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Proposition 2.1. If A and A’ are affine schemes contained in
M, then AnA’ is an affine scheme.
Furthermore, we can prove easily the following (cf. [2, I]):

Proposition 2.2. If M and M’ are schemes over a ground
scheme S and if they are birational to each other, then MNM is a
scheme over S which is birvational to M. If we drop the birationality
from the assumption, then MM’ is either empty or a scheme over
S. Namely, the set of local rings in M at which Ty, is not
biregular is a closed subset of M.

Let again M be a scheme whose rings are contained in an
Artin ring A. Let p,, .-+, p, be all of prime ideals of ? and con-
sider (p,, A/p;). We denote by 1 the identity of . For each p;,
there is a uniquely determined idempotent e¢; by the condition that
1—e;€p;, 1—¢;¢p; for every j==i. Now let L be the function
ring of M and let ¢ be the identity of L. Then we have

Proposition 2.3. There is a local ring R in M dominated by
p;, A/p,) if and only if ee;==0 (i.e. Le;==0).

Proof. The only if part is obvious. Assume that ee;==0.
Then there is a local ring R’ in M such that e¢;R’==0, whence
R'Cp;. Then R=Ry,~ x> is in M and dominated by (p;, A/p)).
This proves the assertion.

A local ring R of M is called a pseudo-component of zero of
M if R is dominated by some (p;, 2A/p,).

We should note here that

Lemma 2.4. A component of zero of M is a pseudo-component
of zero of M.

In order to give an explicit proof of Lemma 2.4, we give a
remark :

Frist we introduce a notation. When ¢ is an idempotent of
A, then we denote by Me' the set of Re’ such that Re M and
Re’4=0. Now we have

Lemma 2.5. Let ¢ be an idempotnet of N such that Le' ==0.
Then, (1) Me' is a scheme whose function ring is Le’, (2) Re’=R’e’
=0 (R, R"'e M) implies R=R’, (3) if R is a component of zero of
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M, then either Re’ is a component of zero of Me' or R(1—¢') is a
component of zero of M(1—e') and (4) if R,, -, R, are all of the
pseudo-components of zero of M, then all of non-zero R’ form the
set of all pseudo-components of zero of Me'.

The proof of Lemma 2.5 is straightforward.

Corollary 2.6. If R is a component of zero of M, then there
is a primitive idempotent ¢ of N (i.e., ¢ is an idempotent such that
Ne’ is a local ring) such that Re' is a component of zero of Me’
(Le’5=0).

Note that in Corollary 2.6, since the function ring of Me’ is
a local ring, Re¢’ is unique component of zero of Me’ and is also
unique pseudo-component of zero of Me¢’. Therefore, R is a pseudo-
component of zero of M by (2) and (4) in Lemma 2.5.

Now we define, with respect to the Artin ring 2 of considera-
tion, the notions of strong rationality, strong quasi-rationality, and
strong birationality by the same way as above, but replacing
“components of zero” by ‘“pseudo-components of zero”. Then it
is obvious that Proposition 2.2 can be adapted to strongly birational
schemes. Namely :

Proposition 2.7. Let M and M’ be schemes over a scheme S.
If M is strongly birational to M’, then M'NM is a scheme over S
which is strongly birational to M.

The following condition on the function ring L of a scheme
M in an Artin ring  is sometimes a nice condition:

(Z) An element of L is a zero-divisor in L if and only if it
is a zero-divisor in e, ¢ being the identity of L.

Proposition 2.8. For a scheme M, the set of components of
zero coincides with that of pseudo-components of zero if and only

if the condition (Z) is satisfied.
The proof is straightforward.

3. Complete schemes and projective schemes

Let M be a set of local rings contained in an Artin ring 2L
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M is denoted by ZR(M ; A). Let S be another set of local rings
contained in . We say that M is complete with respect to S if
ZR(S; W ZR(M ; A). Note that the definition of completeness
does not depend on the particular choice of 2.

When M is a scheme over a ground scheme S, then ZR(S; )
T ZR(M ;) implies ZR(S ; W)=ZR(M ;). In this case, we say
that M is a complete scheme over S.

Next we define the notion of a projective scheme over a ground
scheme S. Let % be an Artin ring containing the function ring
K of S and let e be the identity of K.

We first consider the case where S is the affine scheme defined
by a Noetherian ring o. Let x,, -+, x, be elements of e such that
the module 3> x,0 is generated by y,, ---, y,, over v so that every
y; is not a zero-divisor in e. Then we consider the union M of
affine schemes A; (:=0, ---, m) defined by ol ¥,/¥;, -+, ¥/y:], Where
¥;/y; are considered in the Artin ring e. This M is really in-
dependent of the particular choice of the basis y,, -, y, and M is
a scheme. This M is called the projective scheme over S defined
by homogeneous coordinates (x,, -+, X,,).

Note that :

Lemma 3.1. With the same notation as just above, let U be
an affine scheme defined by a Noetherian ring R such that UZS
and let ¢ be the identity of R. Then T, (U) is the projective
scheme defined by (x,¢, -+, x,e") over U.

This lemma enables us to define projective schemes in the
general case as follows: A scheme M over a scheme S is called
a projective scheme over S if for every affine scheme A contained
in S, Ts,u(A) is a projective scheme over A (defined by a certain
system of homogeneous coordinates).

Ppoposition 3.2. A projective scheme M over a scheme S is a
complete scheme over S.

Proof is easy (cf. [2, I]).

Proposition 3.3. If M and M’ are projective schemes over a
scheme S, then the join J(M, M') of M and M’ is a projective scheme
over S,
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Proof is easy (cf. [2, I]).

We say that a scheme M is a quasi-projective scheme over a
scheme S if M is an open subset of a projective scheme over S.

In closing this section, we shall state an easy result without
proof :

Proposition 3.4. If a scheme M is complete with respect to
another scheme M, then for an arbitrary closed set F of M, Ty (F)
is a closed set of M.

4. Some remarks and formulation of main theorems

Let M be a scheme whose local rings are contained in an
Artin ring A. We say that M is normally imbedded in U if the
function ring of M has common identity with 2L.

Proposition 4.1. Let M be a scheme over a scheme S and let
L and K be the function rings of M and S respectively. Let ¢, e
be the identitihs of K, L respectively. Then, (i) in general, we have
ee’=e and (i) if KL then K and L have the same identity.
The proof if straightforward.

Corollary 4.2. Let M be a scheme over a scheme S and assume
that local vings of M and S are contained in an Artin ring A.
If M is normally imbedded in U, then S is also normally imbedded
in A

We shall state now our main theorems:

Theorem 1. Let M be a scheme over a ground scheme S. ILf
M and S are normally imbedded in an Artin ving U, then there is
a complete scheme M’ over S so that M’ is strongly birvational to M
(with respect to N) and contains M as an open subset.

Theorem 2. Let M be a scheme over a ground scheme S, all
being considered in an Artin ring N. Then there is a complete
scheme M’ over S such that M is an open subset of M'.

These main theorems will be proved later.

We have to explain how Theorem 1 proves the imbedding
problem of a scheme in a proper scheme.
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Let M be a scheme over a scheme S and let K and L be the
function rings of S and M respectively. Let ¢ be the identity of
L and consider Se={Re¢|R€ S, Re==0}. Then Se is a scheme (see
Lemma 2.5) and M is a scheme over Se. Conversely, a scheme
over Se is a scheme over S. On the other hand, one can see easily
that M is a proper scheme over S if and only if M is a complete
scheme over Se. Therefore the imbedding of a scheme in a proper
scheme is an immediate consequence of Theorem 1, and we can
assert that: ,

If M is a scheme over a scheme S, then there is a proper scheme
M’ over S so that (i) M’ contains M as an open subset and (ii) M’
is birational to M.

5. Dilatation by an ideal

Let M be a scheme whose local rings are contained in an
Artin ring . An ideal I of M is a map defined on M such that
for each Re M, I(R) is an ideal of R and there is an open cover-
ing U; of M so that all I(R) (Re€ U,) for each i have a common
basis. I(R) is called the stalk of I at R. Closed sets defined by
ideals, prime ideals and primary ideals are defined as in [2, III].

Let I be an ideal of a scheme M. Assume that the closed
set defined by I do not carry any pseudo-component of zero of
M. 1If the condition (Z) in §2 is satisfied, then the condition is
equivalent to that every I(R) (R€ M) contains at least one element
which is not a zero-divisor. In this case, we define a new scheme
M’ which is called the dilatation of M (defined) by I as follows:

By the definition of an ideal, we can choose affine schemes
M., ---, M, which cover M such that I(R) is generated by an ideal
I, of the affine ring v; of M; for every R€ M, (for each 7). Let
e; be the identity of o;,. By the assumption, I; contains at least
one non-zero-divisor in Ae;, whence we can choose a basis (x;,, ---,
X;n;) of I; consisting only of non-zero-divisors in 2e;. Then we can
consider the projective scheme Mx,; over M; defined by homogeneous
coordinates (x;,, ***, X;,;). Then the union Mx of all J(M;, Mx,) is
a scheme, complete over M and independent of particular choice of
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the basis (x;,, -, x;,;). This Mx is called the dilatation of M defined
by I. Verification of the above construction is substantially the
same as the case of algebraic geometry over fields. As is obvious,

Proposition 5.1. The dilation Mx is complete over M and
strongly birational to M.

When M is a projective scheme over an affine scheme S, then
M has a homogeneous coordinate ring, say 0, over the affine ring
of S. (Homogeneous coordinate rings are defined as usual.) Then
a primary ideal of M come from a homogeneous primary ideal of
. An ideal of M is the intersection of a finite number of primary
ideals of M, whence every ideal of M come from a homogeneous
ideal of §. Therefore the dilatation of M defined by an ideal of
M (provided that it is well defined) is again a projective scheme.
Therefore, by the definition of a projective scheme in the general
case, we have

Proposition 5.2. If I is an ideal of a projective scheme M
over a scheme S and if the dilatation Mx of M by I is well defined,
then Mx is a projective scheme over S.

Corollary 5.3. Let M be a scheme and let I be an ideal of
M such that I defines a dilatation Mx of M. If a subset U of M
is a projective scheme (or a quasi-projective scheme) over a scheme
S, then Ty,ux(U) is a projective scheme (or a quasi-projective
scheme, respectively) over S'.

6. Some preliminary results

Let M be a scheme whose function ring is contained in an
Artin ring %. We introduce on ZR(M ; ) a topology which is also
called Zariski topology as follows:

Let M= {M,} be the set of schemes over M which are strongly
birational to M with respect to 2 and complete over M. For each
closed subset F,, of M,, let Fx,, be the set of (b, v)€ ZR(M; N)
which dominate some local rings in F,.,. The set of all Fx,, is
defined to be a base of closed sets of ZR(M ; N). If we define an
equivalence relation ~in ZR(M ; A) by : (v, v) ~(p’, v') if and only
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if (p,v) and (p’, v') dominate the same local ring on every M,.
Then we see that the equivalence classes form naturally a space
which is homeomorphic to the limit of the inverse system {M,};
the limit is denoted by ZR(M). Thus we see that

Lemma 6.1. ZR(M) and ZR(M ; N) are compact (non- Hausdor f
except for a very special case where M consists only of a finite
number of local rings).

Lemma 6.2. Let M and M’ be schemes over an affine scheme S.
Assume that M and S are normally imbedded in an Artin ring .
If M is strongly birational to M’ (with respect to N) and if (p,v)
€ZR(j(M, M"); N), then there is a scheme Mx which is strongly
birational to M so that (1) Mx is complete over M, (2) M~ M < Mx,
(3) for every quasi-projective subset U of M over a scheme S’, the
scheme Ty,u«(U) is a quasi-projective scheme over S’ and (4) if
P« (€ Mx) and P’ (€ M) are dominated by (v, v) then Px dominates
P’ weakly.

The proof is the same as that of Lemma 3.1 in [4] if we
note the following obvious fact:

Lemma 6.3. If M and M are schemes which are strongly
birational to each other with respect to the Artin ring N and if a
pseudo-component of zero of M is a specialization of P€ M, then
Trrsm’ ts biregular at P.

Therefore as in [4], we have

Theorem 6.4. Let M and M’ be schemes over a scheme S. If
M is strongly birational to M’ with respect to the Artin ring ¥,
then there is a scheme Mx over S such that (1) Mx is complete over
M, (2) MAM T Mx, (3) for every quasi-projective subset U of M
over a scheme S’, Tpr,ux(U) is quasi-projective over S’ and (4) for
each R€ Mx, either Tp,n/(R) is empty or Ty is regular at R.

Let M be a scheme over a scheme S and let M’ be a projec-
tive scheme over Se, ¢ being an idempotent of the Artin ring of
consideration. For each Re M, let A be an affine open set of S
containing T,.,s(R) and consider the projective scheme Ts,/(A)
over Ae. Let x,,--,x, be a system of homogeneous coordinates
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which defines Ts,,/(A) over Ae. Then the set of elements x§, -+,
x, of R such that x(e=ax,, -+, x,e=ax, (considering all possible a)
generates an ideal I(R) of R. Then I(R) is independent of the
particular choice of A and also of x;. Hence the set of I(R) defines
an ideal I of M. This ideal is called the ideal of M associated with
the transformation Tyr,py.

Theorem 6.5. With the same notation as above, for a Pe M,
P is in the closed set defined by I if and only if Tu,u iS not
regular at P and Typ(P) is not empty. If the ideal I defines
dilatation Mx of M, then Tyy,pu«(M") dominates M’ weakly.

The proof is the same as that of Theorem 3.3 in [4].

Proposition 6.6. Under the notation in Theorem 6.5, if Ty’
is strongly quasi-rational, then Mx is well defined.

The proof is straightforward.

7. Proof of Theorem 1.

Here we shall prove Theorem 1, which was stated in §4.

First we shall show that if Theorem 1 is true for affine S,
then it is true in the general case. Indeed, assume that Theorem
1 is true if S is affine and let S, --+, S, be affine open subsets of
S which cover S. We shall use induction argument on #n. Set
So=\U:iwS; and M,=Ts,,(S,). Then M, is a scheme over S,. Let
K, L, K,, L, be function rings of S, M, S,, M, respectively. By our
assumption, K and L have the same identity, say 1, with 9. Let
e and ¢ be the identities of K, and L, respectively. Since M, is
a scheme over S,, we have ee’=¢’. Set ¢’=e¢—e¢’. We want to
show that ¢/=0. Assume the contrary. Then ¢” is an idempotent
of L, hence there is a local ring R in M which is a pseudo-
component of zero of M and is dominated by (p, L/p), where p is
a maximal ideal of L containing 1—e’/, by Proposition 2.3. Since
ee’’=¢"”, (p, L/p) dominates a local ring in S,, hence R must be in
M,. This is a contradiction, and ¢’=0. Thus we see that M,
and S, are normally imbedded in e. Therefore, by our induction
assumption, there is a scheme Mx, such that it is complete over S,,
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contains M, as an open set and such that it is strongly birational
to M, with respect to e. Then Mx,=Mx\ /M is a scheme over
S and strongly birational to M with respect to 2. Next we apply
the same to S,. Namely, set M,=Ts,p(S,). Let Mx, be a
complete scheme over S, such that Mx, is strongly birational to
M, and contains M, as an open set. The Mx= M=\ /M=, is the
desired scheme.
Next step is to show that

Lemma 7.1. Let M be a scheme over an affine scheme S. If
M and S are normally imbedded in an Artin ring W, then for any
given member (b, v) of ZR(S; N), there is an affine scheme M’ which
contains a local ring dominated by (p,v) such that MM is a
scheme over S and stromngly birational to M with respect to .

The proof is substantially the same as that of Lemman 4.1
in our paper [4] by virtue of Proposition 2. 3.

Thus, as in our paper [4], we have only to show the follow-
ing lemma:

Lemma 7.2. Let M, and M, be strongly birationally equivalent
schemes over an affine schemes S with respect to an Artin ring .
Assume that these schemes are normally imbedded in N. Set M=
M,~"M, and assume that M,— M is contained in a projective scheme
Mx over Sex, ex being an idempotent of . Then there is a scheme
M, which contains M such that M, is strongly birational to M with
respect to W and such that ZR(M,; W)=ZR(M,; )V ZR(M,; N).

Proof. To begin with, we may assume that T,,,,, is regular
at every local ring of Ty ,u,(M,) by Theorem 6.3. Set F=M—
(MxnM) and Fx=Mx—(MxnM,). Fxis aclosed set of Mx, M,=
My (Mx—Fx) and F is the union of Tpp,,(Fx) and the set F, of
local rings in M which do not correspond to any local ring of Mx.
Since M= is projective over Sex, we have F,= {R|Re M, exR=0}.
Set H=M,— Trpor,(M,), G= Tppapr,(M;—M) and let F, be the
closure of F' in M,. We want to show that F,— F H.

F=Tayus(F¥) UF, and Typu,pr,(F*) is closed in M,. Let F, be
the closure of F, in M, and let R be a member of F,—F. Then
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either (1) R€ Tyon,(F*)— Tapeom(F*) or (i) R€F,—F,. Assume
that R corresponds to a local ring R, in M,, and we went to show
a contradiction. By our assumption on the regularity of Ty,
we see that R dominates R, weakly. Case (i): Let R+ be a local
ring in F* which corresponds to R. Since R dominates R, weakely,
we see that R, corresponds to Rx. If R €M, then R,e FTM,,
whence F3 R=R,€ F, which is a contradiction. Hence R, ¢ M,
whence R, € Mx, and R,=Rx¢€ Fx, which is a contradiction to our
assumption that R, € M,. Thus in Case (i), we have Re H. Case
(ii) : If R, € M, then R,=R and we have a contradiction. Therefore
R, ¢ M, whence R,e M\— M Mx. Let e and e, be the identities
of R and R, respectively. Since R, € Mx, we have eex=e¢,. Since
R dominates R, weakly, we have ee,=e. Since exF,=0, we have
(1—ex)e==0. Therefore 0=0e=¢,(1—ex)ee,=(1—ex)e==0, which is
a contradiction. Thus we have shown that F,—FC H. This being
settled, we can adapt the proof of Lemma 4.2 in our paper [4]
and we prove our lemma.
Thus Theorem 1 is proved.

8. Proof of Theorem 2.

By Proposition 4.1, we may assume that S is normally im-
bedded in the Artin ring 2. Let 1 and ¢ be the identities of A
and the function ring L of M respectively. If ¢=1, then Theorem
1 shows the result, and we assume that e=-1. Se and S(1—e¢) are
schemes over S, and furthermore SeuwS(1—¢) is a complete scheme
over S. MuS(1—e) is a scheme over SeuS(1—e), whence My
S(1—e¢) is a scheme over S. MuS(1—e) is normally imbedded in
A, and we prove the assertion by Theorem 1.
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