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§1. Statements of Results. The study of characteristic
classes for orthogonal fibre bundles has been very useful in dif-
ferential topology, differential geometry, and algebraic topology.
In recent years, it has become clear that characteristic classes for
PL-bundles and spherical fibre spaces will also be useful and should
be studied. In this paper, we give a structure theorem for the
cohomology modulo an odd prime of the classifying space for
oriented spherical fibre spaces.

Let BSF=BSG be the classifying space for oriented spherical
fibre spaces (see [10] and [12]). MSF= {MSF(n)} be the as-
sociated Thom spectrum, and let?* ¢ : H*(BSF)—H*(MSF) be the
Thom isomorphism. Let r=2p—2 throughout this paper. The
Wu classes, ¢, H(BSF), are defined by ¢;=¢ " (®/(¢(1)). Milnor
[10] has shown that H*(BSF) is isomorphic to a free commuta-
tive algebra generated by ¢; and Bgq; (the Bockstein of ¢;) in
dimensions<pr—1. Gitler and Stasheff [5] have shown that a
new element, the first exotic class, ¢,, comes in dimension pr—1.
Stasheff [137] has extended Milnor’s computations and shown that
g; and Bgq; generate a free commutative subalgebra of H*(BSF)
in dimensions <2pr.

Our first theorem is the following.

THEOREM 1.a). Let 0: Z,[q,1QE(Bq,)—H*(BSF) be the natural
map. Then 0 is a monomorphism.
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2) All cohomology groups, unless otherwise stated, will have coefficient Z,, p
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b). There exists a homomorphism ®, of Hopf algebras over
the mod p Seenrod algebra @, ®: H*(BSF)—Z [q,1QE(Bq;) such
that ®0=id.

Using theorem 1 we prove the mod p analogue of theorem
2.5 in [4], giving a structure theorem for H*(BSF).

THEOREM 2. There is a Hopf algebra over @, C, which is (pr—2)-
connected, such that

H*(BSF)~ Z,[4;]19E(8g.)®C,

the isomorphism being an isomorphism of Hopf algebras over Q.

We remark that Stasheff [13] has proved theorem 2 in
dimensions <2pr and given C explicitly in dimensions <2pr,
namely C is a free commutative algebra on elements {a(e,)},
where {a} runs through an additive basis for @/@(¢"'), in dimen-
sions <pr. It is not difficult to see that for p=3, (Be,)*=0, so
C is not a free commutative algebra in general.

Our third theorem concerns the structure of the spectrum
MSF. 1In [4] it was shown that MSF is of the same mod 2
homotopy type as a wedge of Eilenberg-MacLane spectra.

THEOREM 3. MSF is of the same homotopy type as a wedge of
Eilenberg-MacLane spectra.

§2. Proof of Theorems 1 and 2.

Since part a) of theorem 1 is an immediate corollary of part
b), we restrict our attention to part b). We first prove an easy
lemma.
LEMMA 2.1. There exists an epimorphism of Hopf algebras over
@, p: H¥(BSO)—Z,[q;].

Proof. We first make Z,[¢;] into a Hopf algebra over @ by
¢g:)= 2 7.R4q;_,, and defining #*(g;) by the Wu formulae (cf.

k=0

[10]). H*BSO)=Z,[P;], j>1. Since ¢;=x\P;,,+decomposable
terms with A=%=0 (p) (cf. [7])°, we may write H*(BSO)=Z[qg;,
P;l, i>1,j%=0(r/4). Define p by p(¢g;)=4g; and p(P;)=0, j=£0 (r/4).

1 x:(—l)%.ggl.
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Sjince Q(P;)cKer p, p is a map of algebras over @. Since ¢(P;)=
ZP,,®P~_,,, if j=0(»/4), then either k or k—j=0(»/4). Thus p
g;ka map of Hopf algebra over Q.

Let L(n)=S"*'/|Z,, L= U L(n), the lens spaces. Let \: L(n)—
CP(n)=S**'/S' be the natural map. Let C,\=CP(n)[JC(L(n)) be

the mapping cone of A and = : Cy—>SL(n)=C,/CP(n) be the natural
map. Let i: BSO—BSF be the natural map. Our main lemma
is the following one.

LEMMA 2.2. For each positive integer n, there exists maps f,:
C,—BSO and h,: SL(n)—BSF such that h¥(Bq;)+0€ H"*(SL(n))
if i<n(p—1) and such that the following diagram is homotopy
commutative :

C\ i» BSO

l” I, li
SL(n) —- BSF.

Furthermore, the maps {h,; n=1, 2,---} can be chosen such that
h,=h|SL(n) for a map h: SL—>BSF. Thus h*(Bq;)+0c H"*(SL)
for all i>1.

Proof. Let j: CP(n)—C, be the inclusion. In the following
diagram

N J* )\,*
K(C\) — K(CP(n)) —> K(L(n))
—_~ r ]* r
KO(C,) — KO(CP(n)),
Ker »* is an ideal generated by £?—1, £ K(CP(n)) the class of
the canonical line bundle over CP(n) (cf. [6]). Consider J:
KO(CP(n))—J(CP(n)). There exists a positive integer e=e(n) such
that J((p+1)°(¥ ,4,— 1)7(£))=0 (theorem 1.3 of [1]). Hence there
exists an element a< K(C,) such that j¥(a)=(p+1)(E?*"—§)=
(p+1)(¥,,,—1E and J(j*(r(a))=0 since ¥,,, commutes with »
(cf. [2]).
Let f, represent »(a). Then if,|CP(n): CP(n)—BSF is homo-
topic to zero. Hence there exists an #%,: SL(n)—BSF such that
ify=h,r. For 0<i<m, H¥(C,; Z) is mapped by j* monomor-
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phically onto p-H*(CP(n); Z). Let x=c(§)eH(CP(n); Z), then
Yu=Jj*"(p-x") generates H*(Cy; Z). Obviously, y,:¥.=p*Ysis;
(¢, 7>0), and the cup products in H*(C,) are trivial. For the
total Chern class ¢, we have c(*"'—&)=1+(p+1x)/1+x)=
L4 23 (1) (pex') and elo)=(1+ 2 3.)* " =1+ 33 (— 1)y, (D).
Thus, Pyr(a))= =y, (p). Since ¢,=\P;,,+decomposable terms
with =0 (p), #*hfg,)=r*g)=q:(r(a))=\P;(r(a)) = £ry;, %0
for i<n/(p—1), whence /¥(¢;,)+0 and h}¥(Bq;)=Rh*(q.)=*0.

Consider a map #, satisfying the conditions of the theorem,
then, if n>m>0, h,,=h,|SL(m) does so. Since [SL(n), BSF] is
finite the set of the homotopy classes of such maps #,’s is finite
for each n. Then it is an easy arithmetic that there exists a
sequence {k,, h=1, 2, ---} such that k,=#h, . |SL(n). Using the
homotopy extension theorem successively, we have a map h:
SL—BSF such that k,=h|SL(n) satisfies the conditions with respect
to some f, (which might be not f,,,|C.(n)). This completes the
lemma. .

The idea of the proof of part b) of theorem 1 is to consider
the map BSOx SLxSLx :--x SL—BSF given by i: BSO—BSF, h:
SL—BSF, and multiplication and to show that the image of the
induced map on cohomology is Z,[¢;]QE(Bgq;). We start with
some preliminary considerations.

Let M be a connected, graded, locally finite algebra over Z,.
Let @Mz MR---QM, N-times. The symmetric group ${N) acts

on ®M (with the usual signs) and let ¥¥(M)C QM denote the
N N
set of elements left fixed by the action of ¥(N). For any one-
to-one map &: {1,--,N}—{1,---, N}, we obtain &*: @M—n%)M
and ¢(&): $N'(M)—$N(M). ¢(€) depends only on N and N’
and is an isomorphism in dimensions <N-(connectivity of M+1).
Let $(M)=1im ¥¥(M), an algebra over Z,. The identity QJ@M=
N 2
QM® QM induces an algebra homomorphism ¥*¥(M)—-$Y(M)R
N N
$N(M) and hence a homomorphism ¢ : Y(M)—-F(M)RXSL(M). Thus
4(M) is a Hopf algebra over Z,.
If f: M—>M’, we obtain Qf: QM—->QM’ and ¥(f): ¥(M)—
N N

(M. If M is an algebra over (, then so is @M and $N(M),
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and ¥(M) is a Hopf algebra over (. If f is an (@-map, then so
is $(f).

LEMMA 2.3. Let M=M®M, as algebras (with base points

identified). Then $(M) ﬁ FSM)QI(M)—-S(M,)QRQF(M,) is an iso-
morphism of Hopf algebras with inverse $(M)QF(M,)—¥(M)Q

g (M) 2 $(M).

The proof is left to the reader.

Let H'(SLYCc H*(SL) be the submodule consisting of H°(SL),
H(SL) and H"*(SL). Let »’': H*(SL)—H’(SL) be the natural
projection. Note that =’ is a map of algebras over (. Let
H*(SL(n))= H(SL(n))+ > H?*"'(SL(n)), =" : H*SL(n))—H°*YSL(n))
the natural map. Note that H*(SL(n))~H*%SL(n))® H*(C,) as
algebras.

Because H*(BSF) is cocommutative and coassociative, the
iterated diagonal ¢ induces ¥ : H*(BSF)—¥(H*(BSF)). We define

©: H¥(BSF)—Z,[¢;1®4(H'(SL))

to be the following composition.

¢ 1QW
H*(BSF)—— H*(BSF)®Q H*(BSF) —— H*(BSF)®QY¥(H*(BSF))

*QI(h*) QY (') ,
L2, H(BSO)@P(H*(SL) —P—" L2 1QF(H'(SL)).
@ is a homomorphism of Hopf algebras over @ by construction
and lemma 2.1. Part b) of theorm 1 follows immediately from
the following lemma.

LEMMA 2.4. a). Im ®=1Im (®49).
b). ®F is a monomorphism.

Proof. Since $(H'(SL))=~¢¥(H'(SL(n)) in dimensions<2n+1,
we may replace SL, & and =’ by SL(n), h,=h|SL(n) and =’:
H*(SL(n))— H'(SL(n)) respectively. By the coassociativity of
H*(BSF) and lemmas 2. 2, 2. 3, we have the following commutative
diagram.
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H*(BSF) -
l (1Rw)¢ \(1@1’)9’)

H*(BSF)®%(H*(BSF)) H*(BSF)QY¥(H*(BSF))
*QP(h*) l * QY (=" h¥)
H*(BSO)RY(H*(SL(n))) H*(BSO)®¢¥(H **(SL(n))

NJ®¢ L p1

H*(BSOYQYP(H*(SL(n)) ¥ (H*(SL(n))
l H*(BSO)®Q H*(BSO)QRY(H *“Y(SL(n)))

12%(f¥) Q% (=) /
1@ (F HT)R1

H*BSO)RF(H*(C) @Y (H(SL(n))
/. (104)
H*(BSO)QY(H*SL(n))) .

Apply p@%(z’) to the left-side line to obtain @®. Clearly

Im®c Im

H*(BSO)QY(H**(SL(n))—H*(BSO)Q@¥(H***(SL(n)) N H'(SL(n)))

-ib-@;l» H*(BSO)® H*(BSO) @¥(H**(SL(n)) N H'(SL(n)))

—-H*(BSO)QY(H*(C,) N H'(SL(n)))Q@F(H**(SL(n)) N H'(SL(n)))
—Z,[4:1QF(H'(SL(n)))

C Im
Z,[ 9 1Q¥(H*Y(SL(n))) = Z [ 4; 1Y (H***(SL(n)) N H'(SL(n)))

- > Z,[¢;1Q¥(H'(SL(n)))

as H*(BSO)—~¢(H*(C,) N H'(SL(n))) factors through Z,[¢;]. Final-

ly, Z,[a:1® EBa) —— H*@SF) "ETY, fxBSP) @ 9(HABSF))

sk //h:!:
FOIETR, e BSO)RIHASLY) — Z,[a:]1@FHS(SL(m)N
H'(SL(n))) is an epimorphism so Im ®C Im (®0)C Im & and part

a) is proved. Part b) follows from the fact that the composition

Z,[41®EBq) — HXBSF)— Z,[¢1@(H(SL) — Z,[4,1®
F(HYSL(n)) N H'(SL(xn))) is an isomorphism in dimensions <2x-+
1. This finishes the proof of theorem 1.

We remark that one can give a shorter proof of part a) of
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theorem 1 using lemma 8.2 of [14], a generalization of the
argument used in the proof of theorem 4.3 of [5], and some
Hopf algebra arguments. These methods don’t seem to give part
b) however.

We now turn to the proof of theorem 2. Theorem 2 follows
from part b) of theorem 1 using the mod p analogue of the proof
of theorem 2.5 of [4]. We give here only an outline. Define
C=H*(BSF)/(Z,[4;1QE(Bq:))- H*(BSF). Since H*(BSF) is com-
mutative the ideal is a two-sided ideal over @ and C is a Hopf
algebra over @. Let y: H*(BSF)—C be the quotient map. By

theorem 4. 4. of [11], the isomorphism of theorem 2 is given by

[¢o]
the composition H*(BSF) ip» H*(BSF)®Q H*(BSF) ﬁ 2:1®

E(Bq,)®C, and all maps are homomorphisms of Hopf algebras
over Q.

We remark that the second part of theorem 2.11 of [4] is
incerrect as the isomorphism is only as Hopf algebras over @,
the subalgebra of (@ generated by @'.

§3. Proof of Theorem 3.

The proof of theorem 3 will be analogous to that of corollary
2.10 of [4]. It depends on a determination of H*(MSF) as a
module over Q.

PROPOSITION 3.1. In H¥(MSF), Q(U)=\U-(8q ,:,+ decom-
posable terms), where N=E0 (p), Q; is the primitive element in a
dimension v-p(i)+1, and p(i)=p' ' +pi i+ +p+1.

Proof. By the Wu formulae (¢f. [10]),
(P‘qs=(—1)‘(S(p_t1)—1)qs,,,,+decomposab1e terms, and (‘Bq,=

(— 1),<s(p t_ D),@qs..‘ﬁ- decomposable terms. Recall that Q,=3 and
Q:=[®#7", Q] (see [8]). Hence

Q{U)=U-(®* (8g p:-»)—Q:_(q,-')+decomposable terms), by
induction on i. Now ®#7'(8g,; ,)=0 for dimensional reasons.
Q:-(q,-") has terms of the form ®?(8g,,-,) with 1<t<i—2
and a term B@‘G’P"-G’P“Z(q,,f—l) plus decomposable terms. Since
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(p()—p)(p—1) (p—1)p* 7"+ +(15/—1\)1>‘+ o+ (p—-1)
( )=( )
?! '

=0 (9),

(P‘"(BQ,,(,-)_ ,) is decomposable. Finally, by downward induction on
k, we prove that @ ®#*"...0» (g i-1)=gq -1, ,i-2,. k-+decom-
posable terms. Namely,

I

G @@ P g o) = @ (Ng,i-1,...s )+ decomposable terms

i1y ... k —1)—
L

+decomposable terms
and the coefficient is non-zero mod p. Thus
BE'®?...0# " *(q ,i-1)=NBg >+ decomposable terms, with A=£0 (p)
and the proposition is proved.

PROPOSITION 3.2. Let 0: G—H*(MSF) be defined by 0(a)=
a(U). Then

Kerd = @(B).

Proof. B(U)=0, hence ({(B)C Kerd. @ defines a map of
coalgebras ¢’ : @/@(B)—H*(MSF). To show 0’ is a monomorphism,
it is enough to show P(@/Q(B))N Ker #=0. An additive base for
P(@/Q(R)) is given by @,, i>0, and ®*j, where A;=(0,---, 1, )
in Milnor’s notation. (®*; goes to a non-zero element under the
composition @/Q(8)— H*(MSF)—H*(MSO0) [9] and ¢'(Q,)=Q.(U)*0
for i>0 by proposition 3. 1.

THEOREM 3.3. Let M be a connected coalgebra over Q. Let
0 : @—M be defined by 6(a)=a(l). Assume that Ker 0=Q(B). Then,
as an Q-module,

M~3Q/GR)S X a.

Proof. The proof of this theorem is analogous to, and easier
than, the proof of theorem 8.1 of [3] (see the remarks after the
proof of theorem 8.1 of [3]).

COROLLARY 3.4. H*(MSF), as an Q-module, is isomorphic
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to a direct sum of copies of @/Q(B) and Q.

Proof. This follows immediately from proposition 3.2 and
theorem 3. 3.

The mod p version of lemma 4.1 of [4] and corollary 3.4
imply that MSF is of the same homotopy type mod p as a wedge
of Eilenberg-MacLane spectra. Since this is true for all p includ-
ing 2, theorem 3 follows.

Massachusetts Institute of Technology and Kyoto University
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