A remark on square integrable analytic semiexact differentials on open Riemann surfaces

Dedicated to Professor A. Kobori on his 60th birthday

By

Yoshikazu Sainouchi

(Received Sept. 9, 1964)

- 1. For canonical homology basis $\{A_n, B_n\}_{n=1,2,\cdots}$ on an open Riemann surface the necessary and sufficient conditions for the existence of a square integrable analytic semiexact differential with given A-periods were investigated by Virtanen [1], Kusunoki [2] and Sainouchi [3]. In this paper we shall give a condition for the uniqueness of the existence of such differentials, which contains my previous result in [3]. In part, we make use of the same method as that in the Ahlfors' proof (Ahlfors [4], Theorem 9) giving the condition which the surface should belong to the class O_{AD} .
- 2. Let \overline{W} be a compact bordered Riemann surface of genus g and $\{A_i, B_i\}_{i=1,2,\cdots,g}$ be a cononical homology basis mod ∂W . We denote by $\Gamma_{ase}(\overline{W})$ the class of analytic semiexact differentials defined on W and also denote by $\Gamma_{ase}^A(\overline{W})$ the subclass of $\Gamma_{ase}(\overline{W})$ such that all A-periods of its element vanish. For the compact bordered surface $\Gamma_{ase}^A(\overline{W}) \neq \{0\}$ and the period $\int_c \alpha \ (\alpha \in \Gamma_{ase}^A(\overline{W}))$ to any chain c in W is the bounded linear functional on $\Gamma_{ase}^A(\overline{W})$, hence there exists a unique differential $\varphi_0(c) \in \Gamma_{ase}^A(\overline{W})$ such that

$$(\alpha, \varphi_{\scriptscriptstyle 0}(c)) = 2\pi \int_c \alpha$$

for all differentials $\alpha \in \Gamma^{A}_{ase}(\bar{W})$.

By the Schwarz' inequality we have

$$|(\alpha, \varphi_0)|^2 \leq ||\alpha||^2 ||\varphi_0||^2$$

hence φ_0 has the following minimum property;

$$\min_{\alpha} \frac{||\alpha||^2}{\left|2\pi \int_{\mathcal{C}} \alpha\right|^2} = \min_{\alpha} \frac{||\alpha||^2}{|(\alpha, \varphi_0)|^2} = \frac{1}{||\varphi_0||^2},$$

where α varies over the class $\Gamma^A_{ase}(\bar{W})$. We denote by $d_W(c)$ this minimum value. Now let R be an open Riemann surface of *infinite* genus and $\{R_n\}$ be a canonical exhaustion of R. For a chain c contained in R_n we have by the minimum property of $d_{R_n}(c)$

$$d_{R_n}(c) \leq d_{R_{n+1}}(c)$$
.

Hence $\lim_{R_n \to R} d_{R_n}(c)$ is finite or infinite. We denote by Γ_{ase} the class of square integrable analytic differentials on R and by Γ_{ase}^A the subclass $\Big\{\omega \in \Gamma_{ase} \mid \int_{A_i} \omega = 0 \ (i=1,2,\cdots)\Big\}$.

Proposition. If $\lim_{R_n \to R} d_{R_n}(c) = \infty$ for any finite chain c, then $\Gamma_{ase}^A = \{0\}$, that is, $\omega \in \Gamma_{ase}$ is determined uniquely by its A-periods. Conversely, if $\Gamma_{ase}^A = \{0\}$, then $\lim_{R_n \to R} d_{R_n}(c) = \infty$ for any finite chain.

Proof. If $\alpha \in \Gamma_{ase}^A$ and $\alpha \equiv 0$, then for some chain c contained in R_{n_0}

$$(\alpha,\,arphi_{n_0})_{Rn_0}=2\pi\int_clpha \neq 0$$
 ,

where $\varphi_{n_0}(\in \Gamma_{ase}^A(R_{n_0}))$ is the period reproducing differential to the chain c. By the definition of $d_{R_n}(c)$ we have

$$d_{R_n}(c) \leq \frac{||\alpha||^2_{R_n}}{|(\alpha, \varphi_{n_0})_{R_{n_0}}|^2} \leq \frac{||\alpha||^2}{|(\alpha, \varphi_{n_0})_{R_{n_0}}|^2} \qquad (n \geq n_0).$$

Hence $\lim_{R_n\to R} d_{R_n}(c) < \infty$.

Conversely, if $\lim_{n\to n} d_{R_n}(c) < \infty$ for some $c(\subset R_{n_0})$, we put

$$\Phi_n = \frac{\varphi_n}{||\varphi_n||^2_{R_n}}.$$

Then

$$(\Phi_n, \ \varphi_n)_{R_n} = 1$$
 and $(\Phi_{n+p}, \ \varphi_n)_{R_n} = \frac{1}{||\varphi_{n+p}||_{R_{n+p}}^2} (\varphi_{n+p}, \ \varphi_n)_{R_n}$

$$= \frac{2\pi \int_c \varphi_{n+p}}{2\pi \int_c \varphi_{n+p}} = 1,$$

and so

$$(\Phi_n, \Phi_n - \Phi_{n+p})_{R_n} = \frac{1}{\|\varphi_n\|_{R_n}^2} (\varphi_n, \Phi_n - \Phi_{n+p})_{R_n} = 0.$$

Hence

$$\begin{split} ||\Phi_{n} - \Phi_{n+p}||_{R_{n}}^{2} &= ||\Phi_{n+p}||_{R_{n}}^{2} - ||\Phi_{n}||_{R_{n}}^{2} \leq ||\Phi_{n+p}||_{R_{n+p}}^{2} - ||\Phi_{n}||_{R_{n}}^{2} \\ &= d_{R_{n+p}}(c) - d_{R_{n}}(c) \; . \end{split}$$

Therefore

$$||\Phi_n - \Phi_{n+p}||_{R_n}^2 \to 0 \qquad (R_n \to R).$$

Thus we may conclude in usual way that Φ_n tend to an analytic semiexact differential Φ . Since $\Phi_n \in \Gamma^A_{ase}(\bar{R}_n)$, Φ belongs to Γ^A_{ase} and $2\pi \int_{\mathbb{R}} \Phi = 1$. q.e.d.

Remark. (1) If
$$\lim_{R_n \to R} d_{R_n}(c) = d(c) < \infty$$
, then for any $\alpha \in \Gamma_{ase}^A$

$$(\alpha, \Phi_n - \Phi)_{R_n} = (\alpha, \Phi_n)_{R_n} - (\alpha, \Phi)_{R_n}$$

$$= \frac{2\pi \int_c \alpha}{\|\alpha\|^2} - (\alpha, \Phi)_{R_n}.$$

On the other hand, since

$$|(\alpha, \Phi_n - \Phi)_{R_n}| \leq ||\alpha|| ||\Phi_n - \Phi||_{R_n} \to 0 \qquad (R_n \to R),$$

we have

$$(\alpha, \Phi) = \lim_{R_n \to R} \frac{2\pi \int_c \alpha}{||\varphi_n||_{R_n}^2} = d(c) \cdot 2\pi \int_c \alpha.$$

Hence $\Phi/d(c)$ is the period reproducing differential in Γ^A_{ase} to the chain c.

(2) Let $d'_{R_n}(c)$ and $d''_{R_n}(c)$ be the extremal values corresponding to $\Gamma_{ase}(\bar{R}_n)$ and $\Gamma_{ae}(\bar{R}_n)$, respectively, then

$$d'_{R_n}(c) \leq d_{R_n}(c) \leq d''_{R_n}(c)$$
.

We can show easily that $d'_{R_n}(c)$ is always convergent. On the other hand $d''_{R_n}(c)$ is not always convergent (cf. Ahlfors [4], Weill [5]).

3. When we make use of *B*-cycle in canonical homology basis $\{A_i, B_i\}_{n=1,2,\dots}$ of R, we obtain

Proposition. Let R belongs to the class O_{AD} . A necessary and sufficient condition in order that $\omega \in \Gamma_{asc}$ is determined by its Aperiods is $\lim_{R_n \to R} d_{R_n}(B_i) = \infty$ for every B-cycles.

Proof. If $\alpha \in \Gamma_{ase}^A$ and $\alpha \equiv 0$, since R belongs to O_{AD} , there exists a B-cycle B_i such that $\int_{B_i} \alpha = 0$. Hence we have $\lim_{R_n \to R} d_{R_n}(B_i) < \infty$ as before.

4. The generalized analytic modulus $K(\bar{R}_n - R_1)$ associated with $\bar{R}_n - R_1$ is defined as follows (cf. [3]):

$$K(\bar{R}_{n}-R_{1})=\inf_{\omega}\frac{\int_{\partial R_{n}}u\bar{\omega}}{\int_{\partial R_{1}}u\bar{\omega}},$$

where ω varies over $\Gamma^A_{ase}(\bar{R}_n-R_1)$ such that $i\int_{\partial R_1}u\overline{\omega}>0$ and $u(p)=\int_{p_i}^p\omega\ (p,\,p_i\in\alpha_n^{(i)})$ is the function defined separately on each contour $\alpha_n^{(i)}$ of $\partial(\bar{R}_n-R_1)$. If ω belongs to $\Gamma^A_{ase}(\bar{R}_n)$, then $||\omega||^2_{R_n}=i\int_{\partial R_n}u\overline{\omega}$ and so we have for a chain $c(\subset\bar{R}_n)$

$$K(\bar{R}_n - R_1) \leq \frac{\|\varphi_n(c)\|_{R_n}^2}{\|\varphi_n(c)\|_{R_1}^2} = \frac{d_{R_n}(c)}{\|\Phi_n\|_{R_1}^2},$$

where $\Phi_n = \frac{\varphi_n(c)}{||\varphi_n(c)||_{R_n}^2}$.

Now let $\lim_{R_n \to R} d_{R_n}(c)$ be finite, then $\Phi_n \to \Phi$ ($\equiv 0$) and so

$$\lim_{R_n \to R} ||\Phi_n||_{R_1}^2 = ||\Phi||_{R_1}^2 > 0.$$

Hence $\lim_{R_n \to R} K(\bar{R}_n - R_1)$ is finite. Thus we have

Proposition ([3]). If $\lim_{R_n \to R} K(\bar{R}_n - R_1) = \infty$, then $\omega \in \Gamma_{ase}$ is uniquely determined by its A-periods.

Kyoto Technical University.

REFERENCES

- [1] Virtanen, K. I.; Über Abelsche Integrale auf nullberandeten Riemannschen Fläche von unendlichem Geschlecht. Ann. Acad. Scient. Fenn. A.I. 56 (1949).
- [2] Kusunoki, Y.; Square integrable normal differentials on Riemann surfaces. J. Math. Kyoto Univ. 3 (1963) 59-69.
- [3] Sainouchi, Y.; On the analytic semiexact differentials on an open Riemann surface. J. Math. Kyoto Univ. 2 (1963) 277-293.
- [4] Ahlfors, L.; Open Riemann surfaces and extremal problems on compact subregions. Comment. Math. Helv. 24 (1950) 100-134.
- [5] Weill, G. G.; Reproducing kernels and orthogonal kernels for analytic differentials on Riemann surfaces. Pacific J. Math. 12 (1962) 729-767.