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1. Introduction

Let x(t)=x(¢, »), © € Q(B, P) be a stationary Gaussian process
with continuous sample paths. Then the mean ¢=E[x(¢)] is in-
dependent of ¢ and the covariance function 7(#)=E[(x(s+#)—a)(x(s)
—a)] is an even function of # independent of s, expressible in the
form

(1) () = S“’ eMdF(\)

with a bounded measure dF symmetric with respect to 0.

Let N=N(®) be the number of zeros of the sample path of
x2(t) in 0<¢<T and N,=N, o) the number of crossings of the
level ¢ by the sample path of (¢, ®).

The purpose of this paper is to prove

Theorem.

@) B = EW) = Lyl T e (- ¢

where r’(0) is the second Schwarz derivative, i.e.,
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(3) 70 = lim ’(”)'2’(12)“(—”) (: —S” MdF(x))
7”’(0) is finite or —oo according as g NdAdF(A)< oo or =oo;
in the latter case (2) shows that E(N )=E(°°N¢)=oo.
Given a constant @ and a function 7(¢) in the form (1), there
exists essentially a unique separable stationary process with the
mean O and the covariance fouction 7(¢#). If Hunt’s condition [2]:

(4) Sl[log(l—kIXI)]“'“dF(x)<oo for some a>>0,

is fulfilled, then almost all sample functions of x(¢, ®) are continuous
and so (2) holds.

Let us give a historical account of the formula (2).

In 1944 S. O. Rice [1] (see pp. 271-3) proved (2) in case F(X)
increases only with a finite number of jumps, i.e.,

m

(5) r(t) = X etnto,.

n=1

Noticing that (x(¢), x'(¢)) is Gauss distributed with

E(x(t)) = a, E@x'() =0
(6) E(x(t)) = r(0), E'(¢)) = —r"(0)
E(x(@#)x'(2)) = 7'(0) = 0
we have

(7)  E(N) = S:.E(N(dt)) (N(df) = the number of zeros of ()
) in (¢ £+db))
~S P(N@t) = 1)

~ S' S:P(x/(t) € dn, —ndt < x(t) < 0)
+ 87 So_wP(x/(t) € dn, 0< x(t) < ydt)

L 1 _©O-ay_ 7 .
N 250 S 2 =7 0)7(0) P { 27(0) 2(—r~(0))}”d’ at

T 0 @
2V 70 P { 2r(0)}-

This is the outline of Rice’s proof.



Stationary Gaussian processes 209

In 1957 U. Grenander and M. Rosenblatt [3] (see p. 271-3)
gave a neater proof to the formula in the same special cace using
the following formula on the number N of zeros of a function f(¢)
due to M. Kac [4]:

1 (7,
(8) N~ | 1Ol fenat

where e._.., is the indicator function of the interval (—¢, €).
There were some technical gaps in both the proof of Rice and
that of Grenander-Rosenblatt in connection with the estimation and
interchangeability of the limit and the expectation.
In 1960 V. A. Ivanov [5] gave the first rigorous proof to the
formula in cace

(9) [ Py < oo

carrying out the argument of Grenander-Rosenblatt carefully.
On 1961 E. V. Bulinskaya [6] proved it in a more general case

(10) S:log(1+|7»|)l+°’>»’dF(>u)<oo for some a>>0.

She used a lower estimate of the number of zeros of f(¢):
14
BRI (¢g—1T qT>>
ay v~tim Se(7(450) A%

(c(€, 7) =1 or 0 according as £7< 0 or >0)

in addition to the estimate (8) which is actually an upper one.
Both Ivanov and Bulinskaya imposed the conditions ((9), (10))
to let almost all sample functions be continuously differential, but
a slight modification of their methods will enable us to prove the
formula in complete generality, as we can see in our paper.
We wish to express our thanks to Professor J. Chover who
gave us a lot of information on this subject.

2. The upper and lower bounds of the number of zeros

Let n denote the number of zeros of f(¢) in 0< ¢< T and #,
the number of crossings of the level ¢ by f(¢). The numbers #
and z, may be finite but #>n, is clear in any case.
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The following lemmas will be used later.

Lemma 1. If f(t) is continuous, then

(1) n>n,>lim 2 c(f(w>, f(q—z» (monotone limit)

proo = 2¢ 2¢

where c(&, ) is the indicator function of the two-dimensional region :

En<0.

Lemma 2. If f(¢) is absolutely continuous and vanishes only
on a t-set which contains no interval, then

(2)  mZa<lim [ Olecoo(FE)dt,

where e_. (E) is the indicator function of the interval (—¢, €).

Proof. Lemma 1 is evident by the intermediate value theorem
for continuous functions.
To prove Lemma 2, it is enough to show that

(2) tim {10 e (FENdE = m

for any finite number m<n. If m<m, we can take a sequence
of zeros t,<t,<-+<t, of f(t) in O0<#<T. Let u;=u;€) be the
greatest number w<f; with |f(u)| =& (u;= — oo if there exists no
such #) and v;=v;(€) be the least number v<¢#; with |f(v)|=¢
(v;= oo if there exists no such v). Then we have some & >0 such
that, for any positive <&,

(3) 0<u1<t1<vl<u2<t2<vz<'"<um<tm<vm<T;

if otherwise, f(¢) would vanish on a subinterval of (0, 7) in con-
tradiction with our assumption. It follows from (3) that

1 (7 .
o ). P D)lece ol FO)dE
=L B[ [irwia 17wl
> L 5[ 15t fwl+ LF@)—r@ | = m,

which completes the proof.
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3. Proof of Theorem in case S MdF(A)< oo,

We shall consider a stationary Gaussian process described in
the introduction and assume that

(1) Sl)ﬁdF(x)< oo .

We shall prove several preliminary propositions.

Proposition 1. x(t) is differentiable at every time point t in the
sense of limit in the mean, i.c., limit with vespect to the norm in
L'(Q, B, P).

By our assumption we have

‘o

l

x(t+h)—x(t)  x(t+k)—x(¢)
R ;

-1

since the integrand tends to O and is bounded by 4\

eM—1 etk —11°
— dF(\) — 0 h k—0
; : ( ) (h )

Proposition 2. x(t), x'(¢), t €[ — o0, o) form a Gaussian system
with

E(x(t)) = n, E(x'(t) =0

E((x@)—a)(x(s)—a)) =r(t—s) = S et dF ()

(2)
E@ @) (x(s)—a)) = r'(f—s) = Seth-s)mdF(x)

\ Ex'()x'(s) = —r"(t—s) = Se""“‘”)n”dF()L).

This is clear, because x(¢), t€(— oo, o0) is a Gaussian system
and x’(#) belongs to the closed linear subspace of L%, B, P) spanned
by x(t)’ te (——oo, °°)°

Proposition 3. x'(t) has a measurable version, namely we can con-
struct a function y(t, ®) measurable in (¢, ®) such that P(x'(t)=y(t))
=1 for every t.

Write y,(¢) for A~ '(x(¢ + k)—x(¢)). ., ®) is measurable in (¢, )



212 Kiyosi Ito

because it is measurable in ® for each value of # and continuous
in ¢ for almost every value of . It follows from Proposition 2
that

0 ik 2 2 (oo
-z @l = [ | oinfaron <2 7 waroy.

Writing y,(¢) for y, ,(f), we have, for every ¢,

|3.(8)— @) | < 272 S:deF(x)

and so
P(y,(t) —x'(t) as n—> o) =1,
ie.

P(limy,(#) = x() = 1.

Thus y(#)=lim y,(¢) is what we wanted to construct.

From now on we shall denote the measurable version y(¢) of
x'(t) by x'(¢) itself.

Proposition 4. For almost all o, x(t) is absolutely continuous

in t and dx(t)/dt=x'(t) for almost all t.
Noticing that x’(#) and x(¢) are measurable in (¢, @), we have,
by Proposition 2 and simple computations,

” [| #@)d0—(s(t)— x(s) N ~0
and so

P(S:x’(e)dﬁ = x(t)—x(s)> ~1
for every pair (s,¢) fixed. Therefore

P(Stx’(e)dé‘ = x(t)—x(s) for rational ¢, s) =1.

Since Stx’(ﬂ)d() and x(#)— x(s) are both continuous in £, s, we have

P(S:x’(())de — x()—x(s) for real ft, s) ~-1

which proves our proposition.
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Proposition 5. For almost all o, x(t)=0 only on a t-set of
Lebesgue measure 0 in 0<¢t<_T.
Let ¢,(£) be the indicator of the single point 0. Then e(x(¢, ®))

T

is measurable in (¢, ®), S e,(x(¢, w))dt is the Lebesgue measures of
0 .

the #-set: x(#, ®)=0 and

E(S:en(x(t, co))dt) - S:E(eo(x(t, o)) dt = S:P(x(t) — 0)dt =0,

because x(f, ») is Gauss distributed.
By Proposition 4 and 5 we can apply Lemma 2 in Section 2
to the sample functions of our process.

E(N) < E(N)
< B (tim L [T1900) e oo (xtt)at)

2
.1 ,
<tim ("B 20 e oo (a1 dt
(by Lebesgue-Fatou’s theorem)
= lim L E[|2(0)]ec-q o (x(0)] -
g0 28

By Proposition 2, (x(0), x’(0)) is Gauss distributed with
E(x(0)) = a, E(x(0)) =0
E((x(0)—a)) =7(0),  E(0)) = —r"(0)
E(x'(0)(2(0)—a)) = »'(0) = SlixdF(x) =0,
and so we have
E[12°(0)]€c-e e (x(0))]

— 1 _(E_d)z_ "7" ]
B 27!’\/—1’//(0)7’(0) SRZS exp[ 2r (0) — //(0)]'7”8( e !)(E)dgdl

L] ol e
Thus we have

(3) E(N)< T\/ r((OO)) Xp[_zra(zm].
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By Lemma 1 in Section 2, we have

() B0 B0 > Eftim He(=(G2T), +(4))]

pree §=1 27 27

= tim [ 3 e(x(S0T), 5(41))]
= lim T.%E[c(xm), x(2-*T))].

If we can prove

(5) hm—E[C(x(O) ()] = 1«/ r((OO)) P [_2:1(20)]

then it follows from (4) that
T r (0) a’
(6) EN) == \/ 7(0) Xp[ 27’(0)]
which, combined with (3), completes the proof of our theorem in
cace ST MAF (M) < oo,
By Proposition 2, (x(0), x(¢)) is Gauss distributed with
E(x(0)) = E(x(#)) = a
E((2(0)—a)’) = E((x()—a)) =r(0) (=a)
E((x(0)—a)(x(t)—a)) = r(¢) (=8

and so
%E[c(x(ox ()]

_ 1 1 (& —a) +(n—a)) —28¢—a)(y—a)
- S S T Zexp[ ) ]d’g‘dn

_ e_,ﬂ/w_w_l_ S S 1 —exp[ (& +9*) —2BEn (f-l—’l)d]d{:d,]

t )3 2mV R 2 —p) a+@B
— g L 21—7[exp[ uzgv \/\/Z;a]dudv
loul <375
(')'=05+/8, §=a—4p, u=§7_2_—"87, vzi/ﬂ%>
= e‘””’zlﬁg e Ppdp L S S exp [ﬁ%}yinﬁ_a]dg.

|tan6|<—vm
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Since |sin 8|< |tan #|, we have

-+ EL(x(0), #(1)]
= exp (—az/fy)%t Sme"’z/zpdp exp (_L?—BEZ>% arctan ,\/% .

As t—0, we have
v — 27(0), s—0,
1 s 1 /8 _ ) r(O)—r()
t arcmn\/ y t\/ y V(r(0)+r(t))t2
_ VZr(O)—r(I)—r(—t) 1
t2

2(r (0)+7(2))
(notice »(—t)=r(?))

L,/ =)
2*/ r(0) >

and so

tim 2 ELe(a(0), x)1 = exp (0 ) L/ O "exp (-t 2)pdp

2r(0) = ¥ 7(0)
1 /—r"(0) _a
2V o) P < 27(0))-

4. Proof of Theorem in case Sm MdF(A) = oo

In this case

tim =2/ 37D " a2dF () = — oo

hY0 h? -

Therefore it is enough to prove
E(N) = E(N,) = oo.

By virtue of the continuity of the sample paths, we can apply
Lemma 1 to get

NN, >lim 3 c(x((‘l—l)T), x(ql))

oo i 20 o7

and so, using the same arguments as in the last part of Section 3,
we get



216

Kiyosi Ito

B> EWN) > E[tim 37 ¢(x(C2DT), 2(41))]

proo  g=1 20 20

l1m T-

2T 57 (0)— r(t) (=5
= hm*/ “/2<r<0>+r<t>>

Department of Mathematics, Kyoto University
and
Department of Mathematics, Stanford University

E[C(x(O), x(277T))]
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