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§ 1 .  Statements o f  R esu lts . T h e study o f  characteristic
classes for orthogonal fibre bundles has been very useful in dif-
ferential topology, differential geometry, and algebraic topology.
In recent years, it has become clear that characteristic classes for
PL-bundles and spherical fibre spaces will also be useful and should
be studied. In  this paper, we give a structure theorem for the
cohomology modulo an odd prime of the classifying space for
oriented spherical fibre spaces.

Let BSF=BSG be the classifying space for oriented spherical
fibre spaces (see [ 10 ]  an d  [12 ]). M S F =  {M SF(n)} be the as-
sociated Thom spectrum, and let 2 :  H*(BSF)—>H*(MSF) be the
Thom isomorphism. Let r = 2 p - 2  throughout this paper. The
Wu classes, q i EH i r(BSF), are defined by q1 =y5 - 1 (19 1 (4h(1)). Milnor
[10] has shown that H *(BSF) is isomorphic to a free commuta-
tive algebra generated by q , and 13q 1 (the Bockstein of q1)  in
dimensions<pr —1. Gitler and Stasheff [5] have shown that a
new element, the first exotic class, e1 , comes in dimension p r —i.
Stasheff [13] has extended Milnor's computations and shown that
q, and Oq i generate a free commutative subalgebra of H*(BSF)
in dimensions <2pr.

Our first theorem is the following.
THEOREM 1. a). L et 0 : Z il q 1]®E( i3q 1)—>H*(BSF) be the natural
m ap . T h e n  0  is  a  monomorphism .
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b). There ex ists a hom om orphism  0, o f  H opf  algebras over
the mod p  Seenrod algebra CT, (I): H*(BSF)-.Z p [q i ]O a 3 q 1) such
that 00= id.

Using theorem 1 we prove the mod p  analogue of theorem
2. 5 in  [4 ], giving a structure theorem for H*(BSF).

THEOREM 2. There is a Hopf algebra over a, c, w hich is (pr-2)-
connected, such that

H * ( B S F )  Z [q ]® E ( 13q)ØC ,

the isomorphism being an isomorphism o f Hopf  algebras over CT.
W e rem ark  that Stasheff [13] has proved theorem 2  in

dimensions <2 p r and given C  explicitly in dimensions <2pr,
namely C i s  a  f re e  commutative algebra o n  elements {a(e,)},
where {a} runs through an additive basis for CTICT(P ) ,  in dimen-
sions <p r. I t  is not difficult to see that for p=3, (ee 1)3 =0 , so
C  is not a free commutative algebra in  general.

Our third theorem concerns the structure of the spectrum
M S F .  In  [4 ]  it was shown that M S F  i s  o f th e  same mod 2
homotopy type as a  wedge of Eilenberg-MacLane spectra.

THEOREM 3. M S F  is  of the same homotopy type as a wedge of
Eilenberg-MaeLane spectra.

§ 2. Proof o f  Theorems 1  and 2.

Since part a) of theorem 1 is  an immediate corollary of part
b), we restrict our attention to part b ).  We first prove an  easy
lemma.

LEMMA 2. 1. There exists an epimorPhism o f HoPf algebras over
CT, p :  H*(BS0)-->Z p [q 1].

P ro o f . We first make Z [ q 1]  into a  Hopf algebra over a by
0(q 1).= E qk g q i ,  and defining 6)t( q )  b y  the W u formulae (cf.

h=o
[1 0 ]).  H*(BSO)= Z p [P ,], j> 1. Since q1=A Pir l 4+decom posable
terms with x sO (p) (cf. [7 ])", w e m ay w rite H*(BSO)= Z p [q i ,

j 0 (r/4). Define p by p(q i ) = qi  and p(P i ) = 0 , j 0 (r/4).
f i-F 1  A

2 = ( - 1 ) 2  • P

2
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Since d (p i )OEKer p ,  p  is a map of algebras over d .  Since 0(13 1)=

EPhOP;_k, if j  0 (r/4), then either k  or k — j$ 0 (r1 4 ) . Thus p
o= k
is a  map of Hopf algebra over d.

Let L (n)=S 2" 1/Z , L = U L (n), the lens spaces. Let X: L(n)-->
CP(n)= S 2"' I S i be the natural m ap . L e t Cx = CP(n)U C(L(n)) be

the mapping cone of X and n• : Cx — >SL(n)=CICP(n) be the natural
m ap. L et i: BSO—>BSF be the natural m ap. O ur m ain lemma
is the following one.

LEMMA 2. 2. For each positive integer n, there ex ists m aps f„:
Cx —>BSO and hn : SL(n)--->BSF such that 14( 13q i )* O H i r -"(SL(n))
i f  i <n ( p - 1 )  and such  that the follow ing diagram  is hom otoPy
commutative:

C, BSO

h„
SL(n) BSF .

Furtherm ore, the m aps { h„; n=1, 2, •••} can be chosen such that
lin =h1SL(n) for a map h: SL— >BSF. Thus h*(19q i )* 0 E H " -ti(SL)
fo r all i>1 .

P ro o f . Let j: CP(n)— >C, be the inclusion. In the following
diagram

K (C) K (C P(n)) --+X *  K (L (n))
i r

KO(C) KO(CP(n)),

Ker X* is an ideal generated by e— 1, K(CP(n)) the class of
th e  canonical line bundle over C P(n) (c f . N I. C on s id er J:
KO(C P (n))—> P  ( n ) ) .  There exists a positive integer e= e(n) such
that j ( ( p + i ) e (  p , - 1 ) r ( 0 ) =  0 (theorem 1.3 o f  [ 1 ] ) .  Hence there
exists a n  element a E K (C ,) such that j*(a)=(p+i)e(v +i — 0 =
(P+1)e(A F pHi-1 )  and A i* (r(a))=0  since kirp + i  commutes with r
(cf . En .

Let f „ represent r ( a ) .  Then if„ICP(n):CP(n)— >BSF is homo-
topic to z e ro . Hence there exists an hn : SL(n)—>BSF such that
if„--_-h„7t. For 0 <i_ n , 1 1 21(Cx ; Z )  is mapped by i *  monomor-
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phically onto p • 1-12 i  (C P(n) ; Z ). Let x =c 1Ç )E H 2 (CP(n) ; Z ), then
Y21 = i* - Ap • x i )  generates H 2 i (Cx ; Z ). Obviously, Y 2 1  e i l 2j P • Y2i4-2j

( i, j>0 ), and the cup products in  H *(C ,) are trivial. For the
total Chern class c ,  w e  have c(V 1 =  ( 1 +  (p+i)x )1(1+ x )-
1+ ( - i ) 1  - 1(p • x i )  and c(a)= (1+ Y , i ) ( P " ) e ( P ) .,-1
Thus, Pk(r(a))=- - Y  4k  (P). Since q  X P i r I 4  + decomposable terms
w ith  x $ 0  (p ) , e h t(q  ,)= f  q  i (r(a))= X P 

i r 1 4 ( r ( a ) )  X y  i ,.*
for i <n/(p—  1), whence ht(q i )* 0 and h,t(gq i )= Oht(q i )* O.

Consider a map h„ satisfying the conditions of the theorem,
then, i f  n> m > 0, 11,n = h n !SL(m) does so. Since [S L (n), B S F] is
finite the set of the homotopy classes of such maps hn 's is finite
for each n. Then it is an easy arithmetic that there exists a
sequence {h„, h= 1, 2, • • •} such that hn  h .  S L ( n ) .  Using the
homotopy extension theorem successively, we have a map h:
SL--->BSF such that h n = h  SL(n) satisfies the conditions with respect
to some f n (which might be not f „, C  x (n)). This completes the
lemma.

The idea of the proof of part b) of theorem 1 is to consider
the map BSO x SL SL x • • • x SL—>BSF given by j: BSO—>BSF, h :
SL—>BSF, and multiplication and to show that the image of the
induced map on  cohomology is Z [q ]Ø E ( / 3 q ) .  We start with
some preliminary considerations.

Let M  be a connected, graded, locally finite algebra over Z .
Let ØM= M® ••• OM, N -tim es. The symmetric group g(N ) acts

on  O M  (with the usual signs) and let 99  N (M) c OM denote the

set o f elements left fixed by the action of g'(N ) .  For any one-
to-one map E: {1 , •••, N} —> {1, •••, we obtain E * :  OM— > M

N
and 99 (e) : (M)—>92 A (M ) .  Y ( s )  depends only on N  and N'
and is an isomorphism in dimensions N. (connectivity  o f  M +1).
Let 99 (M )= lim V iv(M), an algebra over Z .  T h e  identity OM=

O M ®  O M  induces an algebra homomorphism 99 2 N (M ) - - ->9 N  UM®
92 N (M ) and hence a homomorphism : 99 (M)—>99 (M )09 9 (M ) .  Thus
Œ(M) is a Hopf algebra over Z .

If f  : we obtain ç5i3). f  .,T).111—>O M ' and 99 ( f )  :  T(M)-->

99 (M ') .  I f  M  is  an algebra over a, then so is O M  and TN(M),
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and 99 (M ) is  a Hopf algebra over Cf. If f  is  an Cf-map, then so
is  9'(f ).

LEM M A 2.3. L e t  M= MiE M2

identified). T h e n  99 (M ) -> 9 9 ( M ) 0 9 9 ( M ) - > 9 M 0 9 9 ( M 2 )  i s  an iso-
m orphism  o f  H o p f  algebras w ith  inverse OE(A ) 0 9 9 (M2) - - ->9 9 (M )0

61)Œ(M)
The proof is left to  the reader.
Let H '(S L )c H *(S L ) be the submodule consisting o f H°(SL),

r(S L ) and H i r±i(SL). Let 7r.' : H*(S L )->H'(S L ) be the natural
projection. N o t e  th a t  7t-' i s  a  m ap  o f  algebras over a. Let
H°dd(SL(n))= H°(SL(n)) +E 11 2 i ' 1 (SL(n)), 7r" : H*(SL(n))->H°'(SL(n))
the natural m ap. N ote th a t H*(SL (n))- 'H'd(SL (n))EDH*(C,) as
algebras.

Because H * (B S F) i s  cocommutative and coassociative, the
iterated diagonal (,b induces J': H*(B S F)->Œ(H*(B S F)). We define

F : H*(BSF)-->Z p [a d00E(11/(SL))

to be the following composition.

çb 1 0 T
H*(B SF) H * (B S F) H *(B S F) H*(B SF)099(H*(B SF))

i* 00E(h*)p  g ) (7r i )H* (B S 0)09 9 (H* (SL)) -> Z p [q 1 0 9 9 (H'(SL)) .

<13 i s  a homomorphism of Hopf algebras over b y  construction
and lemma 2. 1. Part b) of theorm 1 follows immediately from
the following lemma.

LEM M A 2.4. a ) .  Im (1)= Im OK .
b). (DO is  a monomorphism.

Pro o f . Since 99 (11/(SL)),------: 9)(H '(SL(n)) in  dimensions <2n +1,
w e m ay  replace S L , h  and 71J  b y  SL (n), h ti = h1S L (n) and 7/

H*(S L (n))->H'(S L (n)) respectively. B y  the coassociativity of
H*(B S F) and lemmas 2. 2, 2. 3, we have the following commutative
diagram.

a s  algebras (w ith  base points
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H*(BSF)
(10T )0 (10400

H*(BSF) (H*(BSF)) H*(BSF)099(H*(BSF))
i* 92(h*) i* ®P( /1*)

H*(BSO)RY  (H*(SL(n))) H*(BS0)092(H"d(SL(n))
1 0 0 ,p0 1

H*(BS(J)9'(H*(SL(n)) ®1(H*(SL(n))
H *(B S 0)0 H *(B S 0)9 9 (H (S L (n)))

Id 1 ( f ) ® ( " )
1 0 (9  If V T )0 1

H*(BS0)®99 (H"*(c,)) 9'(Hod d (smn)))
(m(p)

H*(BS0)09' (H* SL(n))) .

Apply p 0 9 2 (71)) to the left-side line to obtain O. Clearly

Im c13c Im
H*(B S0)09 2 (H 0 dd(SL(n))->11*(BSO)09'(H 0 '(5L (n)) (I H' (SL(n)))
0 0 1

H*(B S0)0H*(B S0)09'(H°"(SL(n))n H'(SL(n)))
->H*(B S0)09(H*(C,) n IF(SL(n)))09(H°dd(SL(n)) n TF(SL(n)))

i [q i ]®Y (H'(SL(n)))

c Im
Z t lq i 10Y (H°"(SL(n))).-). Z p [q ]OY (H°dd(SL(n)) n H'(SL(n)))
-* • •• p [q i ]®92 (H'(SL(n)))

as H*(B S 0)-4(H*(C x ) n H'(SL(n))) factors through Z i [q i ]. Final-
0 (10 ‘If

ly ,  Z [q ] E ( g q  i ) H * (B S F)  -  - H  *(B S F) 9 9 (H *(B SF))
i* 9 9 (7r"h7t) H*(BS0)09)(H0dd(SL(n))) Z [ q ] (H°dd(SL (n)) n

H'(SL(n))) is an epimorphism so Im (13c Im (430)c Im (13 and part
a) is proved. Part b ) follows from the fact that the composition

0
Z p [q 1]0E(GV 1) H * (B S F) Z  p [q i ] 9 2 (11 ASL(n))) -> Z[q 1]

(H'd(SL(n)) n H'(SL(n))) is an isomorphism in dimensions 2n +
1. This finishes the proof o f theorem 1.

We remark that one can give a shorter proof of part a) of
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theorem 1  using lem m a 8. 2 o f  [1 4 ], a  generalization of the
argument used in  th e  proof o f theorem 4. 3 o f [5 ],  and some
Hopf algebra argum ents. These methods don't seem to give part
b) however.

We now turn to the proof of theorem 2. Theorem 2 follows
from part b) of theorem 1 using the mod p  analogue of the proof
of theorem 2. 5 o f [ 4 ] .  W e give here only an outline. Define
C= H*(BSF)1(Z i [q ,]® E ( 13q,))•H*(BSF). Since H*(BSF) is com-
mutative the id ea l is  a  two-sided ideal over d  and C is  a  Hopf
algebra over a. L et 7: H*(BSF) , C be the quotient map. By
theorem 4. 4. of [11], the isomorphism of theorem 2 is given by

'DOTthe composition H*(BSF) H*(BSF)0 H*(BSF) Z
E(8q 1)0 C , and all m aps a re  homomorphisms o f Hopf algebras
over d.

W e rem ark that the second part of theorem 2. 11 of [4 ] is
incerrect as th e  isomorphism is only as Hopf algebras over
the subalgebra of d  generated by

§ 3. Proof o f  Theorem 3.

The proof of theorem 3 will be analogous to that of corollary
2. 10 o f [ 4 ] .  It depends o n  a  determination of H*(M S F) as a
module over d.

PROPOSITION 3. 1. In  H *(M S F),Q ,(U )=X U •(eg i ,,,, +decom-
posable term s), w here XSO ( p ) ,  Q, i s  the Prim itiv e element in  a
dimension r•p(i)+1, and P (i)= k - i +p i - 2 + ••• +p+i.

P ro o f . By the Wu formulae (cf . M T ,
CPtqs = (-1 )t ( s ( P  t

l )  1 )q ,,,+  decomposable terms, an d  (PiRqs =

( -1 )t ( s ( Pt
 1 ) )13q,„+ decomposable terms. Recall that Q0 =13 and

Q,="- [CPP ' -1] (see [ 8 ] ) .  Hence
Q,(U)= U • (63  - 1  (13 Qi_i(qp,- 0+ decomposable terms), by

induction on i. Now (PP1 - 1 (8q p (1 _1 ) ) = 0 for dimensional reasons.
Q1_ 1(q - ')_ I )  has term s o f the form (PPÉ(Oqp ( i ) _p t) w ith  1 <t <i— 2
and a term 13(9'5) P.••113 ni - 2 (q p ‘ 1) plus decomposable terms. Since
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p :XP— 1)) ( (P -1 )P 1 - '+  +(Pp —, 1)Pt+ + (P -1 ) )

o (P ),

opPi(feqp „,_ p t) is decomposable. Finally, by downward induction on
k I- 1 0 ?  p i -2 ( q  p ,q p ,  i + p r  _2 +  + p hk ,  w e  p ro v e  th a t COPk a" + decom-

posable terms. Namely,
pk-ld) pk p i - 2 ( 7 p ,  i )  = pk-

(X q  p ' p k ) ±  decomposable terms
x ( ( p i - 1 + -•+ pk )(p— i)--1 )

• -1p k - i q p +...±pk 1-

+ decomposable terms

and the coefficient is  non-zero mod p .  Thus

8 cpw p... 1P
 pi - 2(q  p , _ ,‘) X j 3 q  p w +  decomposable terms, with X  0  (p )

and the proposition is proved.

PROPOSITION 3. 2. Let 0 :  (1 ->H *(M S F) be defined by 0(a)=
a ( U ) .  Then

K e r  =  d(f3).

P ro o f. O (U )=0 , hence CT(8)c Ker 0. 0  defines a  m ap of
coalgebras 0' : Q113(,(3)->H*(MSF). To show 0' is a monomorphism,
it is enough to show P(dI(f (8)) n Ker O'= O. An additive base for
P(Cild(8)) is  g iven  by Q,, i > 0, and where A i = (0, 1, • • •)
in  Milnor's notation. (P i  g o e s  to  a non-zero element under the
composition 131@([3)->H*(MSF)-.11*(MS0) [9] and 0'(Q1)=Q ,(U )* 0
for i > 0 b y  proposition 3. 1.

TH EO REM  3. 3. L et M  be a  connected coalgebra over Q . Let
: Cf->M  be defined by 0 (a)=a(1 ) . A ssume that Ker 0= Cf(f3). Then,

as  an  U-module,

m  E  a/a(8)e , E a .

P ro o f. The proof of this theorem is analogous to, and easier
than, the proof of theorem 8. 1 of [3 ] (see the rem arks after the
proof of theorem 8. 1 of [3]).

COROLLARY 3. 4. 11*(M SF), as an  U-m odule, is isomorphic
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to a direct sum o f copies o f QICT(13) and a.

P roo f. This follows immediately from proposition 3. 2 and
theorem 3. 3.

The mod p  version of lemma 4. 1 of [ 4 ]  and corollary 3. 4
imply that M S F is  of the same homotopy type mod p  as a wedge
of Eilenberg-MacLane spectra . Since this is true for all p  includ-
ing 2, theorem 3  follows.

Massachusetts Institute of Technology and Kyoto University
Kyoto University
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