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1. For canonical homology basis {A„, B},,, 1 2 .. a n  o p e n
Riemann surface the necessary and sufficient conditions for the
existence of a square integrable analytic semiexact differential with
given A-periods were investigated by Virtanen [1], Kusunoki [2]
and Sainouchi [3]. In this paper we shall give a condition for
the uniqueness of the existence of such differentials, which con-
tains my previous result in  [3 ]. In  p a rt, we make use of the
same method as that in the Ahlfors' proof (Ahlfors [4], Theorem 9)
giving the condition which the surface should belong to the class
OAD •

2. L e t W be a compact bordered Riemann surface of genus g
and {A i , be a cononical homology basis mod a W . W e
denote by -1P030( W )  the class o f  analytic semiexact differentials
defined on W and also denote by F L  W) the subclass of a „ (W )
such that all A-periods o f its element vanish. For the compact

bordered surface r e ( W)== {0} and the period a (a E Il L e ( -W)) to

aAseany chain c  in W  is the bounded linear functional on  P  ( W ) hence
there exists a unique differential p o (c )E  r ( W )  such that

(a, P o (c)) 27r a

for all differentials a E r gis W
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By the Schwarz' inequality we have

1(a,) I 2

hence p o has the following minimum property ;

m in I I  all 2  _  m in   I  a l l '  _   1  
2n-

2
C ' 1(a, P )I' 11P0112 '

where a  varies over the class Q e (W ). We denote by d ( c )  this
minimum value. Now let R  be an open Riemann surface of infinite
genus and {R,i } b e  a canonical exhaustion of R .  For a chain c  con-
tained in  R „ we have by the minimum property of dR n (c)

d R n  (C) d R n ,  ( C )  •

Hence lim d R  ( c )  is finite or infinite. We denote by 1 1  ase the class

of square integrable analytic differentials on R  and b y  PaAs e  th e

subclass to) E rasease A i

Proposition . I f

rL e = {O}, that is, w E

lirn d , (c )= C O  f o r  any  f in ite  chain  c ,  then
R„-).R n

a s e  i s  determined uniquely  by its A -periods.

CO - =  0  ( i  =1, 2, -.)}.

Conversely, i f  1'1 =  {0} ,  then lim d R ,t (c)= D C ' fo r  any f inite chain.
R „-+ IL -

P ro o f . If a G rj
a

i
s e  and  a 0, then for some chain c  contained

in  R n o

(a, Pn o )Rno
 —  27r1 a +  O,

where yon 0 ( E r aAs e (R n o ) )  is the period reproducing differential to the
chain c. By the definition of dR n  (c) we have

Ilall2R
" <  

H a l l '  d R „(c) 1(a, P„ 0 ) R„0 I2 — 1(a, P. 0 )R.0  2
( n n0 ).

Hence lim dR „(c)<°°-
R „ - P • l i -

Conversely, i f  lirn d R „(c)<00  for some c( R „,), we put
I?„-).R -

IrR„
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Then
1 

P J R „  ----- 1  an d  (c13„+ p ,  • „ ) R .  — 
II a „

P n ) R n

27r q i „ , p

—  =  1,
27r q )„ ,

c P

and so

(<13„, 013„ — ckin-,
p )R„ — 1 ( P n , — cD,,+ p )R .  =  O.

liP n a n

Hence

11(13„-01)„,p111„ 11c1c.„,,,111„-11€13.111„ 1143.±,113?„„-114).112 R„
dR n ± p  (C. ) dR. (C) •

Therefore
I (13 ,  ( 1 ±  p (R — .R ).

Thus we may conclude in  usual way that €1)„ tend to an analytic
semiexact differential ci). Since c1)„ E Fa

A„  (R n ), (13 belongs to FL, and

27r (1 3 = 1 . q .e .d .

Remark. (1) If lim dR n (c)----d (c)<00 , then for any a E r e
7?„-*1?

(a, 4—(13)Rn( a ,  cF,,) —(a, (1 3 )R n

27r
— ( a ,  (13)Rn .
119).111„

On the other hand, since

1(a, (1). — cD)R,i l _IIaH 114)„—(1)11R n O (R„ R) ,

we have

27r
(a, ct.) =lim c — d(c)•27-c a .

R n - R  ( Pt. 11 2R.

Hence (1/d(c) is the period reproducing differential in  r L e to  the
chain c.

( 2 )  Let d  n (c) and (c) be the extrem al values corresponding
to ros,(Pn) 

a n d
 r a , (k ) ,  respectively, then
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d ( c ) d ( c )

W e can show easily that  d ( c )  is  a lw ays  convergent. On the
other hand (c) is not always convergent (cf. A h lfo rs  [4 ], Weill
[5 ]) .

3. When we make use of B -cycle  in  canonical homology basis
{A i , of R , we obtain

P rop os it ion . Let R bklongs to the class OAD . A necessary and
sufficient condition in order that co E r„, is determ ined by  its A -
periods is lirn o c  fo r  every B-cycles.

Te„+I?

P ro o f . I f  a E P I  and a  I   0 ,  since R  belongs to °AD ,

 there

e x is t s  a  B - c y c le  B i s u c h  th a t a *  0. H ence w e have
Bi

d R  „(B i )<D o as  before.
1?„,12

4. The generalized analytic modulus K(R„— R 1 ) associated with
,—R, is defined as follows (cf. [3 ])

uo)
K( R „— R ,)= inf

.aR, U 6 )

where Co v a r ie s  o v er l' e (R n — R ,) su ch  th a t i  Ça R i ucT)> 0  and

P  C o  (p, p i E a ;») i s  the function defined separately on each

icontour a o f a(R n —R,). I f  co belongs to P . 4 ( R . ) ,  then II coil%

zu-r) and so we have for a chain c(c i )
aR„

K C— R 1) pIl n(c)IIL„d R .(c)
„ )112R, 11131),,U,

w h e r e  (D „

Pn(c)II%

Now let lim d R „(c) be finite, then 43„—>cl) ( I 0 ) and so

liM11 (13nn i  = 11(13112R1 >  0  .
14,±R

Hence lim K (R ,,-12 1 )  is fin ite. Thus w e have

p„(c)
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Proposition ( [ 3 ] ) .  I f  lirn K(1 „—R1 )= 00 , then co E r a s e  i s  u n i -
Fen -ili

q u e l y  determined by its A -periods.

Kyoto Technical University.
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