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Introduction. W hen V  is  a projective variety, we denote by B ir(V )
the group o f  birational transformations of V  onto itself, by A ut(V )
the group o f  automorphisms o f V  ( i .e . the group o f th e  biregular
transformations o f V  onto  itse lf), and b y  L in ( V )  the subgroup of
A u t(V )  consisting of the elements induced by the projective trans-
formations of the ambient space which leave V  invariant. The last
one is obviously an algebraic group, while A u t(V ) h as the structure
of an "algebraic group with (eventually) countably-infinite number of
components".

Let H „,, denote a hypersurface of degree d  in the (n+ 1)-dimen-
sional projective space P„,,, defined by an equation f ( X o, X1, •••, X.+1)
= 0  o f degree d .  The main results of this memoir are:

(1) I f  II,„d is non-singular an d  n >2 , d >3 , th e n  A ut(I-1„d) is
f in ite  ex cep t the  case  n=2, c l=  4.

(2) I f  11,,.,d is generic ov er the prim e f ie ld  an d  i f  n >2 , d >3 ,
th e n  A ut(H „d) i s  t riv ia l  e x c e p t  th e  f o llo w in g  c a s e : th e  ground
f ie ld  has charac teris tic  p > 0  an d  n =2 , d = 4.

The exception in ( 1 )  is  a real one, while in ( 2 )  it is likely that
the theorem holds without exception, though we have to  le av e  the
question open. The main part of the proofs consists in showing that
Lin(H „,d) is  sm a ll . For the sake o f completeness we have added a
few known results.

*  Major part of this work was clone in 1962 a t the University of Chicago when the
firstnamed arthur was supported by the National Science Foundation, G-19801.
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§l. Non-singular hypersur.faces

Let kbe an algebraically closed ground field and let k [Xl =

k [Xo, Xl' ... , Xn+I] be the homogeneous coordinate ring of P n+I. Assume

that our hypersurface Hn,d: f(Xo, Xl, ... , Xn+I) =0 is non-singular.

This implies that the homogeneous ideal (1, fo, "., fn+I) of k [X]

generated by f(X) and by the partial derivatives fi (X) = af(X) lax;

is irrelevant (i.e. is a primary ideal beloging to the maximal ideal

(Xo, ••• , X n +l )).

Theorem 1. If lIn 'd 15 non-singular and if n>2, d>3, then

Lin(Hn,d) is finite.

Proof Since Lin(H) is an algebraic group, it suffices to show

that its connected component Lin (H) ° is trivial. So we consider a

connected algebraic subgroup G of GL(n+ 2, k) which contains the

scalar matrices {aE IaEk*} and for which the form f(X) is semi

invariant, and we wish to prove G= {aE}. For this purpose we must

distinguish two cases.

Case I. The characteristic of k zs either zero or a prime p

not dividing the degree d.

Let g be the Lie algebra of G, identified with the tangent space

of G at the origin E. Let ~Eg, and let g= (gu) be a variable point

of G. Then the gij are regular functions on G and we can identify ~

with the constant matrix (~jj), where ~u= <~, g;;). Since dim G=

dim g and since G -::J {aE Ia E P}, G will coincide with {aE} if g

coincides with {j3E Ij3Ek}.

Since f(X) is semi-invariant under G we have a polynomial

identity

n+1 n+1

(1) fCLJgojXh ... , ::8gn+I,jXj) = X(g)f(Xo, "., Xn+I)
j=O j=O

for g= (g,j) EG, where X is a rational character of G.Consider this

equation (1) as a relation between the regular functions gu and X on

G, and apply an arbitrary tangent vector ~= (~iJ) Eg to both sides.

Then we obtain
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n+1 n+l

(2) "L,ji(X)("L,~;jX;)=c'j(X), c'=<~, x>.
i=O j=O
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Using the Euler identity j(X) = (l/d) "L,j;(X)X and putting c=c'/d,

we have

n+l n+l

(3) "L,j;(X) ("L,~;jXj-cX)= O.
i=O j=O

Now by the Euler identity we have (1, jo, ... , j.,+1) = (jo, "', jn+1), and

by the hypothesis of non-singularity the depth of this ideal is zero.

(For the definition of depth, of. Nagata [8]. For a polynomial ideal

it is equal to the affine dimension of the variety defined by the ideal.)
/'-

Put ai= (jo, ···,ji' ''',jn+1), O<i<n+l. Then depth ai>l and depth

(ai, ji) = 0, therefore depth ai= 1 because we are dealing with homo

geneous ideals. It follows from this and from the unmixedness theorem

of Macaulay that

Hence we get
n+1

"L,~;jXj-cXEai.
j~O

Since ai is generated by forms of degree d -1>1, the only linear

forms in it is zero. Therefore we conclude ~;j= C(Jij, i.e. ~= cE, Q.E.D.

Case II. k is oj characteristic p>O and d=O (mod p).

Since G is generated by its Borel subgroups B, and since each B

contains the normal subgroup {aE} , we may assume that G is solvable.

Then G is the semi-direct product of a torus T and a connected unipo

tent group U. We are going to prove T= {aE} and U= {E}.

1) The case oj a torus. Assume that a torus T in GL(n+ 2)

leaves the form j(X) semi-iiwariant. After a suitable linear substi

tution of the variables X o, "', X n +1 we may assume that

x1 (t) 0

t= x2 (t) (tET)

0 Xn+1(t)
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and f  (xo (t)X 0, • • • — x (t)f(X o , • • • , where xi
( 0 < i < n +  1 )  and x  are  rational characters of

If f(1, 0, • • • , 0) #0 then f  constains X;,1 an d  w e have dx o =  x  (we
write the product of characters a d d it iv e ly ) .  If f(1, 0, • • •, 0) =0 then
there exists at least one index i  such that f i (1, 0, • • • , 0) 0  since our

is non-singu lar, a n d  then  f  contains X i  an d  w e  have
xi + (d— 1)x 0 = x. I n  an y  c a se  th e re  ex is ts  an  in d ex  i satisfying
x i + (d— 1 ) 4 =  x. S im ila r ly , fo r an y  index 0 <i<n + 1  there exists
some index i = j ( i )  with x i + (d— 1) xi = x. Since the character group
has no torsion we can easily see that there exists a  sequence 10= 0,
i2,•••,i, such that

cX0+ Xi ,— X,

cXi i + X12 =  X,

cX i , ± X o = X,

w h ere  c= d— 1. Elim inating x,,, • • x , ,  w e  g e t  (1 — ( — c)'+ 1)xo=
(1— c+ c2 — • • • +  (— c ) ')x , hence (1—  ( — c)'+') (dx 0 — x)= 0. Since
c= d - 1 > 1 ,  w e  g e t  dx 0 =x . S im ilarly  Y  Y-0 =  -1 —  ' •  •  —  Xrc-F1 , an d  so
T = { E} .

2 )  T he unipotents case. Let U be a connected unipotent algebraic
subgroup o f GL (n+ 2 )  which leaves f ( X )  sem i-invariant. S ince U
has no non-trivial rational character, U  actually leaves f ( X )  invariant.
B y a  suitable change of variables w e m ay assume th a t U  i s  in the
upper triangular form

     

(1,1 U ) .U =

    

Let 72= ( )  be an  arbitrary element of the L ie  algebra o f  U .  Then
720 =  0  for i> j .  As in the Case I  (but using the invariance of f ) ,  we
obtain an  identity

(4) f i(X )  E 72 0 X 1 =  O.
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On the other hand, in the present case the Euler identity shows that
' +1

E f i ( X ) X 1 = 0 ,  and the two vectors (with linear forms as components)
i=0 ”±1
(X0, X1, • • • , X .+ 1 ) and (E  v o ; J(3 , E  ?hi  Xi , • • • , 0) are linearly independent

j= 2

over k  if v * O .  Now we have the following

Lemma 1. Let k  be a f ield and let f o ( X ) , • • • , f , ,F i ( X )  be form s
n+1

of the sam e degree d ' in  k [X 0 ,• • • ,X .+1 ].  Pu t a= E  (X )k  [X ] and
i-o

assume

i )  depth a < 1 , i i ) (X ) X i= 0 , i i i )  n > 2 ,  d '> 2 .
i=0

T hen i i )  i s  the only  linear re lation  betw een  { f i (X ) }  w ith  linear
f o rm s as coefficient. Namely, i f  l o ( X ) ,  • • .> 1 .+ 1 ( X )  are linear form s
satisfy ing E s, if ( X ) l i ( X ) = 0 ,  then there ex ists a constant c E k  such
th at  10(X )—  cX 0,••• in + 1  (X ) —  CX71+1 •

From  th is lem m a and from ( 4 )  w e  g e t  v = 0 ,  hence U = { E } ,

which was to be proved. For the proof of the lemma, we first note

that depth a = 1 ,  because if depth a= 0  then as in the proof of Case I
we can conclude from E fi (X) Xi= 0  that Xo E (ii , • • •, f7,41) , which is
absurd. Thus depth a= 1. Without loss of generality we may assume

that k  is an infinite field. Then there exists a matrix (.513)  E ±  2, k )
tr +1

such that, putting f i ' =  su f .; ( 0 < i < n +  1 ) ,  w e have depth ( f i ' ,  •••,

f,;+].) = 1 .  (Obviously, any "sufficiently general" (s 13)  has this property.)
Let (.513) - 1 =  (a u ) .  Then f i =  E a u f l .  Put E  a o  X; octu/i (X )
h i  ( Y ) ,  f l ( X ) = G ; ( Y ) .  W e have

( * )  E G 3 ( Y )Y 3 = ( * * )  E G 5 (Y )h 3 ( Y )= 0 .

Suppose the vector ( 1 0 (X ) ,  • • • ,  L - F i(X ) )  is not proportional to ( X0, •••,

X „+1). Then (h o (Y ) , • • • ,  h . i - i ( Y ) )  is not proportional to (Y 0, •••, Y .+ 1).

By renumbering Y, ••• , Y .+ 1  w e m ay assume that h 0 ( Y) contains 17
1 .

Then
n+1

(5) E G3(17 ) (Yiho— Yoh;)= 0 , Y ih o —  Y o h i*O .
5= 1

Since depth (G1, ••• , G,„+1 ) =  1  w e see as in Case I  th a t the quadratic
form Y i  h o — 17 ,111 lies in the ideal generated by G 2 ,  • • • ,  G .n .  This is
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a contradiction i f  d '> 2 .

Now we assume d '= 2 .  (This case was proved by Prof. M :N a g a ta

for the first tim e.) Pu t çod =  IT; ho— Yoh; ( 1 < j < n +  1 ) .  Then the çoi
are linear combinations of G1 , •••, G„+ ,  w ith coefficients in k. On the
other hand (pd contains I'd IT, but does not contain Y i Y ,( i* j ,  0 ) ,  hence

•••, (P +] are linearly independent over k .  Therefore • • •, G.+1 are
linear combinations of ço,, • • •, ya„, i . Then we have

( f : ( x ) , • (Gi(Y ) , Gni-1(Y ))

= ((pi ( Y ), ••• ,Ço.Fi(Y ))c (Y o,ho(Y )).
It follows that

1 =  depth (f,', • • • , f , ]_,) >de pth ( Yo , h 0 ( Y) ) >n  +  2— 2 = n,

this contradicts the assumption n > 2 .  T h us the Lem m a and the
Theorem 1  are completely proved.

Theorem 2. L e t  Hyt, d ( n > 2 ,  d > 3 )  be non-singular. T h e n
Aut (H„, d) = Lin ( I-I,„,d) ex cept the  case  n= 2 ,  d = 4.

P ro o f .  I f  n > 3 ,  any positive divisor on the non-sigular H „,d is
cut out b y a hypersurface o f  13 , 4.1 according to a theorem o f Severi-

Lefschetz-A ndreotti ( [1] , [5] ).  Therefore the linear system  L ,  of
hyperp lane  sections on 11,,, a  is complete and i s  a unique base of the
additive semi-group of the linear equivalence classes of positive divisors.
Hence L , is  invariant under A u t ( H , d ) .  From  this it follows easily
that A ut(11 ,„ ,)=  Lin ( I-1”, d).

I f  n= 2 , anyway L 1 is complete because the non-singular H ,„ d  is
projectively  norm al. I f  n = 2  and d = 3  then  L ,  is  the anti-canonical
system — K . Hence L , is again  invariant under A u t( H ,„ d ) .  I f  n =2
and d > 4 ,  th en  the canonical system  K = L d_,, i s  invariant under
A u t(1 1 „ ,d ) . L et a  A u t( H „ ,d ) .  If a L 1 L 1 , t a k e  a  divisor D E L  .

Then aD— D  is  n o t  — 0 , w hile (d— 4) (6 D —  D )--0 . Put i l l =  d— 4,
n i ( a D — D ) = ( * ) .  T hen the algebraic function d e f i n e s  an un-
ramified covering of H,„ d ,  which is a contradiction because the funda-
mental group ni (H„, d )  is trivial (Cf. ]3 ] , [5 1 ) . T h e re fre  L , is invariant
under A u t(H „ ,d ), and the proof is completed.
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T h e o r e m  3. N on-singular surfaces 112,4 i n  P ,  a re  m inim al
models f o r  d > 4 .  Hence w e h a v e  Bir (H2 , d) Aut (H2, a ) ( d >4 ) .

P ro o f .  Assume d > 4 .  The canonical class K  of H ,,d  is  ( d - 4 )

times hyperplane section. Hence 1(K )=p g > 0 .  Therefore I1 2 ,d  is

neither rational nor birationally equivalent to a ruled surface. By a

fundamental theorem of Castelnuovo-Enriques-Zariski ( [12] ) I12,d has

a minimal m od e l. If H 2,4 is not minimal then it must contain an

exceptional curve C  of the first kind. But then p,(C )= 0 ,  (0 )  = —1,

2p(C )  — 2= (C 2 ) + ( C K ) , hence — 1= ( C K ) .  T h is  is  impossible

because C > 0  and (C K )-=(c1-4)deg(C ). Therefore 113,4 is minimal.

T h e o re m  4 .  T he group Bir(1/2,4)=Aut(1-12,4) o f  a  non-singular
q u art ic  surface in  P 3  is discrete (i.e. A ut(H2,4)0= { e} ), b u t there
ex ist ex am ples o f  non-singular H2,4 w ith  in f in ite  num ber o f  auto-

morph isms.

P ro o f .  The first assertion follows from [ 6 ]  (because p g > 0  and

h°1 = O ) o r  simply from the elementary fact that, i f  V  is  a normal

projective variety on which the linear system of hyperplane sections

is complete, then the linear part of A u t ( V ) ,  (and i f  V  is regular,

A u t(V ) ,, itself) coincides with  L in ( V ) g . The second assertion is

classical ( [4] , [91 , [ 1 0 ] ) .  The example o f Fano-Severi is as follows

(fo r other examples, see [1 0 ] p. 2 7 9 ) ;  W e assume that the charac-

teristic is zero. Let F be a non-singular quartic surface in P, containing

a  non-sigular curve C  o f  genus 2  and of degree 6. L e t  C '  be a

hyperplane section of F .  Then  (0 ) = 2 ,  (C C ')= 6 ,  (C") =  4 .  Let

(t, u), t > 0 ,  be a solution of the Pell equation t 2 —7'1,12 = 1  and put

D I=I  (t — 3u)C+ z1C' I. Then we have (D 2 )= 2, deg (D )> O , p (D )

2, l ( D ) >3 .  One can prove, by the theory of moduli of K3-surfaces,

that C and C ' form a base of the divisor class group P ic ( F )  provided

that F  is sufficiently general. (Cf. [10] P .  275.) Assuming this, it

follows that there is no positive cycle X  with (X 2 ) —2. H e n c e

there is no positive cycle X  with (X 2 ) < 0 .  By Riemann-Roch on F

we have l ( X ) > 2  forn -> 0 .  In particular, DI has no  fixed com-

ponent. i D I is irreducible, for otherwise it would be composite
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w ith  a  pencil {D , } and D  w ould  be algebaically equivalent to sD i ,
s>1 , hence 2= (D 2 ) =s 2 ( D ) ,  which is absurd. A generic member of
D I is non-singular, because i f  it  h a s  a singular point Q  then Q  is

a base point of I D I b y  Bertini (characteristic zero), hence (D 2 ) >4 ,
contradiction. By Riemann-Roch w e have l D )= 2, therefore l(D )
=  3 . T hus I D I determines a  rational surjective m a p p in g  :
Since F  is not rational ça is not birational, and since (.11)= 2 w e have

[k (F) : k (q)(F))1= 2 .  Therefore there exists an automorphism of k (F)
which induces (since F  is  a minimal model) an automorphism a of F
satisfying d2 = e ,  T r= D . There are infinitely many solutions (t, u) of

t 2 —7 /12 = 1. I f  two different solutions ( t, u )  and ( t ',  u ')  define one

and the sam e automorphism a ,  th en  w e  have I  C '  =  C ' , hence
E L in (F ).  But F  depends on 33 parameters. (Proof :  Non-singular

curves of genus 2 depend on 3 parametes of m odu li. On each such
curve C  there are 00 2 complete linear systems of degree 6, and each

of which defines embeddings of C in  P 4 .  B y  m e a n s  o f generic pro-
jection from P 4  into P, w e get embeddings o f C  in  P,, which depend
on 19 parameters. Therefore non-singular sextic curves of genus 2 in

P , depend on 3± 2+  19=24 parameters. G iven such a curve C , the

linear system L  (resp. M )  o f cubic (resp. quartic) surfaces passing

through C  has dim ension 2  (resp . 1 1 ) at least. O ne c a n  show
th a t a  generic member o f  L  is non-singular. T h e n  i t  i s  e a s y  to
see that a generic member F  o f M  is non-singular. N ow on F  we
have dim! CI = 2 .  Hence F  depends on 24+ 11-2=33 parameters.)
On the other hand it is easy to see that a quartic F ' in P , of which

the group Lin ( F ' )  contains an elem ent of order 2 depends on 27

parameters at most (C f. §2) . Thus, i f  w e take a sufficiently general
F , then A u t(F ) contains infinitely many elements o f order 2.

R e m a r k s . 1. The equality Bir(H,,,d) = Aut(H,„d) and the finite-
ness o f  th is group is obvious if d >n + 2, because in that case the
canonical system on /1,„d is  ample (cf. F61).

2. Let (7) be the sheaf of germes of regular sections of the tangent
bundle o f a  va ie ty  V . Then there is a canonical monomorphism of
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the Lie algebra o f A u t(V ) 0 to  H°(V, CO ( [7] ) ,  w hich  is an isomor-
ph ism  in  characteristic zero  as is w ell know n. Kbdaira-Spencer

(Lemma 14. 2 o f [13 ] ) showed H° (H,i,d, O) = 0  (n > Z , d > 3 ) in the

classical case b y  an analytic  m ethod . Our proof o f  T h . 1  in the

classical case is  more a lg eb ra ic . W e do not know whether H°(H„,d,
0 in the abstract case.

§ 2 .  G e n e ric  hypersurfaces

Lek k  be the universal domain of characteristic p > 0 , and let ko

be the prime field in k. A hypersuface H, , d  is called  generic i f  it
is  gen eric  o ver k0 ,  i .e .  i f  it is defined  by a homogeneous equation

f ( X 9 , •••, X„+ 1 ) = 0 of which the ( n +  d +  1)  coefficients are algebraicallyd
independent over ko . A  generic 1 1 7 1 ,  d  is non-singular.

T h eo rem  5 .  I f  H„,d is generic and if n >2 , d >3 , then Lin(H„,d)

= {e} .

P ro o f .  Putting m =  n + 2 ,  we consider a generic form f ( X )  of

degree d > 3  in  k [X 1, •••, X id, where m > 4 .  We wish to prove that
if A = ( a „ )  GL(m, k )  leaves f ( X )  semi-invariant:

f ( A ( X ) ) = a f ( X ) ,  a E k * ,

then  A = c Em  f o r  some c E k* . W rite A = A „ A „, where A . and A„
commute and are respectively semi-simple and unipotent. Then A s

and A „ also leave f ( X )  semi-invariant. This is  a standard fact from
the theory of algebraic groups. So it suffices to consider semi-simple

matrices and unipotent matrices.

( I )  S em i-sim ple  case . L et A E GL (m, k )  b e  semi-simiple and

assume f ( A ( X ) ) =  c f ( X ) .  B y a suitable matrix T  we bring A  into
the diagonal form;

I a i E „ 0

T A T - 1 = B = a2.E, 2

0 • a„E„

where E ,,  is  the unit matrix o f size r„ r i -  m ,  and ozi* a d  ( i * / ) .
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The centralizer H  o f B  in  GL(m, k )  is  GL(ri, k ))  X  •  •  •  X  G L (r s ,  k) .
The homogeneous space GLOO M  i s  a variety defined over ko and its
dimension is n e— E r=  2E 7"; 1 - j  .  Consider the n a tu ra l m ap  : GL(m)

—>GL (m )/H and put ço (T ) = t. T I-I= g9 - ' ( t )  is  a variety defined over
ko ( t ) .  T ake  a point SE  T H  w hich  is a lgebraic over k o (t) . Then
S A S - 1 =B  and

t.d (S / ko)<t.d. (t/k0) <2 E rir ;

where t.d. means transcendence degree. Put f ( S - 1 ( X ) )  = g ( X ) .  Then
g ( B ( X ) ) =  c g ( X ) .  W e are going to prove that, i f  s> 1  (i.e . if A  is
not a scalar matrix), then more than 2E r i r ;  monomials of degree d
are missing in g ( X ) .  Then, since f (X )= g -(S  (X )) , the original form
f ( X )  is not generic, contrary to our assumption. Therefore A  must

be scalar.
In order to prove the assertion, w e change the notation and denote

the variables by

; 1 ;  •  •  •  ;  X 1 ,  ;  X 2 ;  1 ,  •  •  •  ;  X 2 „ 2  ;  •  •  •  ;  Xs ; 1 ;  •  •  •  X„ „  .

( X ,)  will denote (X1,1, ••-, X1,, 1) .  Then we can express the equation
(B  (X )) = c  g  (X ) a s  fo llow s: g; (X,) , • • • , (a s (X  s)) = c ( (X i) , • • •

(X s)).

Among the monomials of degree cl, we consider only those which
are divisible by X j 3 , an d  compare their coefficients in the equation,
trying to find that more than 2h  r,r ;  o f  such monomials are absent.

Therefore we m ay assume d =  3 . W e classify  the cubic monomials
into four classes as follows.

C1=  {cubic in  (X 1)} . #C1= r i (ri+ 1) (r1+ 2)/6

Co = {quadratic in  (X 1)  and linear in ( X 3 ) } .  1 < j .
C 11 = r i r ; ( ri+ 1)/2

D11 = {linear in  (X i)  and quadratic in ( X 5) } .  i < j .
#1)11 = r ir;(r;+ 1)/2.

Co ,— {linear in  (X ,) , (X 1 )  and (X , ) } .  i< j< / .
#Cw= rir ;  r0.
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Here #C, implies the number of elements in C,, etc.

Co  and D i ; cannot co-exist in g ( X )  since acv.i * tv ,ce ,. Similarly,
for each 1 < i< s ,  at most one out of the classes

can appear in g ( X ) .  Now, for any pair ( i ,  j )  with 1 < i < j < s ,  we

define E o  as follows:

a) I f  both C,, and 1:),;  are absent in g ( X ) ,  then

E o = Co U Di; .

b) I f  Co  is  absent but D u  is present in g ( X ) ,  then

E H = Ci,U c .

c )  I f  Co  is present in g ( X ) ,  then

E 0 =-D o U C i.

I f  C i c E o r l E i i  ( i < j < / ) ,  then Co  and CH co-exist in  g ( X ) ,  which

is impossible. Similarly Ci c E i irlEii ( j < / < i )  is impossible. If Ci c

E u n E ,i (1 < i< i) , then both Co  and D u  appear in g ( X ) ,  which is

again impossible. Therefore the sets E L; ( i < j )  are mutually disjoint.

On the other hand, one can easily verify

E,,>27 - ,r;

where the equality can hold only when r i = r i =  1 . Since all E i ;  are

absent in  g ( X ) ,  at least E i:tEu  monomials are missing and we have

E # E ii>2 E riri ,  the equality holds only when s=M , 7- 1= 1 - 2= • • • = r n i =  1.

In this last case, since n t>4 ,  at least one of X i  X ,X , and X I X 2X 4 is

absent in g ( X )  also. Thus our assertion is proved.

(II) U nipotent case. Let A E G L (m , k )  be a unipotent matrix,

E ,  and let f ( X )  be a form of degree d > 3  which is semi-invariant

under A .  Then actually f  is invariant under A .  We wish to show

that f ( X )  is not generic. Let J  be the Jordan normal form of A.
We assume that the blocks in J  are arranged in the order o f increasing

size. F o r  1<i<m — 1 we have J(X ,)—  Xi+ ei X i+i , and J ( X . ) =
where ei = 1 or O. W e  s a y  J  is of type (e i, e 2 , •  .• , e m - i) .  We shall say
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that an index i  is re g u lar if  ei = 1. We also define a number t e ( J)  by

a (J )= E  i ( i t2  1 )+11,

where the sum runs over the regular indices of J .  The proof of our
theorem depends upon the follwing estimates.

Lem m a 2 .  L e t g ( X )  be a f o rm  o f  degree d > 3  w hich is trans-
f o rm e d  in to  i ts e lf  b y  J. T h e n  the coef f icients o f  g  satis f y  at least
c e ( J)  linearly  independent linear re lations w ith  coef f ic ien ts in  ko.

Lem m a 3 .  L e t A  b e  a u n ip o ten t m atrix  w ith  Jordan f o rm  J.
T hen e x (J)>t .d .(A /k o ).

Assuming these lemmas, we choose a  non-singular matrix T  with

algebraic coefficients over k0 (A 11)  such that T A = J T .  Let f ( X )

g ( T ( X ) ) .  Then g  is transformed into itself by J. Since the coeffi-

cients of f  depend rationally on the coefficients of g  an d  th e  A , 3 ,

lemmas 1 and 2  te ll us that f  is not a  generic form , proving the
theorem.

To prove Lemma 1, order th e  monomials o f  degree d  lexico-

graphically; FIX7i<FIX' i f  a i = b ,  ( i < s ) ,  a , < b , .  Now observe that

i f  p= LIX7i, then:

(6) /2 ( J ( X ) )  II (X i + e i =  p ( X ) +  E c, • y

In particular, regarded a s  a  transformation on the space spanned by

the monomials, J  has the form E + 4, where 4= ( c , , )  is strictly tri-

angnlar. Now suppose that g = E a, • p .  Then:

(7) E a,•  p + E CE c.v • am.) • Y= E a.
A

Comparing coefficients we find that E c, • a y = 0 for every monomial 1)
<A

of degree d. Thus the coefficients of g  satisfy rank (c,„) linearly

independent linear equations with coefficients in 14. I f  p  is any

monomial, le t p '  be its predecesar in  th e  lexicographic order. Say

that p  is re g u lar for J  i f  c,„,' * 0 .  Since ( c „)  has strict triangular

form, rank ( c „ )  is at least equal to the number of regular p. Thus

we must show:
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Lem m a 4 .  T here  are at  le as t  a (J )  regular m onom ials.

P ro o f .  Suppose s is a regular index for J, and let g—(1-1 X )• X n'r.

Then p '= (X, + 1/ X,) • g and we see easily that c a s .  In particular,
if the characteristic p does not divide as then p  is regular. Now fix

a  regular index s. I f  a s = 1 , th e  number o f monomials of the form

II X̀ :' • X -  is just the number of monomials of degree d - 1  in  X,, •••,

and  X„„ i.e. (
s +

d -1
d —  2 )  

'
 Furthermore, since d > 3 ,  there is a

regular monomial of the form X.W1,- 2 ,  or M Xd„,- 3 ,  depending on the

characteristic. T h u s  th e re  a r e  at least E  
s +dd -1_2) 

+ 1 regular

monomials in  all where s runs over the regular indices for J. Since

this function is monotonic increasing in  d , and  d > 3 , th e  lemma is

proved.

T he idea behind the proof o f Lemma 3  is  the following. Each

regular index in  J  gives a contribution of about m 2/ 2  to  a ( J ) ,  and

t.d.(k o (A15")/k0)<m 2 . Thus i f  there a re  three regular indices, things

are easy. If there are  fewer than three regular indices, one gets finer

estimates on k 0 (A 1 )/k 0 which again establish the lemma. The actual

proof involves consideration of four separate cases.

We begin with a lemma giving an upper bound for t.d.(ko(Nu)/ko)

where N  is a  nilpotent matrix.

Suppose that N  is an  m  by m  nilpotent matrix. Let V 1= im age

o f N 1,  and = d i m V .  T h e n  00>0,> 0 2 >  •  •  •  .  We say that N  is of
-

type (00, 01, •••). L et 0 (N )=  2 ( 0 i - hl i + ,)0 ; + , . The following lemma

is basic:

Lem m a 5 .  Let the no tation  be  as ab o v e . T h en

t.d. (ko (Nd)/k0)<0(N).

P ro o f .  N  is determined by the subspace V , of Vo ,  by its restric-

tion to V , and  by the im ages in  V , of a  se t o f generators o f  Vo/V,
under N .  V , depends on  at most (00 -0 ,)  •  0 , parameters, th e  same

holds true for the images of the [30 - 0 , generators of V0/ V1. A n  in-

duction argument now gives the desired result, since N  restricted to
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V , is of type (iii, i2 , •  •  • ) .

W e are now ready to prove Lemma 3 .  Let A = E+ N ', J= E+ N .
Then t.d.(ko(A o )/ le0) < R (N 9 =  j3 (N ) .  There are four cases to consider,

according to the maximum of the sizes of the blocks of J .  (Remember

that the blocks are arranged in the increasing order of size.)

(1) I f  J  is of type (•• • 1, 1, 1) then t.d.(ko(A11)/ko)<m 2 —m.

For fi (N )< i i t 2 —m always.

(2) I f  J  is of type (•• • 0, 1, 1) then t.d.(ko (A u ) / ko) <  2
3   m2.

For N 2 = 0  in this case, and N  is of type (m , r, 8, 0).

(3) I f  J  is of type (••• 1, 0, 1) then t.d.(kl(AiN k o ) < 2
1  in 2.

For N 2 - 0  in this case, and N  is of type ( in , r, 0).

(4) I f  J  is of type (••• 0, 0, 1) then t.d. (ko(Ao)/ ko)<2in — 2.

In this case, N  is of type (m, 1, 0).

Now let us estimate a (J )  in  the 4  cases. In cases ( 1 ) ,  in -1 ,

m -2  and m —3 are all regular for J .  Thus a ( J ) > ( ) +  ( n i  1 ) +2

(m,( m —  +  (m
+  3 > m

2
 — i n ,(1) \2 ) \  2  f  \  2  )

(2) (nz)
+

—1)
+  2 >  

 2   
i n ' ,\ 2 2 3

(3) (9.n )
J

(m - 2  
+ 2 >

 1  
\ 2 2 2

(4) (M )

+ 1>2m — 2.2

These just squeak through. This completes the proof o f Lemma 3.

Combining Theorems 2  and 5 ,  we see that Aut(H„,d) = {e} for

a generic H„,4 except the case n =  2 , d= 4. On the other hand, in

characteristic zero there is a theorem of M . Noether-Andreotti-Salmon
( [1] ) according to which the Picard group of a generic surface of

d e g > 4  in  P 3 is generated by the hyperplane section. This proves

Aut (I-12 ,4) = Lin (H 2,4)  =  {e }  for generic quartics in characteristic zero.

( m - 2 )

+ 3 .  Th e other cases are similar. Thus we are reduced to\  2
proving the following four inequalities. I f  m >4, then:
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It seems that the theorem of Noether-Andreotti-Salmon can be extended
to  the positive characteristic case by modifying the existing proofs.
We wish to come back to this problem in future.
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