A remark on the Weierstrass points on open Riemann surfaces

By

Mineko WATANABE

(Received February 20, 1966)

1. Introduction. Let us denote as usual by \Re the class of canonical semi-exact differentials on an open Riemann surface, and by \Re_0 the class of exact differentials of class \Re . For an open Riemann surface R of genus g ($< \infty$), we shall call a point P a Weierstrass point on R (for the integrals of class \Re_0) if there exists a non-constant function whose differential is of class \Re_0 and which has the only singularity of order at most g at P. In my previous paper, we obtained that the set of points which are not Weierstrass point is dense in R (Mori [5]). Main assertion to be proved in this paper is that if $\Gamma_{he} \cap \Gamma_{hse}^* \subset \Gamma_{he}^*$ holds on R, the number of Weierstrass point is at most (g-1)g(g+1) as in the classical case. Moreover we shall show some properties of differentials of class \Re on Riemann surfaces of class O_{KD} of finite genus.

2. At first we recall the definition of the principal operators L_0 and $(P)L_1$, where P denotes a regular partition of the ideal boundary (Ahlfors-Sario [1]).

Let R be a compact bordered surface with boundary β , and W a boundary neighborhood of R with relative boundary α which consists of a finite number of analytic curves. For a given real-valued function u on α , L_0u solves the boundary value problem in W with a vanishing normal derivative on β , and $(P)L_1u$ solves the boundary value problem in W with a constant value on each part of the partition P of β , the constants being chosen so that the flux along each part of P vanishes.

Now suppose that R is an arbitrary open Riemann surface. Let W be a regularly imbeded subregion with compact complement and with relative boundary α , and let Ω be a generic notation for a regular subregion which contains the complement of W, P_{Ω} the partition of $\partial \Omega$, which constitutes a consistent system $\{P_{\Omega}\}$ such that it induces the partition P. The operator L_0 , as applied to $\Omega \cap W$ and acting on function u on α will be denoted by $L_{0\Omega}$, and similarly the operator $(P)L_1$ applied to $\Omega \cap W$ will be denoted by $(P)L_{1\Omega}$. The limit of $L_{0\Omega}u$ as Ω tends to R is L_0u and the limit of $(P)L_{1\Omega}u$ is $(P)L_1u$ on W.

Suppose that at a finite number of points $\zeta_j \in R$ there are given singularities of the form

(1)
$$s = Re \sum_{n=1}^{\infty} a_n^{(j)} (z - \zeta_j)^{-n} + a^{(j)} \log |z - \zeta_j|,$$

where $a^{(j)}$ are real and subject to the condition $\sum_{j} a^{(j)} = 0$. Then, there exist functions p_{0s} and p_{Ps} , harmonic on R except for the singularities (1), such that

$$L_0 p_{os} = p_{os}, \qquad (P) L_1 p_{Ps} = p_{Ps}$$

in W, if the complement of W contains all the ζ_j in its interior. These functions are uniquely determined save for additive constants. We say that p_{os} (p_{Ps}) has L_0 -behavior $((P)L_1$ -behavior) in a boundary neighborhood of R.

Let Δ be a parametric disk on R and γ a 1-simplex contained in Δ . Consider a singularity

(2)
$$\tau = \arg (z-\zeta_2)/(z-\zeta_1)$$

where $\partial \gamma = \zeta_2 - \zeta_1$. On the surface $R - \gamma$ we choose the normal operator which is composed of $(P)L_1$ for a boundary neighborhood of R and of the Dirichlet operator for $\Delta - \gamma$. This Dirichlet operator maps a continuous function on $\partial \Delta$ into the restriction to $\Delta - \gamma$ of the harmonic function in Δ with these boundary values. The direct sum of these operators yields a function $p_{P_{\tau}}$ harmonic on $R - \gamma$. The differential $dp_{P_{\tau}}$ can be extended harmonically to all of $R - (\zeta_1 + \zeta_2)$, and we denote the extension by $dp_{P_{\tau}}$, even

186

though it is not exact. If γ is a finite 1-chain, it is homologous to a linear combination $\sum_{j} n_{j}\gamma_{j}$, where each γ_{j} is a 1-simplex contained in a parametric disk and each n_{j} is an integer. We extend the definition of $dp_{P\tau}$ to arbitrary γ by letting $dp_{P\tau}$ $= \sum n_{j}dp_{P\tau_{j}}$. Similarly we can define the differential $dp_{o\tau}$ corresponding to the singularity (2), using the normal operator which is composed of L_{0} for a boundary neighborhood of R and of the Dirichlet operator for $\Delta - \gamma$. Let δ be a 1-chain in R. Then we have

(3)
$$\int_{\delta} (dp_{P\sigma} + i dp_{P\tau}) = -2\pi i (\delta \times \gamma)$$

where σ denotes the singularity $\log |(z-\zeta_2)/(z-\zeta_1)|$ (Rodin [7]).

3. Let us denote by Q the canonical partition of the ideal boundary. To each harmonic semi-exact differential ω with a finite number of singularities and periods, there corresponds a differential $\lambda(Q, \omega)$ with the same singularities and periods as ω and which, in a boundary neighborhood of R, is the differential of a function whose real and imaginary parts have $(Q)L_1$ -behavior. Therefore we have

$$(4) \qquad \qquad \lambda(Q,\,\omega)\equiv\omega$$

if and only if ω is distinguished (Rodin [7]). Moreover, a meromorphic differential φ is of class \Re if and only if

(5)
$$\lambda(Q, \operatorname{Re} \varphi) \equiv \operatorname{Re} \varphi$$

Hence we know that the real part of a meromorphic differential is distinguished if and only if it is of class \Re (Mori [6]).

Similarly, there corresponds a differential $\mu(\omega)$ with the same singularities and periods of ω and which, in a boundary neighborhood of R, is the differential of a function whose real and imaginary parts have L_0 -behavior. We can easily see that

$$\mu(\omega) \equiv \omega$$

if and only if ω^* is distinguished.

It is known that a Riemann surface is of class O_{KD} if and only if all the differentials $dp_{os} - dp_{Qs}$ vanish (Ahlfors-Sario [1]).

Mineko Watanabe

Then, by the use of above results we can easily show

Theorem 1. The class \Re is identical with \Re^* if and only if the Riemann surface is of class O_{KD} . Every harmonic semi-exact differential which has at most a finite number of non-vanishing periods and is square integrable in a boundary neighborhood is distinguished if and only if the Riemann surface belongs to O_{KD} .

4. From now on we restrict the Riemann surface R to be of finite genus unless otherwise stated, and let g be the genus of R. Moreover if R is of class O_{K_D} , there exists a compact continuation \tilde{R} of R which is conformally unique (A. Mori [4]). We identify R with the subregion on \tilde{R} which is conformally equivalent to R. Then, a restriction to R of any differential on \tilde{R} whose poles are all in R is a differential of class \Re on R by Theorem 1. Conversely, let φ be a differential of class \Re on R. Then, there exists a boundary neighborhood W of R such that the integral of φ on W is an AD-function on W. Since $\tilde{R}-R$ is an ADremovable set (Royden [8]), $\int \varphi$ can be extended analytically to \tilde{R} , and differential of $\int \varphi$ is an extension of φ to \tilde{R} . Thus we get

Corollary 1. Suppose that a Riemann surface R of finite genus is of class O_{KD} , and \tilde{R} is a compact continuation of R. Then the class \Re is identical with the class of restrictions to R of differentials on \Re whose poles are all in R.

By this Corollary we see

Corollary 2. If the genus of a Riemann surface of class O_{KD} is g, the degree of divisor of any differential of class \Re is at most 2g-2. Moreover, there does exist a differential of class \Re such that the degree of whose divisor is strictly less than 2g-2.

5. Take a point P on a Riemann surface of genus g. Then, there always exists a non-constant function whose differential is of class \Re_0 and which has the only singularity of order at most g+1 at P, and hence there happens one of the following two cases: 1) there does not exist non-constant such function with the only

188

singularity of order at most g at P, or 2) there exists a nonconstant such function with the only singularity of order at most g at P. If the second case happens, we call the point P a Weierstrass point on R (for the integrals of class \Re_0) after the classical case. The set of points at which the first case happens is dense in R (Mori [5]).

If R is a Riemann surface of class O_{KD} and \tilde{R} is a compact continuation of R, the restriction to R of a function on \tilde{R} whose poles are all in R is a function whose differential is of class \Re_0 , and any integral of class \Re_0 can be extended analytically to all of \tilde{R} by Corollary 1. Therefore, a Weierstrass point on \tilde{R} which is in R is a Weierstrass point on R and conversely, any Weierstrass point on R is a Weierstrass point on \tilde{R} .

Corollary 3. If a Riemann surface R is of class O_{KD} and of genus g, the number of Weierstrass points on R is at most (g-1)g(g+1). Further, for any integer n such that $0 \le n \le (g-1)g(g+1)$, there exists an open Riemann surface of class O_{KD} and of genus g which is exactly with n Weierstrass points.

By removing a suitable number of Weierstrass points from a compact Riemann surface, we get the last assertion.

6. Let a Riemann surface R of genus g be of class O_{KD} and let \tilde{R} be a compact continuation of R. We denote by $\{A_k, B_k\}_{k=1,2,\cdots,g}$ a homology basis of R modulo dividing cycles. Then $\{A_k, B_k\}$ forms a homology basis of \tilde{R} as well. Let φ_{A_k} and φ_{B_k} $(k=1,2,\cdots,g)$ be the canonical semi-exact differentials which are uniquely determined by the conditions $Re \int_{B_k} \varphi_{A_k}$ $= -Re \int_{A_k} \varphi_{B_k} = \delta_{h_k}$ and $Re \int_{A_k} \varphi_{A_k} = Re \int_{B_k} \varphi_{B_k} = 0$. The space Γ_{kse} which is spanned by the φ_{A_k} and φ_{B_k} over the real number field is identical with Γ_{ase} if and only if R belongs to O_{KD} , and the space $\Gamma_{aS} \cap \Gamma_{ase}$ which always contains Γ_{kse} is spanned by the φ_{A_k} if the genus of R is finite and $\Gamma_{he} \cap \Gamma_{nse}^{*} \subset \Gamma_{he}^{*}$ holds (Mori [6]). Therefore the φ_{A_k} span Γ_{ase} of dimension g and hence they are linearly independent even over the complex number field. Then by Corollary 1 we can easily see that extensions $\tilde{\varphi}_{A_k}$ of φ_{A_k} to \tilde{R} form a basis of the space of analytic differentials on \tilde{R} .

We consider the following form of Jacobi inversion problem on R. For a 1-chain γ (finite or infinite) on R, we set

$$H(\gamma) = \left(\int_{\gamma} \varphi_{A_1}, \int_{\gamma} \varphi_{A_2}, ..., \int_{\gamma} \varphi_{A_g}\right).$$

For arbitrary given complex numbers c_1, c_2, \dots, c_g , we try to find *n* paths γ_j starting from a given point and satisfying

(7)
$$H(\sum_{j} \gamma_{j}) = (c_{1}, c_{2}, \dots, c_{g})$$
 (mod periods).

On the compact surface \tilde{R} , if we set

$$\widetilde{H}(\widetilde{\gamma}) = \left(\int_{\widetilde{\gamma}} \widetilde{arphi}_{A_1}, \; \int_{\widetilde{\gamma}} \widetilde{arphi}_{A_2} \, , \cdots , \int_{\widetilde{\gamma}} \widetilde{arphi}_{Ag}
ight)$$

for a 1-chain $\tilde{\gamma} \subset \tilde{R}$, we can always find *n* paths $\tilde{\gamma}_j$ starting from a given point on \tilde{R} and satisfying

$$\widetilde{H}(\sum_{j} \widetilde{\gamma}_{j}) = (c_{1}, c_{2}, \cdots, c_{g}) \pmod{\text{periods}}$$

if $n \ge g$. Each $\tilde{\gamma}^j$ may not be contained in R. If $\tilde{\gamma}_j \subset R$, we let it be γ_j . Suppose that $\tilde{\gamma}_j$ is not contained in R. Then we take a planar boundary neighborhood W_j so that it does not contain the starting point of $\tilde{\gamma}_j$, and let P_j be the first point of $\partial W_j \cap \tilde{\gamma}_j$ where one meets when one moves along $\tilde{\gamma}_j$ from the starting point. We can choose a path γ''_j connecting P_j and the end point Q_j of $\tilde{\gamma}_j$ in W_j except for Q_j if $Q_j \notin R$. By the assumption that $R \in O_{KD}$, any component of $\tilde{R} - R$ is a point on \tilde{R} and it is accessible from the interior of R. Let us denote by $\tilde{\gamma}'_j$ the part of $\tilde{\gamma}_j$ which connects the starting point and P_j , and let $\gamma_j = \tilde{\gamma}'_j + \gamma''_j$. Because of planar character of W_j , we have

$$H(\gamma_i) = \tilde{H}(\tilde{\gamma}_i) \,,$$

and we get *n* paths $\gamma_1, \gamma_2, \dots, \gamma_n$ which satisfy (7).

Corollary 4. (Jocobi inversion problem) We can always find n paths starting from an arbitrary given point on R which satisfy (7) on a Riemann surface R of genus g, if R is of class O_{KD} and $n \ge g$.

190

7. Now we consider a Riemann surface R on which $\Gamma_{he} \cap \Gamma^*_{hse} \subset \Gamma^*_{he}$ holds (Mori [6]). If R is of class O_{KD} , $\Gamma_{he} \cap \Gamma^*_{hse} \subset \Gamma^*_{he}$ holds, but we can not guarantee the converse. Let \tilde{R} be a compact continuation of R which is the same genus as R, and \tilde{f} a meromorphic function on \tilde{R} such that whose poles are all in R. The differentials

$$\varphi_{1}(\tilde{f}) = \lambda(Q, \operatorname{Re} d\tilde{f}) + i\lambda(Q, \operatorname{Re} d\tilde{f})^{*}$$

$$\varphi_{2}(\tilde{f}) = \lambda(Q, \operatorname{Im} d\tilde{f}) + i\lambda(Q, \operatorname{Im} d\tilde{f})^{*}$$

are of class \Re on R, and

Re
$$d\tilde{f} - \lambda(Q, \text{Re } d\tilde{f})$$

Im $d\tilde{f} - \lambda(Q, \text{Im } d\tilde{f})$

belong to $\Gamma_{he} \cap \Gamma_{hse}^* = \Gamma_{he} \cap \Gamma_{he}^*$. Therefore $\int \varphi_1(\tilde{f})$ and $\int \varphi_2(\tilde{f})$ are single-valued on R. Thus we conclude that if R is a Riemann surface of genus g on which $\Gamma_{he} \cap \Gamma_{hse}^* \subset \Gamma_{he}^*$ is valid and if \tilde{R} is a compact continuation of R, then a Weierstrass point on \tilde{R} which is in the interior of R is a Weierstrass point on R.

Conversely, let P be a Weierstrass point on R and f a function whose differential is of class \Re_0 and which has the only singularity of order at most g at P. We take an open Riemann surface \hat{R} of class O_{KD} on \hat{R} so that it contains R, and consider the differential $\lambda(Q, Re df)$ on \hat{R} . We have

$$Re df - \lambda(Q, Re df) \in \Gamma_{he} \cap \Gamma^*_{hse} = \Gamma_{he} \cap \Gamma^*_{he}$$

on *R*. Moreover $\lambda(Q, \operatorname{Re} df)$ and its conjugate $\lambda(Q, \operatorname{Re} df)^*$ have no periods along any dividing cycle on \hat{R} . Therefore the function

$$\int \lambda(Q, \operatorname{Re} df) + i\lambda(Q, \operatorname{Re} df)^*$$

which has the same singularity as f is an integral of class \Re_0 on \hat{R} . This implies that P is a Weierstrass point on \hat{R} . Then, by the same way as the proof of Corollary 3, we can show that P is a Weierstrass point on \tilde{R} . Thus we have proved

Theorem 2. Suppose that R is a Riemann surface of genus g

Mineko Watanabe

on which $\Gamma_{he} \cap \Gamma^*_{hse} \subset \Gamma^*_{he}$ holds. Then the number of Weierstrass points on R is at most (g-1)g(g+1).

REFERENCES

- [1] Ahlfors, L. V., and Sario, L. Riemann surfaces. Princeton (1960).
- [2] Behnke, H., und Sommer, F. Theorie der analytischen Funktionen einer komplexen Veränderlichen. Berlin (1955).
- [3] Kusunoki, Y. Theory of Abelian integrals and its applications to conformal mappings. Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 32 (1959), 235-258.
- [4] Mori, A. A remark on the prolongation of Riemann surface of finite genus.
 J. Math. Soc. Japan 4 (1952), 27-30.
- [5] Mori, M. On the semi-exact canonical differentials of the first kind. Proc. Japan Acad. 36 (1960), 252-257.
- [6] Mori, M. Contributions to the theory of differentials on open Riemann surfaces. J. Math. Kyoto Univ. 4 (1964), 77-97.
- [7] Rodin, B. Reproducing kernels and principal functions. Proc. Amer. Math. 13 (1962), 982-992.
- [8] Royden, H. L. On a class of null-bounded Riemann surfaces. Comm. Math. Helv. 34 (1960), 37-51.
- [9] Springer, G. Introduction to Riemann surfaces. Massachusetts (1957).