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1. For canonical homology basis {A4,, B,},-, ... on an open
Riemann surface the necessary and sufficient conditions for the
existence of a square integrable analytic semiexact differential with
given A-periods were investigated by Virtanen [17], Kusunoki [2]
and Sainouchi [3]. In this paper we shall give a condition for
the uniqueness of the existence of such differentials, which con-
tains my previous result in [3]. In part, we make use of the
same method as that in the Ahlfors’ proof (Ahlfors [4], Theorem 9)
giving the condition which the surface should belong to the class
Oap.

2. Let W be a compact bordered Riemann surface of genus g
and {A;, Bi}i-, . .. be a cononical homology basis mod dW. We
denote by I',,,(W) the class of analytic semiexact differentials
defined on W and also denote by I'4,(W) the subclass of I',,, (W)
such that all A-periods of its element vanish. For the compact

bordered surface I'4,(W)== {0} and the period S a (ael4 (W) to

any chain ¢ in W is the bounded linear functional on I'4,(W), hence
there exists a unique differential @,(c)€ I'4, (W) such that

(@, 2u(c)) = 27 | @

for all differentials a€ I'4 (W).
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By the Schwarz’ inequality we have

(@, @) I* < [l [Pl ]l

hence @, has the following minimum property ;

lalr _ ol _ 1

min —- - s
* [(a, )I* el

N }Zn Sca

where « varies over the class I'4,(W). We denote by dy(c) this
minimum value. Now let R be an open Riemann surface of infinite
genus and {R,} be a canonical exhaustion of R. For a chain ¢ con-
tained in R, we have by the minimum property of dg,(c)

dg,(¢) < dg,.,(C) .

Hence lim dg, (c) is finite or infinite. We denote by I',,, the class
R,>R

of square integrable analytic differentials on R and by I'Z, the

subclass Icoel‘m| 0=0 (I=1,2,-)}.
(
Ai

Proposition. If limdg, (c)=o0 for any finite chain c, then
R,»>R

r4,={0}, that is, w€l',,, is determined uniquely by its A-periods.
Conversely, if U4, ={0}, then limdg (c)=oco for any finite chain.
R,~>R

Proof. If a¢€l'4, and a==0, then for some chain ¢ contained
in R,

(a’ ‘;)no)Rno = 2” g (04 :1:‘ 0 ’

where @, ( EF;“M(R,,O)) is the period reproducing differential to the
chain ¢. By the definition of dg, (c) we have

||l g,, lall®
I(ar (pno) Rnolz - I(a’ ¢n0)RnOIZ

dr, ()= (n=n,).

Hence }zlrnR dg, ()< oo.
Conversely, if lirr;a’R”(c)<oo for some ¢(CR,,), we put
Ry>

__ Pu
| Pull’r,,

n



A remark on square integrable analytic semiexact 119

Then
1

H(i)”“’p”%?n+p

((D,,, ¢n)R,, =1 and ((bn-q-pr ¢n)R" = (¢n+p’ ¢n)R,,

Zn'S ¢n+p
27[S ¢n+p
and so
(q)”, ¢n—(bn+p)R” = —I—T((pn’ ﬁn_(pn+p)R,. =0.
N Pull %y
Hence
1D, =Dy 1o = 1@y 1w = 1Pl 2 = P [ s p— [ Dol
= d,, ()~ dr,(©).
Therefore

“q)n_q)n+p”2Rn—')O (Rn'_)R)'

Thus we may conclude in usual way that &, tend to an analytic
semiexact differential ®. Since ®,€T4,(R,), ® belongs to I'4, and

an d=1. qed.

Remark. (1) If }zim dg,(c)=d(c)< oo, then for any a€l'/
>R

(a? q)n_q))R” = (C(, (Dn)Rn_(ai (I’)Rn

27:S o

= —C_(a’ (1)) .

lPull%, ®

On the other hand, since
[(ct, @,—P)g, | < || [|®,— P, =0 (R,— R),
we have
271’5 (04
(@ ®) = im —2¢ _ = d(c)-2 S a.
Rk ||, | %, c

Hence ®/d(c) is the period reproducing differential in I'Z, to the
chain c.

(2) Let d%,(c) and dk,(c) be the extremal values corresponding
to I',,,(R,) and I',,(R,), respectively, then
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dy(€) = dg, () = di,(c) .

We can show easily that d% (c) is always convergent. On the
other hand dg, (c) is not always convergent (cf. Ahlfors [4], Weill
[5D.

3. When we make use of B-cycle in canonical homology basis
14:, Bi},-1, ... of R, we obtain

Provposition. Lef R bklongs to the class Oap. A necessary and
sufficient condition in order that w€l,, is determined by its A-
periods is lim dy, (B;)=oc for every B-cycles.

R,>R

Proof. If aelZd, and a==0, since R belongs to O,,, there
exists a B-cycle B; such that S a=+0. Hence we have
Bi
lim dg,(B;)< oo as before.
Ry>R

4. The generalized analytic modulus K(R,— R,) associated with
R,—R, is defined as follows (cf. [3]):

€y

— u(T)
K(R,—R) = inf 2%,

® ﬁ u(T)
JOR,

where o varies over 14, (R,—R,) such that i ‘ uo >0 and
. OR,

u(p)= Sz.m (p, p:€ af’) is the function defined separately on each

contour «¢’ of 4(R,—R,). If o belongs to I'4,(R,), then ol %,

:53' uw and so we have for a chain ¢(CR,)
Ry

Mok, dr,(c)

KR, =R)= [ig ON%, ~ To,11%,
AGON
where @, =i Nk,
Now let lim dg,(c) be finite, then ®,—® (5=0) and so
R,>R

lim [, |, = |®[I%, >0.

Hence lim K(R,—R,) is finite. Thus we have

Rp>R
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Proposition ([3]). If ;m}z K(R,—R,)= o, then 0 €',,, is uni-

quely determined by its A-periods.
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