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Introduction

In the differential geometry, the notion of a tangent space
bundle which may be defined by a soudure structure palys an im-
portant role.

In this paper, we consider some geometric structures closely
related to the soudure, and research into their existences. In §2,
considering extensions of linear maps of vector bundles, we make
preparations for the later sections. Moreover, we need some results
on connections and on extensions of tensorial forms described re-
spectively in §4 and in §5. We introduce in §6 the notion of a
(G, p)-structure and its structure tensor. A soudure may be regarded
as a special case of (G, p)-structures. Combining a connection and
a soudure under a suitable conditon, we get the notion of a Cartan
connection. In the last section, we make remarks on the Cartan
structure tensor of a soudure.

It will be shown that the obstruction classes of the existences
of such structures in the complex analytic case may be represented
by differential forms through the theorem of Dolbeault.

§1. Fibre bundles

Throughout this paper, we assume that any differentiable
manifold is paracompact, and that any fibre bundle is of class C*
or complex analytic.

Let P(M, G) be a principal G-bundle over M with projecton
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7z : P— M. Then, by definition, it satisfies the following conditions.
(i) The structural group G is a right transformation group
on P which operates simply transitive on each fibre G,=="'(x) of
P over x e M.
(ii) There exists a local section s: U— P, wos=1, on a neigh-
borhood U of any point x € M, where 1 denotes the identical map.
The operation of G will be expressed as multiplication

PxG—-P, (p, g)—pg-

Then, taking a point p € P and an element g€ G, we have dif-
feomorphisms

1'7: G—_)th(p), g_)pg’ and Rg: P_>P’ P*ﬁgy
called respectively an admissible map and a right translation. The
right translation gives a diffeomorphism R,: G,— G, on each fibre
G, for x€ M. Moreover, there exists an open covering {U;};c; of
M and a system of local sections
{Sitier, S U= P, mos;=1.

Then, we have uniquely a system of maps

{8} ijer, &ij: Uu,nU;,—-aG, s;(x) = s;(x)g;;(x), xeU;nU;,
clearly satisfying the conditions
gm)=c, x€U;, and g,;(Ngu(x) = gux), x€U;nU;NUs,

where ¢ denotes the unit element of the group G. Let G denote the
sheaf of germs of local G-valued functions on M. Then, the 1-
cocycle {g;;} determines a cohomology class &€ H'(M, G), and it
is well-known that the cohomology set H'(M, G) can be regarded
as the set of all G-bundle structures on M.

Now, let G be a left transformation group on a manifold F,
and express its operation as multiplication

GXF—-F, (gy—g&y.

An associated bundle B=Px cF of P(M, G) with fibre F is defined
as a quotient space of PxF by the equivalent relation

(pg y)~(p, g8y), PEP, ge€G, yeF,
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Namely, its natural projection being also expressed as multiplication
PXF—)B’ (p’y)ﬁpy?

is characterized by the relation (pg)y=p(gy) for p€ P, g€G and
y€F. Moreover, the projection =’ : B— M of the bundle B is de-
fined by ='(py)==(p) for p€ P and y€ F. Then, we can regard a
point p € P as a diffeomorphism

ﬁ:F—’Fx, y—py,

where F,=#=""'(x) is a fibre of B over x=#=(p)€ M.

Let p: G—G be a homomorphism of Lie groups, and let
P(M, G), P(M, G) be principal bundles over M. A differentiable
map p: P— P is called a homomorphism of bundles, if it satisfies
the relation

p(rg) = p(p)r(g), pEP, ge€G.

When such a map g is given, we call P an extension of P, and P
a restriction of P. The homomorphism of groups p: G—G induces
a homomomorphism of sheaves p: G—G and hence a map of
cohomology sets

p: H(M, 6) > H'(M, G),

which maps each G-bundle structure to its extension. Thus, to any
G-bundle P, corresponds a unique extension P by p given by an
associated bundle P=PX,,G. However, a G-bundle P has not in
general its restriction by p. When P has a restriction P by p,
we may suppose that the structural group G of P can be reduced
to its subgroup p(G).

Let P(M, G) be a principal bundle with projection =, and let
@: M'— M be a differentiable map. Then, we obtain uniquely a
principal bundle P’/(M’, G) with projection =’ and a map @: P'—P
such that

mwop = por’, P(p'g) = P(p)g, P EP, geG.

The bundle P’ is called an induced bundle of P by @. It is easy
to see that the map @ induces a map
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o*: H(M, @) - H (M, G)

which maps each bundle structure on M to its induced bundle
structure on M’ by @. Moreover, let B(M, F, G) be a fibre bundle,
and let @ : M"— M be a differentiable map. Taking an associated
principal bundle P(M, G) of B, we obtain an induced bundle P'(M’, G)
of P. Then the induced bundle B'(M’, F, G) of B is defined as an
associated bundle B’=P’x;F.

§2. Vector bundles

A fibre bundle B(M, E, G) over M is called a vector bundle, if
the fibre E is a vector space and the group G operates on E as a
linear transformation group. Then, each fibre E, over x € M be-
comes also a vector space. Let P(M, G) be a principal bundle, and
let p:G—-GL(E) be a representaion of G on a vecter space E.
Then, an associated bundle B=P X, E becomes a vector bundle.
Moreover, denoting by p*=*p"': G— GL(E*) the dual representation
of p on the dual space E* of E, we have an associated vector
bundle B* = PX o E* called the dual vector bundle of B. Let
B(M, E, G), B'(M, E’, G') be two vector bundles over M with projec-
tions =, =’ respectively. A differentiable map «: B— B’ is called
a linear map of vector bundles, if z’od=7 and « induces a linear
map «: E,—E/, of fibres at each point x€ M. Moreover, we have
vector bundles over M

BOB =\| E,®E., BRB =\]E.QE.,

called respectively the Whitney sum and the tensor product of
vector bundles B and B’. Let Hom (E, E’) denote the module of all
linear maps of E into E’. Then, we have a vector bundle over M

Hom (B, B") = gthom (E,, E;) = B*QB’.

A linear map of vector bundles «: B— B’ can be regarded as a
global section of the vector bundle «: M— Hom (B, B’). Let us
denote by E*°, E,, respectively the exterior k-vector spaces over E
and over E*. For a vector bundle B(M, E, G), we have associated
k-vector bundles
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B®(M) = \J B, BasM)=\J Eucio-
Let ¢: W(M)— V(M) be a linear map of vector bundles over

M, and let B(M) be a vector bundle over M. Then, the map ¢
induces linear maps of vector bundles over M

0: Hom (B, W)— Hom (B, V), @ — 0op,
0% : Hom (V, B) — How (W, B), r— o0,

Let V(M) be a vector bundle over M. We denote by I'.(M, V),
I',(M, V) respectively, the module of all C~ sections of V(M), and
the module of all complex analytic sections of V(M), when they
are well defined. One of them will be denoted simply by I'(M, V).
Moreover, we denote by V., V, respectively, the sheaf of germs
of local C~ sections of V(M), and the sheaf of germs of local
holomorphic sections of V(M). One of them will be denoted simply
by V. As well-known the O-dimensional cohomology groups with
coefficients in V., V, are given by respectively

HM, V,))=1I(M, V,)=1.\M, V),
HM, V,) =I'(M, V,,) = 1',(M, V).

Now, we consider an exact sequence of vector bundles over M

0 > K(M) > W(M) 5> V(M) —0.

For a given linear map of vector bundles ¢: B(M)— V(M), a
linear map of vector bundles y: B(M)— W(M) is called an ex-
tension of @ over W(M), if royr=p. Applying a functor Hom (B, %)
to the sequence, we have an exact sequence of vector bundles
over M

0 — Hom (B, K) — Hom (B, W) > Hom (B, V) — 0.

Taking the sheaves of germs of their local sections, we obtain an
exact sequence of sheaves on M

0 — Hom (B, K) 2 Hom (B, W) LHom (B, V)—0

and its cohomology sequence
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)
% (M, Hom (B, W) 5> 1'(M, Hom (B, V) > H(M, Hom (B, K)) —
¥ - - @ o,

Then, by the exactness of this sequence, there exists an extension
V€ (M, Hom (B, W)) of @ if and only if 8p=0. Therefore, the
class 8p € H'(M, Hom (B, K)) may be regarded as the obstruction
class of extension of @ over W(M). In the case of C* vector
bundles, since the sheaf Hom (B, K).. is fine, the class 6 always
vanishes, and so there exists a C~ extension - of @. In the case
of complex analytic vector bundles, the obstruction class 6@ of
analytic extension of an analytic linear map @ appears in generel.

Let us take a linear map of vector bundles 6: T(M)— B(M).
Then, it induces an exact and commutative diagram of sheaves

0 — Hom (B, K) ~ Hom (B, W) > Hom (B, V) — 0
o* o* o*
0 - Hom (T, K) — Hom (T, W) > Hom (T, V) — 0

and their cohomology sequences

5
L (M, Hom (B, W) > 1'(M, Hom (B, V) — H*(M, Hom (B, K)) —

g% o* o
L 1(M, Hom (T, W) 5> 1'(M, Hom (T, V')) > H'(M, Hom (T, K)) —
Pol —— s GFEp,

Thus, the following relation holds.

Proposition 2. 1. 8 (pob) = 0%, @ € 1'(M, Hom (B, V)),
0 € (M, Hom (T, B)).
Again, we consider the exact sequence of vector bundles

0 — K(M) > W(M) > V(M) - 0.

For a given linear map of vector bundles #: K(M)— L(M), a
linear map of vector bundles v: W(M)— L(M) is also called an
extension of p over W(M), if vor=pm Applying the functor
Hom (%, L) to the sequence, we have an exact sequence of vector
bundles
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* %
0 — Hom (V, L) — Hom (W, L) > Hom (K, L) — 0.

Taking the exact sequence of sheaves of germs of their local sec-
tions, we obtain its cohomology sequence

* * S*
L (M, Hom (W, L)) 5 1M, Hom (K, L)) — H'(M, Hom (V, L)) —
y M o* .
Then, there exists an extension v € 1'(M, Hom (W, L)) of p, if and
only if 8*x=0. Thus, the class 8*x€ H'(M, Hom (V, L)) may be
regarded as the obstruction class of extension of # over W(M).

Let us take a linear map of vector bundles «: L(M)— J(M).
Then, it induces a commutative diagram of cohomology sequences

ok ok Sk
— (M, Hom (W, L)) — (M, Hom (K, L)) - H'(M, Hom (V, L)) —

4 4 ©
* * S*
5 (M, Hom (W, ])) 5> v(M, Hom (K, ])) > H'(M, Hom (V, J)) -»
Ko fb xO* 8,

Thus, the following relation holds.

Proposition 2. 2. S*(rop) = wb*p, # € I'(M, Hom (K, L)),
x € 1'(M, Hom (L, ])).
Consider an exact sequence of vector bundles

S: 0> K(M) — WM) > V(M) 0.
A linear map of vector bundles y: V(M)— W(M) is called a split-
ting of &, if Toy=1. And a linear map o : W(M)— K(M) is also
called a splitting of &, if wor=1. Such splittings v and ® may be
regarded as the same one, if they satisfy the relation

Lo® +-fyor = 1 ,

which determines a one-to-one correspondence between v and .
It is clear that a splitting of & means to give a bijection W(M)=
KM V(M).

Applying a functor Hom (V, %) to &, we have an exact sequence
of vector bundles

"0 — Hom (V, K) — Hom (V, W) 5> Hom (V, V) —0.
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Taking the exact seqiiénce of sheaves of germs of their local
sections, we obtain its cohomology sequence

)
L (M, Hom (V, W) 5> (M, Hom (V, V)) - H'(M, Hom (V, K)) —
Yy —- 1 — 81,

Then, there exists a splitting v of &, if and only if 61=0. Set
a(®) = 81€ H'(M, Hom (V, K)),

and we may regard a(®) as the obstruction class of splittng of &.
Moreover, applying a functor H(x, K) to &, we have an exact
sequence of vector bundles

* *
0 — Hom (V, K) — Hom (W, K) > Hom (K, K) — 0.

Taking the exact sequence of sheaves of germs of their local
sections, we obtain its cohomology sequence

* * Sk
L 0(M, Hom (W, K)) 5> (M, Hom (K, K)) — H'(M, Hom (V, K)) —
® 1 6%1,

Then, we get another obstruction class 6*¥1€ H'(M, Hom (V, K)) of
splitting of &.

Proposition 2.3. 061+6%1=0, that is, 6¥*1= —a(S).

Proof. There exists always a local splitting over a neighbor-
hood of any point x € M. Hence, we can take an open covering
U= {U};; of M and a O-cochain

{v:} eC°(1, Hom (V, W)) such that woy; =1.

Then, by definition of the coboundary homomorphism 8, we have
a 1l-cocycle
{a;;} eC'(, Hom (V, K)),  a;; = ¢"o(vi—7;),

which represents the class 61 € H'(M, Hom (V, K)). On the other
hand, we can take a O-cochain

{0} €C°N, Hom (W, K)), @,1=1,

determined by the relation cow;+v,07=1, and we obtain a 1-cocycle
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{af} e C'(, Hom (V, K)), afy = (0;—o;)or™",
which represents the class 6*1 € H'(M, Hom(V, K)). Then, we have
a;;i+afy = o {(v;—v;)oT +eo(w; —wj)} ot
= [,_10(1—1)0'7'—1 = 0.

This proves that 81+86*%1=0.
Moreover, in the Propositions 2.1 and 2.2, setting =1 and
mw=1 respectively, we get the followings.

Proposition 2.4. Let a(®) be the obstruction class of splitting
of the exact sequence ©.

1° 80 = 0*a(®),  O€ (M, Hom (T, V)).
2° 8% = —xa(®), x€I(M, Hom (K, ])).

Now, we consider two exact sequences of vector bundles

S: 0> K(M) > W(M) > V(M) - 0
&: 0 KWM)S>W(M) S V(M) - 0.
A bijection 8: W(M)—W(M) is called an isomorphism of & and
S, if Bov=i and FoB=r.
Proposition 2.5. There exists an isomorphism of & and &,
if and only if a(®)=a(S).

Proof. If 8: W(M)—W(M) is an isomorphism of & and &,
then it induces a commutative diagram of cohomology sequences

)
% 1M, Hom (V, W)) 5> (M, Hom (V, V)) > H'(M, Hom (V, K)) —
i s s s
— (M, Hom (V, W)) = 1\(M, Hom (V, V)) — H'(M, Hom (V, K)) —.
Hence, a(®)=081=581=a(&). Conversely, assume that a(&)=a(5).
We can take an open covering {U;};;; of M and local splittings
{o;} e C°'(, Hom (W, K)), w01
{(71} € Co(u) Hom (V7 W)) ’ fo'h)"‘.

Il

1,
1,

Il

of & & respectively, and we have l-cocycles
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{a;kj}» {dij} € Cl(ur Hom (V9 K)) ’
afy = (0;—w;)om™, d4;; = (¥, —9;)
which represent the classes —a(&), a(&) respectively. Since (&)=
a(®), we can choose the O-cochains {®;}, {¥;} such that a¥ +a,;=0.
Then, taking a O-cochain

{8} € C°(N, Hom(W, W)), B; = icw;+7;0r,
we see that
B;—B; = to(0;— ;) +(¥;—F,)oT
= To(a¥y+d;;)or = 0.
Hence, we obtain a bijection 8: W(M)—W(M) such that 8=2; in
U,, which gives an isomorphism of & and &.

Thus, we can regard the class a(®)—a(S)€ H(M, Hom (V, K))
as the obstruction class of isomorphism of & and &,

§3. Tangent vector bundles

Let M be a differentiable manifold. We denote by A(U) and
by A, respectively, the ring of all differentiable functions on an
open set UC M, and the ring of germs of A(U) on a point x € M.
A tangent vector X of M at x€ M is by definition a map X: A4,— R
satisfying the conditions :

(1) X fi+eofy) = o Xfi+e,Xf,, ¢,c€ER, Ji, [.€A,,
(ii) X(fg) = (Xf)gx)+f(x)(Xg), f,g€A,.

When M is complex analytic, we must take the complex number
field C in stead of the real number field R in the above definition.

Let T, (M), T(M) denote respectively the tangent vector space
at a point x € M and the tangent vector bundle over M. For two
manifolds M, N, we have natural bijections

T(MXN) = T(M)x T(N), Teo f(MXN) = T(M)ST,(N).
As well-known, a differentiable map «: M— N induces a map
a: T(M)— T(N), (aX)f = X(fe), f€A4,, yeEN,

which we shall denote by the same letter «. In particular, for a
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differentiable map expressed as multiplication
m: MxN—K, (x,9 —xy,

taking a point a€ M or b€ N, we get a map

a: N->K, y—ay,or b*: M- K, x—xb,
whose induced map may be also expressed as multiplication

a: TN)— T(K), Y—aY,or b*: TM)— T(K), X—Xb.

Then, the induced map of the multiplication # is given by

w: TIMYXxT(N)— T(K), (X,Y)—>Xy+xY,
where X€ T,(M), Ye T,(N) and x€ M, ye N. Now, we set

T"M) =\ To(M), ToM) = TM)S D TM).

Then, T*(M) becomes an associated bundle of T(M). Let E be a

vector space. An E-valued k-form @ on M is by definition a
differentiable map

P . Tk(M) g E: (Xl’ Ty Xk) - @(le Tty Xk) ’
being multilinear and alternate with respect to vectors X, -, X, €
T.(M) for x€ M.

Let U, V and W be vector spaces, and let F': UxV—W be
a bilinear map. Two forms

@: T"M)—-U and : T°(M)—->V
on M can be substituted into F, and we have a form
Flp,¥): T"™(M)—> W
on M defined by
F(p, ¥)(X,, -+, X,10)

1 .
= 2 sign (O.)F((p(Xo'(l)’ Tt Xo‘(r))y "!’("' » Xcr(r+s)))
(r+s)! %
for X,, -, X,,,€ T,.(M), where the summation is extended over all
permutations of a set of numbers {1, 2, -« ,»+s}. We remark that

the exterior product of real or complex valued forms is a special
case when F(x, y)=xy.
Moreover, we can define the exterior derivation d which maps
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each E-valued k-form 6 to an E-valued (k+1)-form db, satisfying
the following conditions.

(i) d6,+6,) = do,+do,.

(ii) dF(p,¥) = F(dp,¥)+(—1)F(p, d¥).

(iii) dod = 0.

(iv) df(X)= Xf, for feAd,, XeT, (M).

Let G be a Lie group, and let g denote its Lie algebra being
identified with the tangent vector space 7,(G) at the unit element
¢€G. Any point g€ G defines diffeomorphisms of G

L,:G—-G, x—gx,and R,: G—-G, x—2g,
called respectively left and right translations. It is notable that
the tangent vector bundle of G becomes a product bundle such as

Gxg=T(G), (x,A)—>xA, x€G, Ae€g.
Thereby, we have a g-valued 1-form on G
o: T(G)—g, xA— A, x€G, Ae€g,
called the Maurer-Cartan form of G, which satisfies clearly the
relations
woly, =, ©0oR, =ad(g e, geG,
where we denote by ad: G—GL(g) the adjoint representation of
G, that is,
ad(x): g—q, A—xAx"", x€G.
A homomorphism of Lie groups p: G—G’ induces a homomor-
phism of their Lie algebras
p:g—>g, A—pA.
In particular, the adjoint representation ad: G—GL(g) induces a
representation ad: g — gl(g) given by
ad(A)B = [A, B], A, Beg.
It is well-known that the exterior derivative deo of the Maurer-
Cartan form « of G is given by

do = —%—[m, o],
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so called the structure equation of Cartan.

Let G be a closed subgroup of a Lie group G. Take a homo-
geneous space F=G/G, and denote by 7: G— F its natural projec-
tion. Then, we have a principal bundle G(F, G) with projection ,
whose right translation is given by

R%=1%g, geG, x€G.

Taking the Lie algebras g=7,(G), g= T.(G), and the tangent vector
space f=T,(F), we get an exact and commutative diagram of
vector spaces

.
—f —>0

1ad<g EIiad g)j,s@)
0—>g—3 f

0—g

0

for g€ G, where we denote by is: G— GL(f) the isotropy represen-
tation.

Let B(M, F, G) be a fibre bundle with projection ». A tangent
vector X€ T(B) of B is said to be vertical, if zX=0. Let P(M,G)
be a principal bundle. Then the vertical vector bundle V(P) of
P becomes a product bundle such as

AM: Pxg=V(P), (p,A)—pA, peP, Ae€g,

and hence we have an injection A: Pxg— T(P). Since pg(g~'Ag)
=(pA)g for ge€G, dividing the spaces Pxg and T(P) by G, we
obtain an exact sequence of vector bundles over M

&: 0 L(M) 2 QM) = T(M) -0,

where L(M)=PX .48 is an associated bundle of P determined
by the adjoint representation of G, and Q(M)= T(P)/G denotes a
quotient space of T(P) by the equivalent relation X~Xg for g€G.
The sequence & is called the fundamental sequence of P(M, G).
In particular, let us consider a homogeneous space F=G/G and
the principal bundle G(F, G). Since T(G)=G x§, dividing the
sequence

T ~
Xg—=>GXf—0

™

0—Gxo



250 Seizi Takizawa
by G, we obtain the fundamental sequence of G(F, G)

0— L(F) > Q(F) 5 T(F) > 0.

This proves that Q(F)= G X ,ycd and T(F)=G X ,..,f. Hence, the
structural group of the tangent bundle of a homogeneous space
F=G/G can be reduced to its isotropy group is(G).

Let P(M, G) be a principal bundle, and let G be a closed sub-
group of G. Then, we have an associated bundle B=P/G=Px zF
of P(M, G) with fibre F=G/G, and a principal bundle P(B, G) over
B. Let W(P), W(P) and V(B) denote respectively the vertical vector
bundles of P(B, G), P(M, G) and B(M, F, G). Since W(P)=Pxq
and W(P)=Px3g, dividing the sequence

~ [ 2. T
0—->Pxg—-Pxg—Pxi—0
by G, we obtain an exact sequence of vector bundles over B

0— W(B)/G > W(EB)/GL V(B)— 0.

This shows that V(B)=Px i Hence, the structural group of
the vertical vector bundle V(B) of B=P/G can be reduced to the
isotropy group is(G).

Let P(M, G) be a principal bundle with projection =, and let
p: G—>GL(E) be a representation of G on a vector space E. An
E-valued k-form 6: T*(P)—E on P is said to be a contravariant
k-form on P(M, G) of type (p, E), if it satisfies the condition:

(i) OoR, =p(g )0, g€G.

Moreover, a contravariant k-form 6 is said to be temsorial, if it
satisfies the condition:

(ii) (X, ,X,) =0 for X,, -+, X, € T,(P), if =X, =0.

In particular, a tensorial O-form is called a fensor. In this case,
the condition (ii) is not necessary.

Let us take an associated vector bundle” V(M)=PXx,sE of
P(M, G), and let A¥(M, V), A¥(M,V) denote respectively the module
of all contravariant k-forms on P(M, G) of type (p, E) and the
module of all tensorial k-forms on P(M, G) of type (p, E). Let
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A T
0—LM)— QM) —>T(M)—0
be the fundamental sequence of P(M, G). In general, an E-valued

k-form 6: T*P)—FE on P can be regarded as a linear map of
vector bundles over P such as

0: T®(P)—PxXE, u—(p,0wm), u=>3XA---nX,€THPP).
If ¢ is a contravariant form on P(M,G) of type (p, E), then
dividing T(P) and PxE by G, we can regard ¢ as a linear map
of vector bundles over M

0: QM) — V(M) = PXuxc)E.
Moreover, if ¢ is tensorial, then it can be regarded as a linear map

of vector bundles
6: TWM)— V(M).

Thus, we obtain the following.

Proposition 3.1. There exist natural bijections :
AXM, V) = 1(M, Hom (Q™, V)), AXM, V) = 1'(M, Hom (T*®,V)).

In the sense of this proposition, a tensorial k-form on P(M, G)
of type (p, E) is called sometimes a V(M)-valued k-form on M.

We remark that the exterior derivative d¢ of a contravariant
form ¢ is clearly contravariant, but d¢ is not tensorial in general
even though @ is tensorial.

Here, let us consider a complex analytic vector bundles V(M)
over a complex analytic manifold M. In this case, we have modules
of holomorphic »—forms or C~ (7, s)-forms such as

A"(M, V) = 1',(M, Hom (Q™3, V)),

A"(M, V) = (M, Hom (T, V)),

A™(M, V) = I'.(M, Hom (Q"®Q®, V)),

A™(M, V) = I'(M, Hom (T7QRQT®, V)),
where Q(M) and T(M) denote respectively the conjugate vector
bundles of Q(M) and T(M).

The exterior derivative df of a contravariant (r, s)-form 6 ¢€
A™(M, V) is decomposed uniquely as
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do = 0'+0", 0cA (M, V), 0/cA(M,V).
Thereby, setting d’0=6" and d”’0=6", we have differentiations

' A(M, V) — A(M, V),
" AM, V) — A(M, V),

which satisfy the relations
dod =0, d’ed’ =0, dod’'+d’od =0.

Moreover, we can see that the derivative d”76 of a tensorial
form 8¢ A™(M, V) is also tensorial, and we have a cochain complex

A, V) = SAM, V), d”: AP(M, V) — A™(M, V).

s

Let us take the sheaves on M
A" = Hom (T, V),, A” = Hom (T"QT®, V).,

which denote respectively the sheaf of germs of local holomophic
tensorial r-forms and the sheaf of germs of local C* tensorial
(7, s)-forms. Then, we have a fine resolution of A”

. d// d// d// d//
0_) Arl)Aro__)Afl > eee _)Afs_) oo

and hence the Dolbeault isomorphism
Hs(M, A") = H*(A™*(M, V)) = Z"(M, V)/d"A"*""(M, V), s=>1,

where Z”°(M, V) denotes the module of all (7, s)-cocycles of
A™(M, V) by d’-cohomology.

Let us show explicitly this isomorphism when s=1. Take an
exact sequence of sheaves

"

0sabart znoo,

and its cohomology sequence

4 ”

j d
EA A°(M, V)= Z"(M, V) > H'M, A")— 0,

where H'(M, A™)=0, since A™ is fine. Then, certainly we obtain
the Dolbeault isomorphism

8 H(A™WM, V) = Z"(M, V)/d"A*(M, V) =~ H(M, A").
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§4. Connections

Let P(M, G) be a principal bundle, and let us take its funda-
mental sequence

&: 0 LOM) > QM) % T(M) — 0.

A differentiable splitting o : Q(M)— L(M), wor=1, is called a con-
nection on P(M,G). Then, the linear map of vector bundles » can
be regarded as a contravariant 1-form o : T(P)—g on P(M, G) of
type (ad, g) called the connection form.

Proposition 4.1. The connection form o: T(P)—gq is charac-
terized by the following properties.

(i) @oR,=ad(g ), geG.
(ii) o(pA)=A, peP, Ae€g.

Proof. The property (i) shows that  is a contravariant 1-form
of type (ad, g). Hence, we can regard @ as a linear map of vector
bundles ® : Q(M)—L(M). Then, the property (ii) means that
woA =1,

The curvature form £ of the connection @ is a g-valued 2-form
on P given by the structure equation

Q:da)+%[co, o].

It is known that Q becomes a tensorial 2-form of type (ad, g).

Let 6: T*(P)—E be a tensorial k-form on P(M, G) of type
(p, E). The covariant derivative DO with respect to the connection
o is an E-valued (k+1)-form given by the formula

DO = db+p(e)0,

where p: g—gl(E) denotes the representation of Lie algebra induced
by p. With use of some formulas related to the Lie derivative
and the exterior derivative, we can see directly that Dé becomes
a tensorial (k+1)-form of type (p, E). Applying a functor
Hom (x, L) to the fundamental sequence & of P(M, G), we have an
exact sequence of vector bundles
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=¥ Ak '
0— Hom (T, L) - Hom (Q, L) - Hom (L, L) - 0.

Taking the sheaves of germs of their local sections, we obtain an
exact sequence of sheaves

¥ A¥
0 — Hom (T, L) — Hom (Q, L) — Hom (L, L) — 0,

and its cohomology sequence

e

2K o
— (M, Hom (Q, L)) — "M, Hom (L, L)) — H'(M, Hom (T, L)) —
@ 1 i

Hence, there exists a connection ® on P(M,G), if and only if
0*1= —a(&)=0. Since Hom (T, L)., is fine, we obtain the following
result.

On a C= principal bundle there exists a C™ connection, and on
a complex analytic principal bundle there exists a (1, O)-connection,
which means that its connection form o becomes a (1, 0)-form.

In the case of a complex analytic principal bundle P(M, G),
the obstruction class ¢(&) of the existence of analytic connection
is represented by a (1, 1)-form through the Dolbeault isomorphism,
and we have the following result derived by Atiyah.

Theorem 4.1. Let o be any (1, 0)-connection on a complex
analytic principal bundle, and let Q" be the (1, 1)-component of its
curvature form Q. Then, the class [ Q"] corresponds to the obstruc-
tion class a(S) of the existence of analytic connection under the
Dolbeault isomorphism, that is,

H'(M, Hom (T, L),) = H(A™*(M, L)), a(®)—[Q"].

Proof. Setting A'= Hom (Q, L),, A'=Hom (T, L),, and A=
Hom (T, L).., we have exact sequences of sheaves on M

¥ . A¥
0—->A'"—>A"—- Hom (L, L),—0,

> "

1] 1od 11
0—>A"->A4"—>Z"-0,

and their cohomology sequences
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* 2F

¥ A Sx
— AM, L) — 1'(M, Hom (L, L)) - H'(M, A") - -,

4 ”

j d
LA, 1)S z0(M, L) > H'(M, 4") —0.
For a (1, 0)-connection » € A*(M, L), it holds that

o — <dco+%[co, a)])u =d'ecZ"(ML).

If o, 0, € A°(M, L) are two (1, 0)-connections, then the form p=—
©,—® becomes a tensorial (1, 0)-form of type (ad, g), and we see
that

Q}l_ﬂu — d//w]_d//a) — d”?, ¢EA1°(M, L) .

This shows that thé class [Q"] € H'(A™(M, L)) does not depend on
the choice of (1, 0)-connection w. Take an open covering {U.};;
of M and local holomorphic splittings of &

{o}eC, A), o0 =1,
and we obtain a 1-cocycle
{a¥} eC'(n, A), a¥ = o0,—o;

1

which represents the obstruction class 8*1= —¢(&). On the other
hand, by definition of the coboundary homomorphism 8", we can
take a tensorial (1, 1)-form ®€Z"(M, L) and a O-cochain {p;} €
C°(1, A*) such that d”p;=® and a¥, =@;,—@;. Then, the class
[®]e H'(A™(M, L)) corresponds to the class —a(®) under the
Dolbeault isomorphism. Moreover, since »,—®;=@;—@;, we obtain
a (1, 0)-connection ® € A(M, L) such that ®=w,—, in U,, and we
see that
on — d”CD — d//w;—d’/W,- = _@ ,

since ®; is holomorphic. This proves that the class [Q"] €
H'(A™(M, L)) corresponds to_the class a(©)€ H'(M, A") under the
Dolbeault isomorphism. The theorem has been thus proved.
Moreover, we can see directly the class [Q"]e H'(A™(M, L))
express the obstruction of the existence of analytic connection on
P(M, G). Assume that o is an analytic connection. Then, obviously
Q" =¢"»=0, and hence [Q2"']=0. Conversely, assume that [Q"]=0,
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Then, there exists a tensorial (1, 0)-form @€ A"(M, L) such that
d’'p=0". Setting &=w—pecA(M, L), we obtain an analytic
connection &, since d”’a&=0.

§ 5. Extensions of temsorial forms

Let P(M, G) be a principal bundle, and let us consider an
exact sequence of associated vector bundles of P(M, G)

&: 0 K(M) > WM V(M) — 0.

An extension of a tensorial k-form 6¢€ A*¥ M, V) is by definition
a tensorial k-form @€ A*(M, W) such that Top=6. Applying a
functor Hom (T, ) to &, we have an exact sequence of vector
bundles

0 — Hom (T, K) < Hom (T, W) 5> Hom (T, V) —0.

Taking the sheaves of germs of their local sections, we obtain an
exact sequence of sheaves

0 — Hom (T, K) - Hom (T, W) 5> Hom (T™, V) >0,

and its cohomology sequence

8
% AH(M, W) 5 A, V) > H'(M, Hom (T, K)) —
@ >0 50.

Hence, there exists an extension @ of 6, if and only if 86 =0.
Since Hom (T, K)., is fine, we get the following result.

For an exact sequence & of C= vector bundles there exists a C*
extension @ € A*(M, W) of a given C* tensorial k-form 6 € A*(M, V),
and for an exact sequence S of complex analytic vector bundles
there exists a C= (r,0)-extension @€ AWM, W) of a given C~
tensorial (v, 0)-form 6 € A™(M, V).

Let P(M, G) be a complex analytic principal bundle, and let
p: G—>GL(E) be a complex analytic representation. Take an
associated vector bundle V(M)=P X, E and a (1, 0)-connection o
on P(M, G). The covariant derivative D@ of an (7, s)-tensorial form
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6e A”(M, V) is also becomes a tensorial form, which is decomposed
uniquely as

D0 =D'0+D"0, D6 A"*(M, V), D"0€ A™*"'(M, V).
Since DO is given by the formula D=d60+p(»)d, we have
D0 = d'0+p(@)d, D"0=d"0.
This shows that the derivation
D" =d’: A®(M, V) — A"+ (M, V)

does not depend on the choice of (1, 0)-connection, and we obtain
a cochain complex

A*XM, V) =23A"(M, V), d": A"(M, V) - A" (M, V),

s

on which we have remarked in §3.
Let us consider an exact sequence of complex analytic associ-
ated vector bundles of P(M, G)

&: 0 K(M) > W(M) > V(M) —0.
Then, for a given analytic tensorial »~form 6 € A"(M, V), the ob-
struction class

80 = 0*a(S) € H'(M, Hom (T, K),)

of analytic extension of & may be represented by an (r, 1)-form
through the Dolbeault isomorphism.

Theorem 5.1. Let P(M, G) be a complex analytic principal
bundle, and let

&: 0 K(M) > W(M) 5 V(M) -0

be an exact sequence of complex analytic vector bundles associated
with P(M, G). For a given analytic tensorial r-form 0¢€ A"(M, V),
take an (r, 0)-extension p € A™(M, W) of 6. Then the class [ —d"¢]
corresponds to the obstruction class 80 of analytic extension of 0
under the Dolbeault isomorphism, that is,

HM, Hom (T, K),) = H'(A™(M, K)), 0 —[—d"p].
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Proof. Setting A"=Hom (T, K), and A”=Hom (T, K)..,
we have exact sequences of sheaves on M

0— A" 5> Hom (T, W), > Hom (T™, V), -0,

M "

d
0>abaizno,

and their cohomology sequences
Lo, Wy S s v S a4y S
l; A”(M, K) i Z"(M, K) —; H'(M, A" l» 0.
For an (r, 0)-extension @ € A™(M, W) of 0, it holds that
vd"p =d'rp=4d"6 =0,
since @ is analytic. This shows that d’peZ" (M, K). If ¢, p, €

A"(M, W) are two (r, 0)-extensions of 6. Then, we have a form
k=p,—p€ A(M, K) since 7«=0—60=0, and we see that

d”@l—d’@ — d”/c, /CQArO(M K) .

This shows that the class [d”p]€ H'(A™(M, K)) does not depend
on the choice of (7, 0)-extension ¢ of #. Take an open covering
U= {U;},; and local holomorphic extensions of &

{?z} € Co(u’ Hom (TU)’ W)h) y TP = 0 ’
and we obtain a 1-cocycle
{:;} eC(0, A7), b =pi—p;,
which represents the obstruction class 80=6*a(S). On the other
hand, by definition of 6", we can take an (r, 1)-form Ve Z"(M, K)
and a O-cochain {y;} € C°(11, 4™) such that d” ¥,=¥ and b;; =V, — ;.
Then, the class [V]e H'(A™(M, K)) corresponds to the class 660
under the Dolbeault isomorphism. Moreover, since @, —@;=vy;—V;,
we obtain an (7, 0)-extension @ € A™(M, W) of 8 such that p=p, —;
in U;, and we see that
d//¢ — d//(pi_d//,llri= .,
This proves that the class [ —d"p]€ H'(A™(M, K)) corresponds to
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the obstruction class 60 € H'(M, A”) under the Dolbeault isomorphism.
The theorem has been thus proved.

Moreover, we can see directly the class [d”p] € H'(A™(M, K))
express the obstruction of analytic extension of §. Assume that @
is an analytic extension of 6. Then, obviously d”’@=0, and so
[d’»]=0. Conversely, assume that [d”@]=0. Then, there exists
a tensorial (», 0)-form € A™(M, K) such that d"’Yy=d”p. Setting
p=p—y € A™(M, W), we obtain an analytic extension % of 6, since
d’$=0 and Tp=40.

§6. (G, p)-structures

Let p: G—>GL(E) be a representation of a Lie group G on an
n-dimensional vector space E. Then, it induces a representation
of the Lie algebra of G

p:g—>gl(E)= Hom (E, E) = EXQE, A— pA, A€cg=T,G),

where E* denotes the dual space of E. Now, we define a linear
map « as follows :
a: E*®Q — Ely = (E¥*NE*QE,
2URQA = —2ur)Qy, A€g, u,vEE*, yeE,

where we set p(A)=> v®y <€ E¥QE. Taking the dual representa-
tion p*=*p~': G—GL(E*) of p, we have representations

p, = p*Qad: G — GL(E*®g) ,

p: = (P*APp*)®p: G — GL(EY),

of G. Then, we get an exact and commutative diagram of vector
spaces

A o r*©
00— Ker E*®q El,, Coker & —— 0
lpl(g) {pl(g) lpz(g) lpz(g)

A a €
00— Ker E*®q El, Coker ¢« — 0

for geG. Moreover, for a principal bundle P(M, G), taking its
associated vector bundles
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K(M) = Px, ) Kera, L,(M)= Px, e (E*®g),
VZ(M) = Px pz(G)EIIZH ](M) = PXﬂZ(G) Cokera,

we obtain an exact sequence of vector bundles.

A o ®©
0 — K(M) — L,(M) — V(M) — J(M) —0.

Now, let us consider the tangent frame bundle P’(M, GL(E)) of
an n-dimensional manifold M, and let p : G—GL(E) be a representa-
tion. A restriction P(M, G) of P’ by p is called a (G, p)-structure
on M. Namely, a (G, p)-structure on M is defined, if a homomor-
phism of bundles

p: P(M, G) — P'(M, GL(E)),
p(pg) = p(p)p(g), PEP, g€G,

is given. We remark that, if there exists a (G, p)-structure on M,
then the structural group GL(E) of the tangent vector bundle
T(M) over M must be reduced to its subgroup p(G). Assume that
P(M, G) defines a (G, p)-structure on M. Then, we obtain a natural
bijection of vector bundles

0: T(M) = Px,cE, p(p)y—py, pEP, y€E,

which can be regarded as a tensorial 1-form 6: T(P)—E on
P(M, G) of type (p, E). The form 0 is called the basic form of
the (G, p)-structure.

Proposition 6.1. The basic form 6: T(P)—E of a (G, p)-
structure on M is characterized by the following properties.

(i) 6oR, =p(g )0, g€G.
(ii) 6X) =0 for X€ T(P), if and only if X is vertical.

Proof. The properties (i), (i) mean that the form 6 is a
tensorial 1-form on P(M, G) of type (p, E). Hence, we can regard
¢ as a linear map of vector bundles ¢: T(M)— PX,cE. Then,
the property (ii) shows that € is a bijection. This proves that
the principal bundle P(M, G) defines a (G, p)-structure on M with
basic form 6.

Let ¢: T(P)— E be the basic form of a (G, p)-structure on M.
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Then, to any tensorial k-form @: T*P)— W on P(M, G) of type
(0, W), corresponds uniquely a tensor

f: P> Hom(E®W W)=E,QW
on P(M, G) of type ((p*A -+ A p*)Ro, E,;@ W) such that
@ =fOn -+ NG,

Because, the form @ can be regarded as a linear map of vector
bundles

@: TWM) > PX g W,
and by the Proposition 6.1 the k-form
08 =GN o NO: THW(P) - EW
can be regarded as a bijection of vector bundles over M

0% : T®(M) = PX e B
‘P\ f
Px e, W.
Hence, we have a one-to-one correspondence between @ and f.

From the definition of the linear map of vector bundles
a: L(M)—V,(M), we can see easily the following.

Proposition 6.2. Assume that a principal bundle P(M, G)
gives a (G, p)-structure on M with basic form 6. T(P)—E. Let
@: T(P)—g be a tensorial 1-form on P(M, G) of type (ad, q). Then,
the 2-form p(p)0 becomes a tensorial 2- form on P(M, G) of type
(p, E), and is determined by the relations :

t:afr @:f@, P(¢)0=t0/\ 0’
where f, t are temsors on P(M, G) of types (p,, E¥X®g), (p,, El)
respectively.
Assume that P(M, G) gives a (G, p)-structure 0 on M, and take

a connection @ on P(M, G). The covariant derivative of the basic
form

® = DO = df+ p(w)0

is called the (G, p)-torsion form of the connection . Then, there
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exists a unique tensor T: P—FEl;, on P(M,G) of type (p,, El)
such that ®=T760A 6. The tensor T is called the (G, p)-torsion of
the connection . Moreover, we obtain a tensor

S =«T: P— Coker

on P(M, G) of type (p,, Coker ) called the structure tensor of the
(G, p)-structure.

Theorem 6.1. Assume that a principal bundle P(M, G) gives
a (G, p)-structure on M. Then, its structure tensor S does not
depend on the choice of connection on P(M, G).

Proof. Let ®, ®, be two connections on P(M, G), and set
@=w,—o. Then, ¢ becomes a tensorial 1-form on P(M, G) of type
(ad, g), and there exists a unique tensor f: P—E*®gq on P(M, G)
of type (p,, E¥*®g) such that @=f0. Let ©=T6A06, @,=T,6A0
denote respectively the (G, p)-torsion forms of e, @,. Then,

@, — O = (d0-+p(@,)8) —(d6+p(@)8) = p(p)6 .
It follows from the Proposition 6.2 that 7,—7T=«af and hence
kT, —kT = koaf =0.
This proves that «T,=«T=S.
Here, we make some remarks on the existence of (G, p)-
structure on a manifold M. Let p: G—GL(E) be a representation,
and set N=Ker p, G'=Imp. Taking sheaves of germs of local

functions on M with values in N, G, G’ respectively, we have an
exact sequence of sheaves on M

AP
0-N—->G—>G -0,
and its cohomology sequence
A
— H'(M, N) > H\M, 6) > H'\M, &)
& - &,

Assume that the structural group GL(E) of the tangent vector
bundle T(M) of M is reduced to its subgroup G’, and let &€
H'(M, G’) be its bundle structure. Then, there exists a (G, p)-
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structure on M, if & €Imp. For instance, if there exists a homo-
morphism of groups j: G’—G such that poj=1, then the bundle
structure £=j¥ € H'(M, G) gives a (G, p)-structure on M. If N is
contained in the center of G, the cohomology sequence can be
defined as far as the next term

g, @) S 1, v,

and we obtain the obstruction class 6& € H*(M, N) of the existence
of (G, p)-structure on M.

Now, we research into connections with a given (G, p)-torsion.

Assume that a principal bundle P(M, G) defines a (G, p)-
structure 8§ on M. Take a connection o, on P(M, G), and then any
connection @ on P(M, G) is uniquely given by o=w,+ f6, where f
is any tensor on P(M, G) of type (p,, E¥*®g). In fact, for two
connections ®,, ® on P(M, ), the form ¢ =w —o», becomes a tensorial
1-form on P(M, G) of type (ad, g) which is uniquely given by
P =fo.

In the case of a complex analytic (G, p)-structure, take a
(1, 0)-connection ®, on P(M, G), and then any (1, O)-connection o
on P(M, G) is uniquely given by e@=w,+f6, where f is any C~
tensor on P(M, G) of type (p,, E*®q). Moreover, since the form
0 is analytic, the (G, p)-torsion form ® of any (1, 0)-connection ®
on P(M, G) becomes a (2, 0)-form, and is given by ®= TOA 6, where
T is a C~ tensor on P(M, G) of type (p,, El).

Proposition 6.3. Assume that a principal bundle P(M, G) gives
a (G, p)-structure 6 on M, and take a connection o, on P(M, G) with
(G, p)-torsion T,. Then, any connection © on P(M, G) with (G, p)-
torsion T is given by o=w,+ f0, where f is a tensor on P(M, G) of
type (p,, E*®g) such that af=T—T,.

Proof. Take respectively the (G, p)-torsion forms ©,=T,0A 0,
®=TOA O of two connections ®,, ® on P(M, G) and set, ® =w,+ f0.
Then, we have the relation ® —0,=p(f6)0 which is equivalent to
T—T,=af by the Proposition 6. 2.

Assume that P(M, G) gives a (G, p)-structure on M with
structure tensor S, and consider the exact sequence of vector bundles
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A a K
0— K(M)— L(M) — V(M) — J(M) 0.

Setting Im a=I(M), we have exact sequences of vector bundles
over M

A o
0— KWM)—L(M)—IM)—0,

0 — I(M) = V(M) > J(M)—0.

Taking sheaves of germs of their local sections, we obtain exact
sequences of sheaves

A o
0O-K—>L —-I-0,
13 K
O0—-1->V,>J-0,

and their cohomology sequences

A a )
0—-1(M,K)— 1M, L,)—UM,I)—>H (M, K)—
f ! — 8,

0 — (M, I) > (M, V;) > 1(M, J) — H\M, I) —
t T — S.

Let T be a tensor on P(M,G) of type (p,, El,), namely Te€
I'(M, V,). If T becomes the (G, p)-torsion of any connection on
P(M, G), it is necessary that «T=S by definition of the structure
tensor. Take a connection ©, on P(M, G) with (G, p)-torsion T,
and set t=T—T,€1'(M, I). Then, there exists a connection o=
w,+f0 on P(M, G) with given (G, p)-torsion 7, if and only if
there exists a tensor f€1'(M, L,) such that af=¢. Therefore, we
obtain the obstruction class 6t€ H'(M, K) of the existence of
connection with given (G, p)-torsion 7.

Proposition 6.4. The obstruction class 6t € H'(M, K) does not
depend on the choice of connection o, on P(M, G).

Proof. Let o,, ®, be two connections on P(M, G) with (G, p)-
torsions 7T,, T, respectively. Then, we can set o,=w,+g0, g€
I'(M, L,). For a given tensor T € I'(M, V,) such that «T=S, setting
t=T—-T,, t'=T—T,, we see that
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t—t' = T,—T,=ag, and 8t —8t' = Soatg = 0.

This proves that 6t=8¢' € H' (M, K).

In the case of a C~ (G, p)-structure, the class 8¢ always vanishes,
since K., is fine and so H'(M, K.)=0. Thereby, we obtain the
following result.

Assume that a C~ principal budle P(M, G) gives a C~ (G, p)-
structure on M with structure temsor S. Let T be a C~ tensor on
P(M, G) of type (p,, Els)) such that «T=S. Then, there exists a
C= connection on P(M, G) with given (G, p)-torsion T. In particular,
there exists a C= connection on P(M, G) without (G, p)-torsion, if
and only if S=0.

Now, we assume that a complex analytic principal bundle
P(M, G) gives an analytic (G, p)-structure on M. Then, its basic
form @ is analytic. Moreover, the (G, p)-torsion T of any holomor-
phic connection @ is also holomorphic. Since P(M, G) has a local
holomorphic connection @ over a neighborhood of any point x € M,
and since the structure tensor S=«7T does not depend on the choice
of connection, S can be defined globally and becomes an analytic
tensor.

Theorem 6.2. Assume that a complex analytic principal bundle
P(M, G) gives an analytic (G, p)-structure 0 on M with structure
tensor S.

1° Let T be a C” tensor on P(M, G) of type (p,, Ely) such that
«T=S. Then, there exists a (1, 0)-connection on P(M, G) with given
(G, p)-torsion T.

2°  Assume that there exists an analytic connection on P(M, G).
Let T be an analytic tensor on P(M, G) of type (p,, EY;) such that
«T=S. Take any (1, 0)-connection @ on P(M, G) with given (G, p)-
torsion T. Then, the (1, 1)-component Q' of its curvature form is
given by Q" =0, where \r is a tensorial (0, 1)-form on P(M, G) of
type (p,, Ker @), and the class [ —r] € H'(A*(M, K)) corresponds to
the obstruction class 6t € H'(M, K,) under the Dolbeault isomor phism.

Proof. 1°. Since K., is fine, we have 8f=0.
2°, Take an analytic connection @, on P(M, G) with (G, p)-
torsion T,, and set o=o0,+ 0, f€ A®(M, L,). Since the forms 6, o,



266 Seizi Takizawa

are analytic, we have Q''=d”f6 and hence d”f=+. Moreover, since
T, T, are analytic, it holds that ayr=d”af=d”"(T—T,)=0. There-
fore, we have a cohomology class

[—v]=[-ad"fle H(A*M, K)).
By the theorem 5.1, the class [ —d”f] corresponds to the obstruc-
tion class 8f under the Dolbeault isomorphism. The theorem has
been thus proved.

Moreover, we can see directly the class [{] € H'(A™*(M, K))
express the obstruction of the existence of analytic connection
with given (G, p)-torsion 7. If there exists an analytic connection
o=+ f0 with given (G, p)-torsion 7, then we have Yr=d”f=0,
since f is an analytic tensor. Obviousely, it holds that [y]=0.
Conversely, if [y]=0, then there exists a C~ tensor ge& A"(M, K)
such that d”g=1, and we obtain a (1, O)-connection & =®,+ (f — g)0.
Since d”’&=(d"f—d"”g)6=0, the connection & becomes analytic, and
its (G, p)-torsion T is given by T=T-—ag=T.

§7. Soudures

Let P(M, G) be a pincipal bundle, and let G be a closed sub-
group of G. Take an associated bundle B=P/G of P(M, G) with
fibre F=G/G, and assume that the following conditions are satisfied.

(@) There exists a section s: M—B.

) dim M=dimF.

The condition (a) implies that the
structural group G of P can be reduced \G G
to its subgroup G, and we have a

restriction P(M, G) of P(M, G) induced
by the map s. Let us denote the \ F=G/G
injection by §: P—P. For any point M
x €M, we denote by V, the vertical

vector space of B at the point s(x) € B. Then, we have an associated
vector bundle

V(M):xg Vie=PX el

of P(M, G) determined by the isotropy representation is: G— GL(J).



On soudures of differentiable fibve bundles 267

In fact, V(M) can be regarded as an induced bundle of the vertical
vector bundle V(B)=P x ;.,f of B by the map s. Take the tangent
vector bundle T(M) of M. A bijection of vector bundles

6: T(M) = V(M) = PX ;i

is called a soudure of B on M. If we identify a point x € M with
s(x)€ F,, and a tangent vector space T.(M) with T, (F,)=V, by
6, we can suppose a fibre F, of B as a tangent space of M at
x€ M. In this sense, the fibre bundle B with a soudure on M is
called a tangent space bundle over M.

By definition, a soudure of B on M can be regarded as a
(G, is)-structure on M. Hence, a soudure is determined by the
basic form 6: T(P)—f, characterized by the properties :

(i) 6oR,=is(g™ )0, g€,

(ii) 6(X) =0 for X€ T(P), if and only if X is vertical.

By mean of the basic form 6, to any tensorial k-form
@: T*P)— W on P(M, G) of type (o, W) corresponds uniquely a
tensor

f: P— Hom (f®, W) = §,QW

on P(M, G) of type (iS¢, ®0, fin® W) such that
@ =fON - NO.
Moreover, we have the linear map of vector spaces
a: *Qg— i,
and the associated vector bundles of P(M, G)
L(M) = PX,,(7*®9), VM) = PXpyoites -

Then, the map « induces the linear map of vector bundles
a: L(M)—V,(M). Thus, we may consider the (G, is)-torsion T
of a connection @ on P(M, G), and we can define the structure tensor
S of a soudure. Rerated to them, the results in the preceding
section also hold.

§8. Cartan connections

Let B=P/G be a fibre bundle satisfying the conditions (a), (b)
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in the preceding section, and take the restriction §: P— P induced
by the section s: M—>B. The natural projection 7: G—F=G/G
induces a projection 7: §— f, and we have an exact and commutative
diagram of vector spaces

0

ad(g)

T

is(g)

[

g
lad(g)
q

N — N
———n

0 0

for g€G, where §=T,(G), g=T.(G) and =T, (F). Taking associ-
ated vector bundles of P(M, G)

L(M) = PX 4958, L(M) = PX sacii, V(M) = PX of,
we get an exact sequence of vector bundles
0— L(M) > L(M) 5 V(M) — 0.

On the other hand, we have the fundamental sequence of P(M, G)

0 — LOM) 2 Q) = T(M) — 0.

The Cartan connection of B=P/G is by definition an isomorphism
of these sequences

0 —» LOM) —s QM) ~" T(M) —— 0
® g

0 —— L(M) —— L(M) —> V(M) —0,

namely, ® and 6 are bijections of vector bundles such that Tow=~6@on
and e@oA=: We may suppose that a Cartan connection of B is
defined by a bijection of vector bundles » : Q(M)— L(M) such that
woA=y¢. In fact, if such a bijection ® is given, then it induces
uniquely a bijection 6: T(M)— V(M) such that Tow=6 =. The
bijection ® is regarded as a contravariant 1-form ©: T(P)—{§ on
P(M, G) of type (ad, §) called the Cartan connection form.

Proposition 8.1. The Cartan connection form «: T(P)—§ is
characterized by the following properties,
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(i) @R, =ad(g")», gE€G.
(ii) w(pA)=A, peP, Ae€g.
(iii) If o(X) =0 for X€ T(P), then X = 0.

Proof. The property (i) shows that  is a contravariant 1-form
on P(M, G) of type (ad,3). Hence, we can regard ® as a linear
map of vector bundles »: Q(M)—>L(M). Then, the property (ii)
means that woA=y, and the property (iii) proves that « becomes
a bijection.

Assume that a Cartan connection o : T(P)—g of B is given.
Then, we have uniquely a connection &: T(P)—§
on P(M,G) such that @=@&o5, and a soudure T(P) -,
6: T(P)—f of B on M such that =row. Let O §1 /
be the curvature form of the connection & on ®
P(M, G). Then, we have a tensorial 2-form

Q = 0os: TYP)—§

T(P)

on P(M, G) of type (ad, §) called the Cartan curvature form of the
Cartan connection ®. Clearly, it is given by the structure equation

Q= da)+-%—[co, o].

Now we research into Cartan connections with a given soudure.
Assume that a principal bundle P(M, G) gives a soudure 6 of B
on M, and consider the exact sequences of vector bundles

.

S: O—»L(M)LQ(M)L T(M)—0
0
&: 00— L(M) —— L(M) —> V(M) —0.

Then, we have the obstruction classes of their splittings
a(®) € H'(M, Hom (T, L)), a(©)e H'(M, Hom (V, L)).

The bijection 6: T(M)=V(M) induces a bijection of cohomology
groups

6% : H'(M, Hom (V, L)) = H'(M, Hom (T, L)) .
Then, by the Propositions 2. 4{a_nd 2.5, the class
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(&) — 0*a(®) € H'(M, Hom (T, L))

is regarded as the obstruction class of the existence of Cartan
connection with given soudure 0.

In the case of a C~ soudure, since the sheaf Hom (T, L).. is
fine, the obstruction class (&) —#*a(S) always vanishes. Thereby,
we obtain the following result.

Assume that a C principal bundle P(M, G) gives a C* soudure
0 of B on M. Then, there exists a C™ Cartan connection of B with
given soudure 0.

Now, let us consider the case of a complex analytic soudure.

Theorem 8.1. Assume that a complex analytic principal bundle
P(M, G) gives an analytic soudure 6 of B on M.

1° There exists a (1,0) Cartan connection of B with given
soudure 6.

2°  Take any (1, 0) Cartan connection @ of B with given soudure 0.
Then the (1, 1)-component ' of its Cartan curvature form becomes
a tensorial (1, 1)-form on P(M, G) of type (ad, q), and the class
[Q"] € H' (A (M, L)) corresponds to the obstruction class

a(®) — 0*a(©) € H'(M, Hom (T, L),)

of the existence of analytic Cartan connection of B with given soudure
0 under the Dolbeault isomorphism.

Proof. 1°. Since Hom(T, L).. is fine, we have a(&)—6*a(5)=0.
2°. For a (1, 0) Cartan connection @ of B with given soudure
0, since 0 is analytic, it holds that

Qll — d//a) , 'TQU — d//,Tw — d//a — O’

and hence Q"€ A"(M, L), d’Q''=0. Therefore, we have a coho-
mology class [Q"] € H'(A™(M, L)). Let o, ®, be two (1, 0) Cartan
connections of B with given soudure 6. Then, we have a (1, 0)-
form Yy =0,—o € A°(M, L), since mp=6—0=0, and it holds that
o' —Q'"=d"y. This proves that the class [ Q"] does not depend
on the choice of (1,0) Cartan connection © of B with given
soudure 0. Let us take a (1, 0)-connection », on P(M, G) and a
(1, 0)-extension ¢ of ¢ over L(M). Then, we have a (1, 0) Cartan
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connection ®=w,4+@ of B with given soudure 6, and it holds that
Qll — Q(l)l+d//

where Q¢'=d"®, denotes the (1, 1)-component of the curvature
form of w,. By the theorems 4.1 and 5.1, the classes

[Q:'], [—ad"ple H'(A™(M, L))
correspond respectively the obstruction classes
a(®), 66 € H'(M, Hom (T, L),)

under the Dolbeault isomorphism. Since 80=6*a(&) by the Propo-
sition 2.4, the class [Q"] corresponds to the class a(&)—6*a(S)
under the Dolbeault isomorphism. The theorem has been thus
proved.

Moreover, we can see directly the class [Q'] € H'(A*(M, L))
express the obstruction of the existence of analytic Cartan con-
nection with given soudure 6. If there exists an analytic Cartan
connection ® with given soudure 6, then Q' =d”®=0, and hence
[0"]=0. Conversely, if [Q']=0, then there exists a tensorial
1, O)-form +r € A*(M, L) such that d’=0", and we obtain a

~

(1, 0) Cartan connection &=—+. Then, we have
d’e=0"-0"=0, 6 =10 =20.

This proves that & becomes an analytic Cartan connection with
given soudure 6.

§9. The Cartan structure tensor of a soudure

Let @: T(P)—3 be a Cartan connection of B=P/G, and let
Q: TP)—g denote its Cartan curvature form. Then, we have
a tensorial 2-form

® = 10: TP) - §

on P(M, G) of type (is, f) called the Cartan torsion fbrm of Cartan
connection @, Take the basic form of soudure

0 =0: T(P)—>f.
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Then, the Cartan torsion form of ® is given by the structure
equation

® = d49+—%—'r[cu, o].

Moreover, we have uniquely a tensor 7: P—fl on P(M,G) of
type (p,, fiz2) such that @=TOA0. The tensor T is called the
Cartan torsion of o. Let us consider the exact sequence of vector
bundles

0— KO S L) S vy S Joy — 0.

Assume that a principal bundle P(M, G) gives a soudure ¢ of B
on M, and take a Cartan connection @ with given soudure 6. Let
T be its Cartan torsion. Then, we obtain a tensor S=«7 on
P(M, G) of type (p,, Coker c) called the Cartan structure tensor of
soudure 0.

Theorem 9.1. The Cartan structure tensor S of soudure 6
does not depend on the choice of Cartan connection of B with given
soudure 0.

Proof. Let o, ®, be two Cartan connections of B with given
soudure 6, and let ®=TOA 0, ®,=T,0 0 denote respectively their
Cartan torsion forms. Then, the form ¢ =0, —® becomes a tensorial
1-form on P(M, G) of type (ad, g), since rp=0—6=0. It holds that

I

®,—6 <d9+ %‘T[ml , m,]) — (d0+%rr[w, co])

— plp, 0]+ 5, 0]

— L is(p)ro, + i (Pro = i5 (P)0.
Therefore, setting @=f0, we have T,—T=af and so «T,—«T=
coaf=0. This proves that «T,=«T=S.

Proposition 9.1. Let 0 be a soudure of B on M, and let S, S
denote respectively its structure temsor and its Cartan structure
tensor. Take any tensorial 1-form ¥ on P(M, G) of type (ad, q)
such that =0, and set v\, ¥ ]=UONO. Then, it holds that
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S=8S +%K2U .

Proof. Let o, be a connection on P(M, G). Then, any Cartan
connection @ of B with soudure 0 is given by ®=w,+, where
is any tensorial 1-form on P(M, G) of type (ad, §) such that =Jy-=4.
Let ®, ® denote respectively the (G, is)-torsion form of », and the
Cartan torsion form of ®. Then, it holds that '

-0 = (d0+ % r[o, 1)~ (d0+75 (©)0)
' 1 1
= 57[@ o]—7lw,, o] = —2—'7'[\#, ].

This proves that S—S= % xU.

Accordingly, if the homogeneous space F=G/G is symmetric,
then the Cartan structure tensor S of soudure ¢ coincides with the
structure tensor S of soudure 6.

Now, we research into Cartan connections with a given Cartan
torsion. Assume that a principal bundle P(M, G) defines a soudure
6 of B=P/G on M. Take a Cartan connection ®, of B with soudure
0, and then any Cartan connection ® of B with soudure € is uniquely
given by o=+ g0, where g is any tensor on P(M, G) of type
(1, E*Q®g).

Proposition 9.2. Assume that a principal bundle P(M, G) gives
a soudure 6 of B on M, and take a Cartan comnection o, of B with
soudure 6 and Cartan torsion T,. Then, any Cartan connection o
of B with soudure 0 and Cartan torsion T is given by o=o,+g0,
where g is any tensor on P(M, G) of type (p,, E¥*®4q) such that
ag=T-T,.

Proof. Take respectively the Cartan torsion forms &,= 7,01 6,
®=TON 0 of two Cartan connections ®,, ® of B with soudure 9,
and set o=o,+g60. Then, we have the relation

which is equivalent to 7— T,=ag.
Consider the exact sequences of sheaves on M
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A [0/
0O-K—->L,—-I1I—-0,
13 K©
O—-I—->V,-J—-0,

and their cohomology sequence

A « b
0—1'WM, K)—>1'(M,L)—>1'M,I)—>H'M, K)—
g f of,

0— (M, I) > 1(M, V)5 (M, J) > H\M, I)—
i T .3

If a tensor T€1(M, V,) becomes the Cartan torsion of any Cartan
connection of B with soudure 6, it is necessary that «T=S. Take
a Cartan connection ©, of B with soudure ¢ and Cartan torsion T,
and set f=T—T,€1'(M, I). Then, we obtain the obstruction class
df e H'(M, K) of the existence of Cartan connection with soudure
6 and given Cartan torsion 7.

Proposition 9. 3. The obstruction class 8t € H'(M, K) does not
depend on the choice of Cartan connection o, of B with given
soudure 6.

Proof. Let o,, ®, be two Cartan connections of B with given
soudure 6. Take their Cartan torsions T,, 7T, respectively. Then,
we can set ®, =w,+h0, h€ 1'(M, L,). For a given tensor T € I'(M, V,)
such that «T=S, setting i=T—7T,, #=T—T,, we see that

-t =T,—T,=ah, and O6f—8F = doah =0.

This proves that 6f=8{'€ H'(M, K).

In the case of a C~ soudure, the class 8/ always vanishes,
since K., is fine. Thereby we obtain the following result.

Assume that a C= principal bundle P(M, G) gives a C~ soudure
0 of B on M with Cartan structure tensor S. Let T be a C* tensor
on P(M, G) of type (p,, ft») such that «T=S. Then, there exists a
C> Cartan connection of B with soudure 0 and given Cartan torsion
T. In particular, there exists a C* Cartan connection of B without
Cartan torsion, if and only if S=0.
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In the case of a complex analytic soudure, we obtain the
result like the Theorem 6. 2.

Theorem 9.2. Assume that a complex analytic principal bundle
P(M, G) gives an analytic soudure 8 of B on M with Cartan structure
tensor S.

1° Let T be a C~ tensor on P(M, G) of type (p,, ftn)) such that
«T=S. Then, there exists a (1,0) Cartan connection of B with
soudure 6 and given Cartan torsion T.

2°  Assume that there exists an analytic Cartan connection of
B with soudure 0. Let T be an analytic tensor on P(M, G) of type
(p,, Ti) such that «T=S. Take any (1,0) Cartan comnection ® of
B with soudure 0 and given Cartan torsion T. Then, the (1, 1)-
component Q" of its Cartan curvature form is given by Q' =0,
where Y is a tensorial (0, 1)-form on P(M, G) of type (p,, Ker @),
and the class [ —{] € H'(A™(M, K)) corresponds to the obstruction
class 8t € H'(M, K,) under the Dolbeault isomorphism.

Proof. 1°. Since K., is fine, we have 8f=0.

2°. Take an analytic Cartan connection ®, of B with soudure
0 and Cartan torsion T,, and set o=w,+g0, g€ A°(M, L,). Then,
we have Q'"'=d”’0o=d”gf and hence d’g=+. Moreover, it holds
that ap=d"ag=d"(T—T,)=0. Therefore, we have a class

[—¥]=[—-d"¢g]le H(A™M, K)).

By the Theorem 5.1, the class [ —d”g] corresponds to the class 67
under the Dolbeault isomorphism. The theorem has been proved.

Moreover, we can see directly the class [{] express the ob-
struction of the existence of analytic Cartan connection with soudure
6 and given Cartan torsion 7. If there exists an analytic Cartan
connection ®=w,+ g6 with soudure ¢ and given Cartan torsion T,
then we have ¥=d”g=0 and [y ]=0. Conversely, if [{]=0, then
there exists a C~ tensor 2€ A®(M, K) such that d”h=+, and we
obtain an analytic Cartan connection &@=w,+(g—#4)¢ with soudure
0 and given Cartan torsion 7.



276

C1]
L2]
£3]
[4]
5]
Le]

L7]
[s]

Lo]
[10]
[11]
[12]

b S Seizi Takizawa

T BIBLIOGRAPHY ‘ . -

W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc.,v

75 (1953), pp. 428-443.

M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math.
Soc., 85 (1957), pp. 181-207.

D. Bernard, Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier,
10 (1960), pp. 151-270.

C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable,
Colloque de Topologie, Bruxelles, CBRM, 1951, pp. 29-55.

A. Fujimoto, On the structure tensor of G-structure, Mem. Coll. Sci. Univ. Kyoto,
Ser. A, 33 Math. (1960), pp. 157-169.

F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie.
Springer-Verlag, Berlin, 1956.

S. Kobayashi, On connection of Cartan, Canad. J. Math. 8 (1956), pp. 145-156.

S. Kobayashi, Theory of comnections, Ann, Mat. Pura Appl., 43 (1957), pp. 119-
194,

S. Nakano, On complex analytic vector bundles, ]J. Math. Soc. Japan, 7 (1955),
pp. 1-12,

K. Nomizu, Lie groups and differential geometry. Publications Math. Soc. Japan
II, 1956.

S. Takizawa, On Cartan connexions and their torsioms, Mem. Coll. Sci. Univ.
Kyoto, Ser. A, 29 Math. (1955), pp. 199-217.

S. Takizawa, Omn the induced connexions, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 30
Math. (1957), pp. 105-118.



