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Introduction. In a recent paper of the writer we defined the
notion of generalized rings of quotients; they are certain rings con-
tained in the total quotient ring of the original ring. But rings of
quotients are not necessarily subrings of the total quotient ring.
Therefore in §1 of this paper, we generalize the notion of generalized
rings of quotients so that we cover completely the rings of quotients

and previous generalization of rings of quotients. Thus those we
shall treat are rings which are contained in the total quotient ring
o f a  homomorphic im age of a ring having similar properties as
previously defined generalized rings of quotients. We prove that
the kernel of such a homomorphism is also the kernel of a ring of
quotients (in the usual sen ce ). In §2 we shall prove a theorem on
the weak global dimension of a ring which is a slight generalization

•of a result contained in  [ 6 ] .  Rings are always commutative rings
with units.

The author wish to express his heartfelt thanks to Prof. M.
Nagata for kind advices and for valuable suggestions.

§ 1 .  First, we give a  few results on flatness which are well-
known.

Lemma 1. L e t R , R ' be rings and  le t f :  R - - i l? '  be a  homo-
m o r p h i sm . Then R ' is  fla t as  an  R -m odu le i f  a n d  only i f  f o r
every m ax im al ideal m ' o f  R', /T in ,  is R01-flat with m=f--1(m').
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(cf. Prop. 15 o f §3, Chap. I I  in  [2]).

Lemma 2. Let R  and R ' be rings such  that R ' i s  an R-
module and assume that R ' is f lat. T h e n  fo r  ideals a and b o f
R  we have (a:b)R '=aR ':bR ', provided that b is f initely  generated
(c f. (18.1) in  [5 ] or Remarque in §2, Chap. 1 in  [2]).

Now, let R  and R *  be rings, and let f: R---)-R* be a  homo-
morphism with kernel a. I n  this section we assume that R *  is
contained in the tolal quotient ring of f ( R ) .  For any ideal b* of
R * we denote by b ffiR  the inverse image of b* by f .

Theorem 1. The following conditions are equivalent to each
other:

(1) R * is  R-flat.
(2) R *  is f (R )-f lat and (0:aR )R * =R * fo r  every element a

in a.
(3) For every  maximal ideal m * o f R *  w e have R I*=R n t

w ith m=m* nR.
P ro o f. Assume, first, that R *  is  R-flat. Then it is obvious

that R * is f(R)-flat and using Lemma 2, we have (0:aR )R * =OR* :
aR* =R* since a is in the kernel of f ,  which shows that (1 ) im-
plies (2 ) .  I f  (2 ) is valid, then for any maximal ideal m* o f R*
we have RP=f(R)nt*n f (R ) by Theorem 1 in  [1], because R *  is
contained in the total quotient ring of f ( R ) .  On the other hand,
m=m*nR can not contain 0:aR  for any a in a by the assumption
that (0:aR)R* = R * . Therefore we have aRtn =0 and RA*=f (R) m 4
nf (R )=R iu/aR in— R m , which shows that (3 ) follows from (2 ) .  Im-
plication (3)--).(1) is shown by Lemma 1.

Applying Theorem 1 in  [1], we have

Corollary 1. R * is  R -f iat if and only  if  for every  m ax im al
ideal ni* of R *, we have R,11*=f(R)tenf(R) and (0:a)R * =R * fo r
every element a in a.

Theorem 2 in [1], replaced A and B by R  and R * respectively,
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is valid without any modification, that is;

Corollary 2 .  Assume that R * is  R-flat. Then:
(1) For any  ideal b* of  R *, we have (b*FIR)R*=b*.
(2) Let q  be a prim ary  ideal o f R  belonging to a prime

ideal and such that q R * * R * . Then p R * * R * , pR* is  a prime
ideal, qR * is prim ary  to pR*, PRFIR---p and qR *nR =q.

Proo f. ( 1 )  follows directly from Theorem 2  in  [ 1 ] .  For (2 ),
it is sufficient to show that in this case a n d  q  contain a. L e t
m * be a maximal ideal o f R *  containing pR* and let m=m*F1R.
Then we have rtt D p and aR m = 0  as was shown in  the proof of
Theorem 1 ,  therefore we have aRp = 0  which implies that PQa.
From this it follows immediately that q  contains a.

Corollary 3. Assume th at  R *  i s  R-flat. T hen  the total
quotient ring o f  R * is  a ring of quotients of R  w ith  respect to
a multiplicatively  closed subset S  o f  R  and a  i s  the k ernel of
the canonical homomorphism  R — R , th at  is ,  if  w e set N (S )=
{ x G R ; sx =0  fo r a  suitable s  in S },  then a=N (S ).

Proof. Let S  be the set of elements s  of R  such that s is not
a  zero-divisor modulo a. I t  is  trivial that S  is multiplicatively
closed, and we show that a— N (S ). From the construction of S,
it follows easily that a contains N ( S ) .  Let a be an element of a.
By Theorem 1, we have (0: a)R * =R * . Then there exist finite sub-
sets (a1)  and (b1) of 0 :aR  and R  respectively, and an element s  of
S  such that a ,b ,— s =a ' is in  a . Therefore we have a( s +a') =0

with s + d e S ,  that is, a  is contained in  N ( S ) .  Thus we have
a— N (S ). From this, we see that the total quotient ring of f (R )
is the ring of quotients R s o f  R  with respect to  S  and the total
quotient ring of R * is also R .

The following corollary is a characterization of the ring R  such
that w . g l. dim R= 0.

Corollary 4. For a  ring R  we have w. g l. dim R =0  if and
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only  i f  R /m  is  R-flat f o r every maximal ideal In of  R.

Proof. Only  i f  part is clear and i f  part follows easily from
Corollary 3 , because in  this case we have Rnt=R/m, that is , R n i is

a field for every maximal ideal m  of R, whence we have w. gl. dim
R = 0  as  is well-known (c f . [4] ).

§ 2 .  Let R be a ring  with the total quotient ring K . Richman
proved the following theorem (Theorem 4  in  [6] ) :

I f  R  is  an  integral dom ain and satisf ies the following con-
dition (F ) ,  then R  is  a  Prüfer ring , that is, w. gl. dim

( F )  For any  rin g  R ' such that R g R 'g K , R ' is  R-flat.
In this section, we shall prove the above theorem in  a  slightly

generalized form, where R  is not necessarily an integral domain but
the total quotient ring K  of R satisfies the condition that w. gl. dim
K = 0  i f  R  is not a n  integral dom ain . T he proof follows easliy
•from some results about quasi-von Neumann-regular rings contained
in  [4] .

A  ring R  is said to be a  von N eum ann regu lar rin g  if for
any aeR , there is an  element b o f R with aba=a. If the total
•quotient ring K  of a  ring  R is von Neumann regular, then we say
that R  is  a  quasi-von N eum ann-regular r i n g .  It is known that
R  is von Neumann regular if and only if  w. gl. dim R =  0  (cf. [4] ).
Therefore a  r in g  R  with the to tal quotient ring K  is  quasi-von
Neumann-regular if and only if  w. gl. dim K=0.

First we refer to some properties of quasi-von Neumann-regular
rings without proofs (see [4] ).

( 1 )  Let R  be a quasi-von Neumann-regular ring with the total
•quotient ring K  and let S be a  multiplicatively closed subset o f  R.
Then the ring of quotients R , o f R  with respect to  S  is also a
quasi-von Neumann-regular ring and the ring of quotients I f s o f  K
with respect to S is the total quotient ring of R , (Prop. 2  in [4] ).

( 2 )  Let R be a quasi-von Neumann-regular r in g . I f  R is quasi-

local and integrally closed in its total quotient ring, then R  is  an
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integral domain (Prop. 6  in  [4] ).

(3) For a ring R  we have w. gl. dim ./?- 1  if and only if the

ring of quotients R m o f  R  with respect to any maximal ideal n i of

R  is a valuation ring (Prop. 11 in  [4] ).

(4) For a ring R  with the total quotient ring K , the follow-

ing conditions are equivalent :

a) R  is a semi-hereditary ring, that is, every finitely generated
ideal of R  is projective (It is equivalent to say that R  is a  Prfifer
ring if R  is an integral domain).

b) w. gl. dim .!? - 1  and w. gl. dim K =0.

c) For any torsion-free R-module M , M  is  R -flat (Theorem 5
in  [4 ]).

Theorem 2 .  L et R  be a  rin g  w ith  the total quotient ring
K .  I f  R  satisf ies the condition ( F )  an d  if  w . g l .  dim K =0,
Then w e hav e w . g l. dim R <1 , th at  is, R  i s  a  semi-hereditary
ring.

Before proving this theorem, we give some preliminary results.

Lemma 3. If  a quasi-v on  N eum ann-regular rin g  R  with
The to tal quotient ring K  satisf ies the condition ( F ) ,  then the
ring of  quotients R s o f  R  w ith respect to any  m ultiplicatively
closed subset S  of  R  satisf ies the condition (F).

P ro o f. The total quotient ring of R s is  K s  by virtue o f (1).
Therefore for any ring R * such as R sgR *g.K s ,  there is a ring R '
such that R c R 'Ç K  and R *=R 's . Since R ' is R-flat, we see that
R * is R s-flat, which shows that Rs satisfies the condition (F).

Lemma 4. I f  a  rin g  R  satisf ies the condition ( F ) ,  then R
is integrally  closed in  i t s  total quotient ring.

P ro o f. Let R * be the integral closure of R  in its total quoti-

ent ring. Then R * is R-flat and integral over R , and we have R*
-=R  by Coro11. 2 of Theorem 1  in  [1].
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Lemma 5. If  a quasi-local integral dom ain R  satisf ies the
condition (F), then  R  is a  valuation ring.

For the proof of this lemma, see [6].

Proof o f  Theorem 2 :  Let n i be an  arbitrary maximal ideal
of R .  Then R m satisfies the condition (F )  and for the total quoti-
ent ring K m o f R m ,  we have w . g l. dim K m = 0 . Since Rut is in-
tegrally closed by Lemma 4, R m i s  an integral domain by virtue of
( 2 ) .  Then Lemma 5  implies that Rm is a  valuation ring, and we
have w . g l. dim R_<_1. by (3 ), that is , R  is  a  semi-hereditary ring
by (4)
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