (1, 0)-connection on P(M , G) with given
(G, p)-torsion T.

2 °  Assume that there ex ists an analytic connection on P(M , G).
Le t T  be an analy tic tensor on P(M , G ) o f ty pe (P2, EU such that
KT— S. Take any (1, 0)-connection co on P(M , G) with given (G, p)-
torsion T. Then, the (1,1)-component f 2 "  o f its curv ature form  is
given by 12" — *0, where jr is a tensorial (0, 1)-form  on P(M , G) of
type (p„ K er a), and the class [— qr] G Hi(A °*(M, K)) corresponds to
the obstruction class 8t E 11 1 (M, K h ) under the Dolbeault isomorphism.

P ro o f .  1 ° .  Since K o ., is  fine, we have .8t=0.
2 ' .  Take an analytic connection co, on P (M, G ) with (G, p)-

torsion T ,, and set co= coo + fO, f  E A "(M , L ,). Since the forms 0, coo
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are analytic, we have S2" = d"f0 and hence d"f —11P. Moreover, since
T , T , are analytic, it holds that ce*----d"(rf d"(T—  T 0) = 0 .  There-
fore, we have a cohomology class

[ -Jr]  =  -  d "f ] E BAA°*(M, K)) .

By the theorem 5. 1, the class E— d " f ] corresponds to the obstruc-
tion class 8t under the Dolbeault isomorphism. The theorem has
been thus proved.

Moreover, we can see directly the class ppli E 11 1 (A °*(M, K))
express the obstruction of the existence of analytic connection
with given (G, p)-torsion T .  I f  there exists an analytic connection
(0=6)0 + 0  with given (G, p)-torsion T , then we have d "f =0,
since f  is  an analytic tensor. Obviousely, it holds that [ p]=0.
Conversely, i f  pH - 0, then there exists a C-  tensor g E A"(M, K)
such that d"g =AP', and we obtain a (1, 0)-connection e6=---a) 0 + (f —g)0.
Since d"eo' =(d"f — d"g)0 =0, the connection e6 becomes analytic, and
its (G, p)-torsion 1  is g iven  by 1-'= T— ag= T.

§ 7 .  Soudures

Let P (m, 6) be a pincipal bundle, and let G be a closed sub-
group o f 0 .  Take an associated bundle B =PIG  o f P (m, -6) with
fibre F G ,  and assume that the following conditions are satisfied.

(a) There exists a section s:
(b) dim M  = dim F.

The condition (a)  implies that the
structural group 6 of P can be reduced
to its subgroup G , and w e  have a
restriction P (M, G) of P(M, 0) induced
b y  the map s. L e t  u s  denote the
injection by  : P .  For any point
x E M , we denote by V, the vertical
vector space of B at the point s(x) E B.
vector bundle

0 P P

G G

M B= P I G

F=CIG

Then, we have an associated

V (M ) V  Vx  =  P x iscc)f
EM

of P(M, G) determined by the isotropy representation i s  G—>GL(f).
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In fact, V (M ) can be regarded as an induced bundle of the vertical
vector bundle V (B )=Px  i s , , f  of B by the map s. Take the tangent
vector bundle T (M ) o f M .  A bijection of vector bundles

: T (M ) V (M ) P  x  i s ( G ) f

is called a soudure of B  on M .  If we identify a point x E M with
s(x)G Fx ,  and a tangent vector space T x (M ) w ith T s ( , ) (Fx ) — V, by
0, we can suppose a fibre F ,  o f B  as a tangent space o f M  at
x E M .  In this sense, the fibre bundle B  with a soudure on M is
called a tangent space bundle over M.

By definition, a soudure of B  on M  can be regarded as a
(G, is)-structure on M .  Hence, a soudure is determ ined by the
basic fo r m  : T(P)--> f, characterized by the properties :

( i ) 0.1?, is(g -1 )0 , g  EG ,
( i i )  0(X ) 0 for XE T (P), if and only i f  X  is  vertical.

B y  m ean  o f th e  b as ic  form  0 ,  to  an y  ten so r ia l k-form
p  :  Tk(P)-4. W on P(M , G) of type (0- , W ) corresponds uniquely a
tensor

f : P  H o rn  ( f (k ', W ) f c k )O W

on P(M , G) of type (is c k ) (g)o- , -6 3 ® W) such that
• • •  A O.

Moreover, we have the linear map o f vector spaces
a :  f * O g f1 2  ,

and the associated vector bundles o f P(M, G)

Li(M) P x p i
(G)(f* 09), V2(111) x p2 (G)f12) •

Then, the m ap  a  in d u ce s  th e lin ear m ap  o f  vector bundles
: L,(M)—> V 2(M ) .  Thus, we may consider the (G, is)-torsion T

of a connection co on P(M, G), and we can define the structure tensor
S  of a soudure. Rerated to them , the results in  the preceding
section also hold.

§  8 . Cartan connections

Let B=PIG be a fibre bundle satisfying the conditions (a), (b)
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in the preceding section, and take the restriction 3.• : P-> P induced
by the section s: The natural projection r :
induces a projection -÷ f, and we have an exact and commutative
diagram of vector spaces

for g E G , where çl--= T e ( t ) ,  g= T e (G ) and f = T „ (F ).
ated vector bundles of P(M, G)

L (M ) = '>< od(G)g L (M ) = P x  a e l C a
 V ( M )

we get an exact sequence of vector bundles

0 -> L(M) -> L(M) -> V (M) -> 0 .

Taking associ-

P x iscG)f

On the other hand, we have the fundamental sequence of P(M, G)

0 -> L(M) -> Q(M) -> T(M) 0  .

The Cartan connection of B =P/G  is by definition an isomorphism
o f these sequences

71-

L(M) Q (M )  — > T (M )  — > 0

t T
O - - - >  L(M) L(M ) — >  V (M ) — >  O,

namely, w and 0 are bijections of vector bundles such that Tow = 0. 7 r.

and (00X-= t. W e m ay suppose that a Cartan connection of B  is
definedby a bijection of vector bundles : Q(M) -+ L(M) such that
co.X= t. In  fact, if such a bijection w  is given, then it induces
uniquely a bijection O : T (M )-> V (M ) such that Tow = 0  7 r. The
bijection w is regarded as a contravariant 1 -fo rm  :  T (P ) -> "  on
P (M , G) of type (ad, F.1) called the Cartan connection form.

Proposition 8. 1. T he Cartan connection form  c o :  T(P)-->r1 is
characteriz ed by  the follow ing properties,
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( i ) cook  ad(g - l)co , g  EG .
(ii) co(pA) A ,  p E P ,  A E .
(iii) I f  w(X ) 0 f o r X  E T (P), then X  O.

P ro o f. The property (i) shows that co is a contravariant 1-form
on P(M , G) of type (ad, :(1). Hence, we can regard w as a linear
map o f vector bundles w:  Q (M )--)1 ,(M ). Then, the property (ii)
means that co.X.-- and the property (iii) proves that co becomes
a bijection.

Assume that a Cartan connection co :  T (P)->r1 o f B  is given.
Then, we have uniquely a connection : T (P )--q
on  P(M , 0 )  such that co ---(7).g", and a soudure T ( P ) - - >

co

û: T (P)--> f  of B  on M  such that 0= Tow. Let 1- 2
b e  the curvature form  o f th e  connection (7) on

T(P)P(M , a).  Then, we have a tensorial 2-form

f2 :  T 2 ( P ) -

on P(M , G) of type (ad, Ci) called the Cartan curvature form of the
Cartan connection co. Clearly, it is given by the structure equation

d c o +  [co, w] .2

Now we research into Cartan connections with a given soudure.
Assume that a principal bundle P(M , G ) gives a soudure 0  of B
on M , and consider the exact sequences of vector bundles

X
: 0 L(M) --> Q (M ) --> T (M ) 0

Io
L( M ) L (M )--> V (M ) -- >  0  .

Then, we have the obstruction classes of their splittings

a ( )  E H'(M , Hom (T , L ) ) ,  a( - ) G IP(M , Horn ( V, L))

The bijection 0 : T (M )=-V (M ) induces a bijection of cohomology
groups

0*: 11 1 (M, Hom (V, L)) 1 1 1 (M , Horn (T, L)) .

Then, by the Propositions 2. 4 and 2. 5, the class
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a()—  0* E 111 (M, Horn (T, L))

is regarded as the obstruction class of the existence of Cartan
connection with given soudure O.

In  the case of a C-  soudure, since the sheaf Horn (T, L)c., is
fine, the obstruction class a()—  0* a( - - ) always vanishes. Thereby,
we obtain the following result.

A ssume that a C's principal bundle P(M, G) gives a C -  soudure
0  o f  B  on  M . T hen , there exists a C -  C artan  connection o f  B  with
given soudure O.

Now, let us consider the case of a complex analytic soudure.

Theorem 8. 1. Assume that a complex analytic principal bundle
P(M , G) gives an  analy tic soudure 0 of  B  on M.

1° T here ex ists a (1 ,0 )  C artan  connection o f  B  with given
soudure O.

20 T ak e any  (1, 0) Cartan connection co of B with given soudure O.
Then the (1, 1)-component n i l  of  its  Cartan curvature form becomes
a  tensorial (1,1)-f orm  on P(M , G ) o f  ty pe (ad, g), an d  th e  class
[S2"] E1-1 1 (A 1 *(M, L )) corresponds to  the obstruction class

a()—  0* a() E IP(M, Hom (T, L) h )

of the existence of analytic Cartan connection of  B  with given soudure
0 under the Dolbeault isomorphism.

Proof . 1°.  S ince Hom(T, L),„ is fine, we have a()-0 * a(C )=0 .
2 ° .  For a (1, 0) Cartan connection ca of B  with given soudure

0, since 0  is analytic, it holds that

12" d"co ,  T12 1 1d " ,7- 0 )  = d"0 = 0

and hence 121 1 E A "(M, L), d"f2" = 0 .  Therefore, we have a coho-
mology class [ 121 1 ] E  H '(A '*(M , L )). Let (0, a), be two (1, 0) Cartan
connections of B  with given soudure O. Then, we have a (1, 0)-
form =  —co G .111 0 (M , L ), since Tik 0 — 0 = 0, and it holds that
SIP = d " * .  This proves that the class [12 1 1 ]  does not depend
o n  th e  choice o f  (1, 0 )  Cartan connection (.0 o f  B  with given
soudure O. L et u s  take a  (1, 0)-connection ca,, on P(M , G) and a
(1, 0)-extension p  of 0 over -L (M ). Then, we have a (1, 0) Cartan
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connection co =c0, + q, of B  with given soudure 0, and it holds that

where 12 1 =d"co, denotes the (1, 1)-component of the curvature
form of coo . B y  the theorems 4. 1 and 5. 1, the classes

[nv]
 [

_ d ,,,p ] L ) )

correspond respectively the obstruction classes

a( ) , 8 0  E TP(M, Hom (T , L)h)

under the Dolbeault isomorphism. Since 80= O a ( )  b y the Propo-
sition 2. 4, the class [O P ] corresponds to  the class a()—  0* a( - - )
under the Dolbeault isomorphism. The theorem has been thus
proved.

Moreover, we can see directly the class [DP] E L))
express the obstruction of the existence of analytic Cartan con-
nection with given soudure O. I f  there exists an analytic Cartan
connection co with given soudure 0, then n," = d"co =0, and hence
Es-21 =O. Conversely, if [1211] =0 , th en  th ere  ex is ts  a  tensorial
(1, 0)-form c A "(M , L ) such that d " q c  121 1 ,  and w e obtain  a
(1, 0) Cartan connection '65 Then, we have

d " 12" —
12" 0, 7 6 5  =- =- O.

This proves that 65 becomes an analytic Cartan connection with
given soudure O.

§ 9 . The Cartan structure tensor of a soudure

Let co : T(P)-->4 be a Cartan connection of B =P /G , and let
12: T 2 (P)— .4 denote its Cartan curvature form . Then, we have
a tensorial 2-form

= :  T 2 ( P ) -

on P(M , G) of type (is, f) called the Cartan torsion form of Cartan
connection co. Take the basic form of soudure

0 To): T(P) f
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Then, the Cartan torsion form o f  co is  g iv e n  b y  the structure
equation

=  d 0 + 1- 910, e ) ] .2

Moreover, we have uniquely a  tensor T : P-2 2  o n  P(M, G ) of
type ( p „ fW  such that G= TO A O. The tensor T  is  c a lled  the
Cartan torsion of co. Let us consider the exact sequence of vector
bundles

X a
0 - > K(M) •-> L i (M) -> 172 (M ) ->  J(M )->  O.

Assume that a principal bundle P (M , G ) gives a soudure 0  of B
on M , and take a Cartan connection co with given soudure O. L e t
T  b e  it s  Cartan torsion. Then, w e obtain  a  tensor .3=KT on
P (M , G) of type (p 2 , Coker a) called the Cartan structure tensor of
soudure O.

Theorem 9. 1. T he C artan  structure  tensor of  soudure 0
does not depend on the choice of  Cartan connection o f  B  with given
s o u d u r e  O.

P ro o f . Let co, co, be two Cartan connections of B  with given
soudure 0 , and let (4)-  TO A 0 , 0,-- T1 e  A 0  denote respectively their
Cartan torsion form s. Then, the form cp = c0 ,-co  becomes a  tensorial
1-form on P (M , G) of type (ad, g), since qv= 0 - 0 = 0 . It holds that

6)
t 

6
:
4)

 —  ( o 4
-

2
1 9 1 ° ) ]. 6 ) 1 ] )  (d0 T [ O>, C O ])

1 1
=  —

2
T[P, 6) , ] + -

2
rr Di, A

=  —
1  

i- s (y)Tco, + (p)7-co --- is (p)0  .
2 2

Therefore, setting < p= f0 , w e have T 1 — T =af  and so 1,1"1

-icoaf= O. This proves that KTi = KT =S.

Proposition 9. 1. L et 0  be a soudure of  B  on M , and let S,
denote respectiv ely  its structure tensor an d  i t s  Cartan structure
te n so r. T ak e any  tensorial 1-form  on  P (M , G ) o f  ty pe (ad, ri)
such that 7-1,1P- 0 ,  and set TEIP, 4,j= ue A 0. Then, it holds that
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S  S + -1 .2

P ro o f . Let co, be a connection on P(M, G ) . Then, any Cartan
connection co of B  with soudure 0 is given by co - 0 ) 0 +1/P, where Jr

is any tensorial 1-form on P(M, G) of type (ad, ?1') such that TVP=0.
Let 0, (7) denote respectively the (G, is)-torsion form of co, and the
Cartan torsion form of co. Then, it holds that

= (d0 + -2-1 qco , co]) - (d0 + is (000)

1 1 —
2

TP , A — T [ , 00, (0 ] -- - -  
2  

9-E,k,

This proves that S -S = 1

Accordingly, if the homogeneous space F=6/G is symmetric,
then the Cartan structure tensor S of soudure 0 coincides with the
structure tensor S of soudure O.

Now, we research into Cartan connections with a  given Cartan
torsion. Assume that a principal bundle P(M ,G ) defines a soudure
0 of B=PIG  on M .  Take a Cartan connection co, of B with soudure
0, and then any Cartan connection co of B with soudure O is uniquely
given by co =c00 +ge, where g  is any tensor on P(M, G ) of type
( 9 1, E * 0g).

Proposition 9 .  2 .  A ssume that a principal bundle P(M, G) gives
a soudure 0 o f  B  on M , and take a C artan  connection co, of B with
soudure 0 and C artan torsion T- 0 . Then, any  Cartan connection co
o f  B w ith soudure 0 and Cartan torsion T  is giv en by  co=co0 +g0,
where g  is any  tensor on  P (M ,G ) o f  ty p e  ( p „ E *  g ) such that
a g = T -T o .

P ro o f . Take respectively the Cartan torsion forms 0 0 =  "roe A 0,
(7)= -TO A O  o f two Cartan connections coo , co of B  with soudure 0,
and set co=c00 + 0 . Then, we have the relation

- is (0)0 ,

which is equivalent to T—To =ag.
Consider the exact sequences of sheaves on M
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X a
,

1, IC
- >  I  --->

and their cohomology sequence

a
0 1:(M, K) --> r(m-, 1,1 ) ---> 1̀ (M, I) --> TP(M, K) --->

---->
IC

---> r(111 , )  - - >  r( l i f  ,  V  2 ) --> D  - >  111(M , I ) —>

If a  tensor DE r(m, V2 )  becomes the Cartan torsion of any Cartan
connection of B  with soudure 0, it is necessary that 1c1"="S. Take
a Cartan connection coo of B  with soudure 0 and Cartan torsion D„
a n d  se t  =D — Do E l'(M, I ) .  Then, we obtain the obstruction class
81 EIP(M, K ) of the existence of Cartan connection with soudure
0  and given Cartan torsion D.

P ro p o s it io n  9. 3. The obstruction class 8i E Hi(M , K) does not
depend o n  th e  choice o f  C artan  connection co o o f  B  with given
soudure O.

P ro o f . Let con , co, be two Cartan connections of B  with given
soudure O. Take their Cartan torsions 1-",, 1", respectively. Then,
we can set co, =coo + h61, h e l'(M, L1). For a given tensor 1" E P(M, V 2 )
such that 1c1"=, setting i =  D—D„ D— D1 , we see that

i =  D1 —D, a h ,  a n d  8i 8 o a h  O.

This proves that E Hi(M , K ).
In  the case  o f a  C " soudure, the class 8 i  always vanishes,

since K . is  fin e . Thereby we obtain the following result.
A ssume that a C -  principal bundle P(M, G) gives a C -  soudure

0 of B  on M w ith  Cartan structure ten so r S . Let D  be  a C -  tensor
on P(M , G) of  type (p 2 , ff ) su ch  that K T =S . Then, there ex ists a
C-  C artan  connection o f  B  with soudure 0 and given Cartan torsion
D. In particular, there ex ists a C -  C artan  connection of B  without
Cartan torsion, if  and o n ly  i f  =O.
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In  th e  c a se  o f  a  complex analytic soudure, we obtain the
result like the Theorem 6. 2.

Theorem 9. 2. A ssume that a complex analytic principal bundle
P(M , G) g iv e s  an ana ly tic soudure 0 of B  on M  with Cartan structure
ten so r S.

1 °  L et r be a C's ten so r  on P(M , G ) of  ty p e  (p,, VA su ch  that
Then, th e r e  ex is t s  a  ( 1 ,0 )  C artan  conn ection  o f  B  with

soudure 0  and g iv en  Cartan torsion T.
20 A ssu m e  th a t th ere ex ists  an  an a ly tic  Cartan connection  of

B  w ith  soudure O. L e t  T  b e an ana ly tic ten so r on P(M , G) of  type
(p,, V-2,) su ch  tha t K T  = S . T ak e any (1 ,0 )  Cartan conn ection  0) of
B  w ith  soudure 0  and  g iv e n  C artan torsion T .  T hen, the (1,1)-
component 1 2 "  o f  i t s  C artan cu r v a tu r e  fo rm  is  g iv en  b y  s- " , fre,
w here ik  i s  a  ten so r ia l (0, 1)-form  on P(M , G ) of  t y p e  (p„ K er
and the class [— Jr]  E  Hl(A °*(M , K )) corresponds to  the obstruction
c la s s  8t E H'(111, K h )  und er the Dolbeault isomorphism.

P r o o f .  1 ° .  Since K .  is  fine, we have ai =O.
2 ° .  Take an analytic Cartan connection 0), of B  with soudure

0  and Cartan torsion T,, and set 0)—(00 +0 , g e  A " (M , L , ) .  Then,
w e have 11" = d"co = d"g0  and hence d"g---,k. Moreover, it holds
that coft= d"ceg=d"(T  - T 0)= 0. Therefore, we have a class

E—d"g1 E 1/ 1(A °* (M , K )).

By the Theorem 5. 1, the class E— d "g ] corresponds to the class 81
under the Dolbeault isomorphism. The theorem has been proved.

Moreover, we can see directly the class [ k ] express the ob-
struction of the existence of analytic Cartan connection with soudure
0  and given Cartan torsion T . I f  there exists an analytic Cartan
connection co -0) 0 + g°  with soudure 0 and given Cartan torsion T,
then we have lit = d" g =0 and [P] =O. Conversely, if [P ] = 0, then
there exists a  C-  tensor hE A "(M , K ) such that d "h =q t, and we
obtain an analytic Cartan connection c3=c0 0 +(g— h)0 with soudure
0  and given Cartan torsion T.
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