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In a previous paper [4 ] , we proved that every abstract variety
is an open subset o f a  complete abstract variety. In the present
paper, we try to generalize this result to the case of a Neotherian
scheme o f  fin ite ty p e " . Namely, we consider first a  ground
Neotherian scheme S  which is covered by a finite number of open
Neotherian affine schemes S.. Then a scheme we like to say to
be o f finite type over S  is  a  scheme M  over S  such that M  is
covered by a finite number of open affine schemes M i  so that for a
suitable choice of Si , the morphism M-->S induces morphisms M 5 -->
Si  a n d  th e  affine ring 1.15 o f  M 5 is finitely generated over the
natural image of the affine ring of S i in  Op

Our main theorems imply that :
I f  M  is  a Noetherian scheme of f in ite  type over a  Noetherian

ground schem e S , then M  is an open subset o f  a  proper scheme
(Noetherian and of f inite type) over S.

In  our treatment, we use valuation-theoretic method, hence
the usual definition of a  scheme is not nicely suited to our proof.
Therefore we give a  valuation-theoretic definition of a Neotherian
scheme o f finite typ e . Then our method in our paper [4] can be
adapted and we have our main results.

As for terminology on rings, we shall use mainly the one in
our book [3].

1 )  As for the definition of a  scheme, see Grothendieck [1].
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1. Definition o f  a  scheme

A  ring  is assumed always to be a commutative ring with
identity. W e do not assume that the identity o f a  subring coin-
cides with that of the original ring.

Since we are interested only in Noetherian schemes o f finite
type in this paper, schemes defined below is a  Noetherian scheme
and a scheme M  over a scheme S  is nothing but a scheme M  of
finite type over S.

Let o be a Noetherian rin g . Then the set A of local rings
,  where p runs through all prime ideals of o, is called the affine

scheme of o; o is called the affine ring of the affine scheme A  (o is
uniquely determined by A ).  A n  affine scheme is the affine scheme
of some Noetherian ring.

When a ring R  is given, we consider the set of pairs (p, 0 of
prime ideals p of R  and valuation rings y of the field of quotients
of Rip. This set is denoted by Z M (R ). A local ring R ' contained
in  R  is said to be dominated by (p, ( e  ZM(R)) i f  R' I (pn.12') is
different from 0 and is dominated by v. Two local rings R ' and
R " contained in R  are defined to correspond to each other if there
is a member (p, 0 of ZM (R) which dominates both R ' and R".

We shall define also the notion of weak domination as follows :
We say that a  ring R ' dominates another ring R "  weakly i f  (i)
they are contained in a ring R  and (ii) denoting by e ' and e" the
identities of R ' and R " respectively, it holds that e 'e"=e ' and R"e'
is dominated by R'.

We consider from now on the case where R  is an Artin ring
is the direct sum o f a  finite number of local rings whose

maximal ideals are nilpotent.
A set M  of local rings is called a scheme i f  (1) all local rings

are contained in an Artin rin g  .t," (2) M  is the union of a finite

2 )  For a given set of rings, there is an A rtin  ring 91 such that there is an  iso-
morphism (bx from every member Rx of the set in t o  I .  If we identify R2, with Ox(Rx),
then we have a definite relationship among elements of rings RA. Thus our assumption
that all local rings are contained in an A rtin  ring is made in order to define a definite
relationship among elements o f  these loca l rin gs. In  th e usual definition (sheaf-
theoretical definition) o f a  scheme, relationship among elements of local rings (stalks)
is given by sections.
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number of affine schemes and (3) if a local ring R' E M  corresponds
to  an R" E M  (i.e., i f  R ' and R " are dominated by a member of
ZM(TI)), then R' = R"

The ring A ' generated by all local rings of M  is again an
A rtin  ring. This A rtin  ring A ' is called the function rin g  of M."
Then one can see that an affine scheme is a scheme (cf. [2, I]).

Let M  and S  be schemes such that all local rings of M  and
S  are contained in an A rtin  ring Then the correspondence of
local rings defined above gives a multi-valued function defined on
a certain subset o f  M  with values in S .  This function is the
transform ation from M  into S  and is denoted by TM s . T A,f , s  is
defined at R' E M  if and only if R ' corresponds to some local ring
of S ; T m „(R ')  is then the set of local rings of S  which correspond
to R '.  In the other case, we define Tm „(R ')  to be the empty set.

Now we say that Tm „  is regular at R 'E M  i f  there is R"E S
which is dominated by R ' weakly ;  in this case, Tm ÷ s (R ')=R " as
is easily seen (cf. [ 2 ,  I ] ) .  We say that TM s  is  biregular at R ' if

E S r\ M . T m , s  is said to be regular or to be a  m orphism  i f  it
is regular at every local ring of M ; in  this case, we say that
M  dom inates S  w eak ly . I f  furthermore every R' E M  dominates
Tm „(R ') , then we say that M dominates S (strongly).

These notions being defined, we can define the notions of a
specialization, the locus of a local ring in a scheme, Zariski topology,
etc. as in our paper [2, I].

We say that M  is a scheme over a (ground) scheme S i f  (i) M
and S  are schemes whose local rings are contained in an Artin ring

(ii) M  dominates S  weakly, ( iii)  for suitable finite affine open
coverings M i ;  (i =1, • • • , n; j =1, • • • , m(i)) and S i (i =1, • • • , n' > n )  of
M and S  respectively, the affine ring oi ;  o f  M 15 is finitely generated
over ei J oi ,  where ei ;  is  the identity o f oi ;  and oi is  the affine ring
of S i and we assume that ei ;  E e•j o i .

3 )  The definition o f  a  scheme depends in  appearance on VI but really depends
only on the function ring of the scheme, as is easily seen. We should note here that,
since, for instance, in the primary decomposition o f ideals in a Noetherian ring, primary
components belonging to imbedded prime divisors are not uniquely determined, hence
form a  given Noetherian scheme in  the sense o f  [1 ] ,  we m ay have many different
function rings of the scheme depending on how we imbed stalks in which Artin ring.
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Many theorems in [2 ] can be adapted. We shall state one of
these results :

Proposition 1. 1. Let M  be a scheme over a ground scheme S
a n d  le t M ' be a  non-empty subset o f  M .  T hen the follow ing 3
conditions are equivalent to each other :

(1) M ' is  an open subset of M.
(2) M ' is  a scheme over S.
(3) The follow ing two conditions hold good :
(i) I f  (REM ), then every  specialization of R  is not in

M ' (i.e., if R ' E M ', then the affine scheme defined by R' is contained
in  M ').  (ii) If R 'E  M ', then there is a closed subset F' of the locus
F  of R ' in  M  such that R ' F '  and F— F'

2. Birationality

Let M be a schem e. A local ring R in M  is called a component
of zero i f  all non-units in R  are zero-divisors. The set of com-
ponents of zero of a scheme is obviously a finite set.

Let M  and M ' be schemes. W e say that Tm , m ,  i s  rational if
it is regular at every com ponents of zero of M .  W e say that
Tm , m ,  is  quasi-rational if it is regular at every component of zero
of M which is contained in Tm , , m (M ') .  We say that M  is  birational
to  M ' if the set of components of zero of M  coincides with that
of M '.  We note here that in the case of schemes with function
fields, rationality and birationality of transformations are nicely
defined by virtue of function fields. But, function rings of schemes
do not tell us m uch (cf. foot-note 3)), and we should observe
components of zero.

We then define the notion of the join J(A, A ') of subsets A, A'
of schemes M , M ' (respectively) over a ground scheme S as in our
paper [2, I]. Then J(R, R') (R EM , R' EM ') is not empty if and
only i f  R  corresponds to  R'. T j ( " ,

) ,,,i  is  r e g u la r . I f  Tm , m ,  is
rational, then J(M, M ') is birational to M .  If A and A' are subsets
of M, then J(A, A')— A n  A '.  Note also  that in the definition of
the join, it is independent of particlular choice of a ground scheme
S .  Consequently,
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Proposition 2. 1. I f  A and A ' are af f ine schemes contained in
M , then A n A ' is an af f ine scheme.

Furthermore, we can prove easily the following (cf. [2 , I]) :

P ro p o s it io n  2. 2. I f  M  an d  M ' are  schem es over a  ground
scheme S an d  if  they  are birational to each other, then Mr■M' is a
scheme over S which is birational to M .  I f  we drop the birationality
from  the assumption, then Mr\M' is either empty or a  scheme over
S .  Namely, th e  se t o f lo ca l r in g s  in  M  a t w h ich  T m , m ,  i s  n o t
biregular is a  closed subset of  M .

Let again  M  be a  scheme whose rings are contained in an
A rtin  ring Let p„ •••, p n  b e  a ll of prime ideals of a  and con-
sider (p, w /p i ). We denote by 1  the identity of a .  For each
there is a uniquely determined idempotent ei b y  the condition that
1— ei E p„ 1— e, Op ;  f o r  every j  i i. Now le t L  be the function
ring of M  and let e  be the identity of L .  Then we have

P ro p o s it io n  2. 3. T here is a local ring  R  in  M  dominated by
(p ,, a /p ,)  if  an d  only  if  ee,  I   0  (i.e. Le i   I   0).

Pro o f . Th e on ly if  p a r t  is  obv ious. Assume th a t  eei +0 .
Then there is a local ring R ' in  M  such that ei l?' +0 , whence
R' p,. T h e n  R = R '0, „/, i s  in  M  and dominated by (p„ a/p,).
This proves the assertion.

A local ring R  o f M  is called a pseudo-component of  z ero of
M  i f  R  is dominated by some (p„ w/p,).

We should note here that

Lemma 2. 4. A  component of zero o f  M  is  a pseudo-component
of  z ero of  M .

In  order to give an explicit proof of Lemma 2. 4, we give a
remark :

F r is t we introduce a notation. When e ' i s  an idempotent of
T, then we denote by M e' the set of R e ' such that RE M  and

Re' -I- O. Now we have

Lemma 2. 5. L et e ' be an idem potnet of  t  su c h  th at L e ' ± 0 .
Then, (1) M e' is  a  scheme whose function ring  is  L e', (2) Re' =Rie'
I  0  (R, R i E M ) im plies R =R ', (3 )  i f  R  is  a  component of  z ero of
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M , then either Re' is  a component of zero of M e' or R (1— e') i s  a
component of zero of M(1— e') and (4 ) if  R „•••,R „ are all  of the
pseudo-components of zero of M , then all of non-zero R i e' f orm  the
set of all pseudo-components of zero o f  Me'.

The proof of Lemma 2. 5 is straightforward.

Corollary 2. 6. I f  R  is  a component of zero of M , then there
is  a primitive idempotent e ' o f W (i.e., e' is an idempotent such that
W e' is a local ring) such  that Re' i s  a  component of zero of M e'
(Le'  I   0).

Note that in Corollary 2. 6, since the function ring of M e' is
a local ring, Re' is  unique component of zero of M e ' and is also
unique pseudo-component of zero of M e '.  Therefore, R is a pseudo-
component of zero of M  by (2) and (4) in Lemma 2.5.

Now we define, with respect to the Artin ring % of considera-
tion, the notions of strong rationality , strong quasi-rationality , and
strong birationality  b y  the sam e w ay  as  above, but replacing
"components o f zero " by "pseudo-components o f ze ro ". Then it
is obvious that Proposition 2.2 can be adapted to strongly birational
schemes. Namely :

P r o p o s i t io n  2. 7 . Let M  and M ' be schemes over a scheme S.
I f  M  is strongly  birational to M ', then M ' r\M  is a scheme over S
w hich is strongly  birational to M '.

The following condition on the function ring L  o f a  scheme
M  in an Artin ring t is som etim es a nice condition :

(Z )  An element o f L  is  a zero-divisor in  L  if and only i f  it
is  a zero-divisor in 9X e, e being the identity  o f L.

P r o p o s i t io n  2. 8 . For a  schem e M , the set of components of
zero coincides w ith that o f pseudo-components of zero if and only
i f  the condition (Z )  is satisfied.

The proof is straightforward.

3 .  Complete schemes a n d  p r o je c t iv e  schemes

Let M  be a set of local rings contained in an Artin ring K.
Then the set of (p, y) E ZM(%) which dominate some members of
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M  is denoted by ZR (M ; TO . Let S be another set of local rings
contained in TX. W e say that M  is com plete w ith respect to  S  if
ZR(S; a) ZR (M ; TX). Note that the definition o f  completeness
does not depend on the particular choice o f a.

When M is a scheme over a ground scheme S, then ZR(S ;TX)
ZR(M;21) implies ZR(S;21)=ZR(M ;21). In  this case, we say

that M  is a complete scheme over S.
Next we define the notion of a projective scheme over a ground

scheme S .  Let X  b e  an A r t in  ring containing the function ring
K  of S and let e be the identity o f K.

We first consider the case where S is the affine  scheme defined
by a N o e th e r ia n  ring o. Let x„ •••, x n be elements of 21e such that
the module E x i o is generated by y o , •••, y n,  over o  so that every
y i is not a zero-divisor in 5,)ie. Then we consider the union M  of
affine  schemes A i (i=  0, •••, m) defined by o[y o /y i , •••, y,n /yi ] ,  where
y 1 /y 1 are considered in the A r t in  ring 21e. This M  is really in-
dependent of the particular choice of the basis y o , •.•, y„ and M  is
a scheme. This M  is called the projective scheme over S  defined
by homogeneous coordinates (x o , •, x n ).

Note that :

L em m a 3. 1. W ith the same notation as just abov e, l e t  U  be
an  affine schem e def ined by  a  Noetherian rin g  R such that U S
an d  le t  e ' be the  identity  o f  R . T h e n  T s , m ( U ) i s  the projective
scheme defined by (x oe',•••,xn e') over U.

This lemma enables us to define projective schemes in the
general case as follows : A  scheme M  over a scheme S  is called
a projective scheme over S  i f  for every affine  scheme A  contained
in S , T „ m (A ) is a projective scheme over A  (defined by a certain
system of homogeneous coordinates).

Ppoposition 3. 2. A  projective scheme M  over a  scheme S is  a
complete scheme over S.

Proof is easy (cf. [2 , I]) .

P ro p o s it io n  3. 3. I f  M  and M ' are projective schemes over a
scheme S, then the join J(M, M ') of  M and M' is a projective scheme
over S.
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Proof is easy (cf. [2, ti).
We say that a scheme M  is a quasi-projective scheme over a

scheme S  if M  is an open subset of a projective scheme over S.
In closing this section, we shall state an easy result without

proof :

Proposition 3 .  4 .  I f  a  schem e M  is com plete w ith respect to
another scheme M', then for an arbitrary closed set F of  M , T m , m /(F)
is  a  closed set of  M '.

4 .  Some remarks and formulation of main theorems

Let M  be a  scheme whose local rings are contained in an
Artin ring W . W e say that M  is normally imbedded in W if the
function ring of M  has common identity with a.

Proposition 4. 1. L et M  be a  scheme over a  scheme S and let
L  and  K  be the function rings o f  M  and  S  respectiv ely . L et e', e
be the identitihs of  K , L  respectiv ely . T hen, (i) in general, we have

and (ii) if  K L  then K  and L  hav e the same identity.
The proof if  straightforward.

Corollary 4. 2. L et M  be a  scheme over a scheme S and assume
th at lo c al rin g s  o f  M  an d  S  are  contained in  an  A rtin  ring  I .
If  M  is norm ally  im bedded in t, then S  is also norm ally  im bedded
in 5A.

We shall state now our main theorems :

Theorem 1. L et M  be a  scheme over a  ground schem e S .  I f
M  and S  are normally imbedded in an A rtin ring  then there is
a  com plete schem e M ' over S  so that M ' is strongly  birational to M
(with respect to %) and contains M  as an  open subset.

Theorem 2. L et M  be a  scheme over a  ground schem e S , all
being considered in  an  A rtin  rin g  l .  T h e n  t h e re  i s  a  complete
schem e M ' ov er S  such that M  is an  open subset of  M '.

These main theorems will be proved later.
W e have to explain how Theorem 1  proves the imbedding

problem of a scheme in a proper scheme.
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Let M  be a scheme over a scheme S and let K and L  be the
function rings of S and M  respectively. Let e be the identity of
L  and consider S e= {ReIRE S, Re  I  0 }. Then  Se is a scheme (see
Lemma 2. 5) and M  is  a  scheme over S e . Conversely, a  scheme
over Se is a scheme over S .  On the other hand, one can see easily
that M is a proper scheme over S if and only i f  M  is a complete
scheme over S e . Therefore the imbedding of a scheme in a proper
scheme is an immediate consequence o f Theorem 1, and we can
assert that

I f  M  is  a scheme over a scheme S, then there is a proper scheme
M ' over S so  th at (i) M ' contains M  as an open subset and (ii) M'
is  birational to  M.

5. Dilatation by an ideal

Let M  be a  scheme whose local rings are contained in an
Artin ring X. A n  id eal I  o f M  is a map defined on M  such that
for each RE M , I(R ) is an ideal o f R and there is an open cover-
ing Ui  o f  M  so that all 1(R) (RE U1) fo r  each i  have a common
basis. I(R ) is called the stalk  o f I  at R . C losed  sets defined by
ideals, prime ideals and prim ary  ideals are defined as in [2, III].

Let I  be an ideal o f  a  scheme M .  Assume that the closed
set defined by I  do not carry any pseudo-component of zero of
M .  If the condition (Z )  in  §2 is satisfied, then the condition is
equivalent to that every I(R ) (RE M ) contains at least one element
which is not a zero-divisor. In this case, we define a new scheme
M ' which is called the dilatation o f M  (defined) by I  as follows :

By the definition o f an  ideal, we can choose affine schemes
M„•••,M, which cover M  such that I(R ) is generated by an ideal
I .  of the affine ring o i o f  M i  fo r  every RE M i (for each i). Let
e, be the identity of o i . By the assumption, I contains at least
one non - zero - divisor in i e 1 , whence we can choose a basis (x 1 0 , •-•,
x1„1) of I. consisting only of non-zero-divisors in Kei . Then we can
consider the projective scheme M*, over M, defined by homogeneous
coordinates (x 1 0 , •••, x i n i ). Then the union M * of all J(M i , M* i ) is
a scheme, complete over M  and independent of particular choice of
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the basis (x„,•••, x i 1). This M * is called the dilatation of M defined
by I. Verification of the above construction is substantially the
same as the case of algebraic geometry over fields. As is obvious,

Proposition 5. 1. T he d ilation  M * is com plete  ov er M  and
strongly  birational to M.

When M  is  a projective scheme over an affine scheme S, then
M  has a homogeneous coordinate ring, say f), over the affine ring
of S . (Homogeneous coordinate rings are defined as usual.) Then
a primary ideal of M  come from a homogeneous primary ideal of
b. An ideal o f M  is  the intersection of a finite number of primary
ideals o f M , whence every ideal o f M  come from a homogeneous
ideal o f b. T herefo re the dilatation of M  defined by an ideal of
M  (provided that it is well defined) is again a projective scheme.
Therefore, by the definition of a projective scheme in the general
case, we have

Proposition 5. 2. I f  I  i s  an  id eal o f  a  projective scheme M
over a  scheme S and if  the dilatation M * of  M  by I is well defined,
then M * is a projective scheme over S.

Corollary 5. 3. L et M  be a  scheme an d  le t  I  b e  an  ideal o f
M  such that I def ines a dilatation M * o f  M .  I f  a  subset U of  M
is  a projectiv e scheme (or a quasi-projective scheme) over a  scheme
S ', th e n  T m + m * (U )  i s  a projectiv e schem e (or a quasi-projective
scheme, respectively) over S'.

6. Some preliminary results

Let M  be a  scheme whose function ring is contained in an
Artin ring K. We introduce on Z R (M ;% ) a topology which is also
called Z arisk i topology as follows :

Let M =  {M ,} be the set of schemes over M  which are strongly
birational to M  with respect to K  and complete over M .  For each
closed subset F „  o f  Mx , let F* „ be the set of (1), y) E Z R (M ; K)
which dominate some local rings in F „ .  The set o f a ll F * „ is
defined to be a base of closed sets of Z R (M ; ÇA). I f  we define an
equivalence relation — in Z R (M ;% ) by : (1.1, y) — (r/, y ') if and only
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i f  (p, y) and (p', y ') dominate the same local ring on every M .
Then we see that the equivalence classes form naturally a  space
which is homeomorphic to the limit of the inverse system {Mx}
the limit is denoted by Z R (M ).  Thus we see that

Lemma 6. 1. ZR (M ) and ZR(M ;521) are compact (non-Hausdorf
except fo r  a  v ery  special case w here M  consists only  o f a  finite
number of local rings).

Lemma 6. 2. Let M and M' be schemes over an affine scheme S.
Assume th at  M  and S are normally imbedded in an Artin ring W.
I f  M  is strongly  birational to  M ' (w ith respect to W) and  if (p, y)
E ZR(j(M ,  M '); v i), then  there  is a  scheme M * w hich is strongly
birational to  M so that (1 ) M * is complete over M , (2) Mr\ M ' M * ,
(3) fo r  every quasi-projective subset U o f  M  over a  scheme S ', the
scheme Tm „ , , (U )  i s  a quasi-projective scheme over S ' and (4 ) i f
P* (E  M *) and P ' (E  M ') are dominated by (p, v) then P* dominates
P ' weakly.

The proof is the same as that o f Lemma 3. 1 in  [4 ] if we
note the following obvious fact :

Lemma 6. 3. I f  M  and M ' are schemes which are strongly
birational to each other w ith respect to  the Artin ring W and if a
pseudo-component o f ze ro  o f M  i s  a  specialization o f PE  M, then
Tm , m ,  i s  biregular at  P.

Therefore as in [4], we have

Theorem 6. 4. Let M and M ' be schemes over a scheme S .  I f
M  is strongly  birational to  M ' w ith respect to  the Artin ring W,
then there is a scheme M * over S such that (1 ) M *  is complete over
M , (2 ) M r\ M 'C M *, (3) fo r  every quasi-projective subset U o f  M
over a scheme S', Tm , m * ( U ) is  quasi-projective over S ' and (4) for
each R E M *, either Tm *, m /(R) is em pty  o r  Tm *,m ,  is regular at R .

Let M  be a scheme over a scheme S and let M ' be a projec-
tive scheme over Se, e being an idempotent of the Artin ring of
consideration. For each RE M , le t A  be an affine open set of S
containing T M s (R ) and consider the projective scheme Ts ,,, , (A)
over A e . Let x,, •••, x„ be a  system of homogeneous coordinates
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which defines T s , m , (A ) over A e .  Then the set of elements .x ) , •••,
x„' of R such that x e =a x , , • • • ,x e =a x „ (considering all possible a)
generates an ideal I (R )  o f R .  Then I (R )  is independent of the
particular choice of A  and also of x i . Hence the set of I(R ) defines
an ideal I  of M .  This ideal is called the ideal of M  associated with
the transform ation Tm , m /.

T heo rem  6. 5. W ith the sam e notation as above, for a  Pe M,
P  i s  in  th e  closed se t def ined by  I i f  an d  only  i f  T m , m ,  is  n o t
regu lar at P  an d  T m , m i(P )  is  n o t  e m p ty . I f  th e  ideal I def ines
dilatation M * o f  M , then Tm i, m * (M ') dominates M ' weakly.

The proof is the same as that o f Theorem 3. 3 in [4 ].

Proposition 6. 6. Under the notation in Theorem 6.5 , i f  T m , m ,

is strongly  quasi-rational, then M * is well defined.
The proof is straightforward.

7. P ro o f  o f  T h e o re m  1.

Here we shall prove Theorem 1 , which was stated in § 4.
First we shall show that i f  Theorem 1  is true fo r  affine S,

then it is true in the general case. Indeed, assume that Theorem
1  is true i f  S  is affine and let S „•••, S „ be affine open subsets of
S  which cover S .  W e shall use induction argument on n .  Set
S o = V i ,„S i and M o = T s , m (S„). Then M o is  a scheme over S .  Let
K , L , K ,, L , be function rings o f S, M , S o , M , respectively. By our
assumption, K  and L  have the same identity, say 1 , with TX. Let
e  and e ' be the identities o f K , and L , respectively. Since M o is
a  scheme over S „  w e have ee' = e' . Set e" = e — e' . We want to
show that e"= O . Assume the contrary. Then e" is an idempotent
o f  L , hence there is a local ring R  in  M  which is a  pseudo-
component of zero of M  and is dominated by (p, Lip), where p is
a maximal ideal o f L  containing 1—e", by Proposition 2 . 3 .  Since
ee"=e", (p, L/p) dominates a local ring in S o ,  hence R  must be in
M 0 . This is  a contradiction, and e " = 0 .  Thus we see that M,
and S o are normally imbedded in Tie. Therefore, by our induction
assumption, there is a scheme /14-*0 such that it is complete over S „
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contains Mo as an open set and such that it is strongly birational
to M , with respect to % e . Then M*1 =M * 0V M  is a scheme over
S and strongly birational to M  with respect to I. Next w e apply
the sam e to S .  N a m e ly , set M n =T s , m * ,(Sn ). L e t  M *„ b e  a
complete scheme over Sn such that M* n is strongly birational to
M n and contains M n  as an open set. The M4, — M*,VM*„ is the
desired scheme.

Next step is to show that

L em m a 7. 1. L et M  be a scheme over an af f ine scheme S .  I f
M  and S  are  normally imbedded in  an  A rtin  ring  a, then f o r any
given member (p, v ) of  Z R (S ; %), there is an affine scheme M ' which
contains a lo c al rin g  dominated by (p, v ) such that Mu M ' is  a
scheme over S  and strongly birational to M  with respect to a.

The proof is substantially the same as that o f  Lemman 4. 1
in our paper [4 ]  by virtue of Proposition 2. 3.

Thus, as in our paper [4 ] , we have only to show the follow-
ing lemma :

L em m a 7. 2. Let M, and M 2 bestrongly birationally  equivalent
schemes over an af f ine schemes S  with respect to an A rtin  ring  sa.
A ssume that these schemes are  normally imbedded in  % . S e t M =
M ,r\M , and assum e that M 1 — M is contained in a projective scheme
M * over Se*, e* being an idem potent of  % . Then there is a scheme
M, which contains M  such that M , is strongly birational to M  with
respect to % and such that Z R (M ,; 1)=Z R (M 1 ; 1)v Z R (M 2 ;

P ro o f. To begin with, we may assume that T M 2 M 1 is regular
at every local ring of T„,,,,m ,(M )  by Theorem 6. 3. Set F =M -
(M *r\M ) and F*=M*— (M* n F *  is a closed set of M *, M 1=

(M* — F*) and F  is the union of T m * , m (F*) and the set F, of
local rings in M  which do not correspond to any local ring of M*.
Since M * is projective over S e* , w e have F o = WIRE M , e*R =0} .
Set H=1112 — Tm 1 , m 2 (M ,) , G =T m *,„,,,(M ,— M ) and  le t F ,  b e  the
closure o f F  in M 2 . We want to show that F2 — F H .

F= T m * , m (F* )v F, and Tm ,,, m ,(F*) is closed in M 2 . Let P ,  be
the closure o f F, in M 2 and let R  be a member o f  F2 — F. Then
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either (i) R E T m * , m ,(F*)— Tm * , m (F*) or (ii) R E P 1 - F 1 . Assume
that R  corresponds to a local ring R , in M „ and we went to show
a contradiction. By our assumption on the regularity o f TA,12 , m i ,
we see that R  dominates R , w eak ly . Case (i) : Let R * be a local
ring in F* which corresponds to R .  Since R  dominates R , weakely,
w e see that R , corresponds to R * .  I f  R ,E M , then R ,E F1 1 1 2 ,
whence F3 R = R ,E  F, w hich  is a contradiction. Hence R1 M ,
whence R ,E M *, and R 1 =R* E F*, which is a contradiction to our
assumption that R ,E  M „ Thus in Case (i), we have RE H . Case
(ii) : If R ,E M , then R1 =R  and we have a contradiction. Therefore
R , M ,  whence R,E M 1 — M M * .  Let e  and e , be the identities
of R  and R , respectively. Since Ri e M *, we have e ,e * =e ,. Since
R  dominates R , weakly, we have e e ,=e . Since e*Fo = 0, w e have
(1— e*)e  I  0. Therefore 0 - 0e —  e,(1— e*)ee, —  (1— e*)e  I  0, which is
a contradiction. Thus we have shown that F2 — F H .  This being
settled, we can adapt the proof of Lemma 4. 2 in our paper [4]
and we prove our lemma.

Thus Theorem 1 is proved.

8 .  P ro o f  o f  T h eo rem  2.

B y Proposition 4. 1, w e m ay assume that S  is normally im-
bedded in the Artin ring i. Let 1 and e  be the identities of W.
and the function ring L  of M  respectively. I f  e= 1, then Theorem
1 shows the result, and we assume that e=1-1. Se and S(1— e) are
schemes over S, and furthermore SevS(1— e) is  a complete scheme
over S .  M v S (1— e) i s  a scheme over S evS (1— e), whence M \ .1

— e) is  a scheme over S .  M vS(1— e) is normally imbedded in
%, and we prove the assertion by Theorem 1.
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