Some remarks on boundary values of harmonic functions with finite Dirichlet integrals

By

Yukio Kusunoki and Shin-ichi Mori

(Received November 27, 1967)

Introduction. In this article we shall show some results concerning the boundary values of an *HD*-function (a single-valued harmonic function with finite Dirichlet integral) given as the limit of HD-functions.

Let R be an open Riemann surface of hyperbolic type or more generally a Green space. We consider a D-normal compactification R^* of R, a notion introduced by Maeda [6], and the ideal boundary $\Delta = R^* - R$. Several well-known compactifications, for instance, those of Wiener, Royden, Martin and Kuramochi are D-normal. Every HD-function u on R is, by definition, expressed as $u(a) = \int_{-1}^{\infty} f d\omega_a$ with a resolutive function f and the harmonic measure ω . The f is determined except a set of harmonic measure zero and is denoted by $H^{-1}u$. In some compactifications $H^{-1}u$ is given as the limit values of u. We extend the definition of the linear operator H^{-1} to define $H^{-1}u$ for HD-functions u given outside of compact sets on R and prove Theorem 2 which will play a fundamental role in the sequel. From Theorem 3 we shall derive Theorem 4 which is regarded as a generalization of the corresponding theorem in Kusunoki [5] obtained for Kuramochi boundary.

1. In the following we shall denote by R an open Riemann surface of hyperbolic type. First of all we state the following known

result (Constantinescu-Cornea [1], Doob [3], Maeda [6]) together with a new simple proof.

Lemma 1. Let R^* be any resolutive compactification of R and $\Delta = R^* - R$ the ideal boundary of R. If u is a harmonic function on R which is expressed as

$$u(a) = H_f(a) = \int_A f d\omega_a$$
, $a \in R$

with a resolutive function f and the harmonic measure ω_a with respect to a, then we have

$$(L.H.M.|u|)(a) = \int_{a} |f| d\omega_a$$

where L.H.M. v stands for the least harmonic majorant of v.

PROOF. Since the resolutive functions are ω -summable and |u| is dominated by harmonic function $\int_{a}^{b} |f| d\omega_{a}$, L.H.M.|u| exists and

$$L.H.M. |u| \leq \int_{A} |f| d\omega.$$

The opposite inequality is obtained as follows. Since $2 \max(u, 0) - u = |u|$, $2 \max(u, 0) \le u + L.H.M.|u|$ and therefore

$$2(u \setminus 0) \leq u + L.H.M.|u|$$

where $u \lor 0 = L.H.M. \max(u, 0)$. While $u = u \lor 0 - (-u) \lor 0$, so we have

$$u \lor 0 + (-u) \lor 0 \leq L.H.M. |u|$$

which is the required, because the left hand side is equal to

$$H_{\max(f,0)} + H_{\max(-f,0)} = \int_{a} |f| d\omega.$$

Coronally. $u=H_f$ is non-negative on R if and only if $f \ge 0$ on Δ ω -almost everywhere $(\omega$ -a.e.).

Indeed, if $u \ge 0$ on R, then L.H.M. |u| = u hence $\int_{A} (|f| - f) d\omega = 0$ by Lemma 1. The integrand is non-negative, so $f \ge 0$ on $\Delta \omega$ -a.e.

The converse is trivial.

From this corollary we know that $u = H_f$ vanishes identically if and only if f = 0 on $\Delta \omega - a.e.$ Identifying two functions which are mutually equal on $\Delta \omega - a.e.$, the mapping

$$u = H_f \rightarrow f$$

is then one-to-one and positive linear.

2. Suppose that $\{u_n\}$ is a sequence of harmonic functions on R which converges to zero on R. Then under what conditions can we conclude that $L.H.M.|u_n| \rightarrow 0$ on R? It is of course true if u_n are non-negative on R, but generally not true if each u_n does not have a definite sign on R. Example I (below) shows that it does not hold if u_n are uniformly bounded. Now we shall prove the following theorem which provides an answer for above question and is useful for our later purpose.

Theorem 1. Let $\{u_n\}$ be a sequence of harmonic functions on R which converges to 0 on R. If the Dirichlet integrals $||du_n||^2 = \int_{\mathbb{R}} du_n \wedge *du_n$ converge to 0 for $n \to \infty$, then we have

$$L.H.M.|u_n| \rightarrow 0$$
 on R .

Proof. By Royden decomposition one can write as

$$|u_n| = v_n + \varphi_n$$

where $v_n \in HD(R)$ and φ_n are Dirichlet potentials on R. Since $|u_n|$ are subharmonic, $v_n = L.H.M. |u_n| \ge 0$ and

$$||dv_n|| \le ||d|u_n|| = ||du_n||$$
 (Dirichlet principle).

While $||du_n|| \rightarrow 0$ and $||d\varphi_n|| \le ||du_n||$, hence

$$||dv_n|| \to 0, \quad ||d\varphi_n|| \to 0.$$

Now we show that the limit function of $\{v_n\}$ exists on R and is identically zero. Suppose the contrary, then there exists a point $c \in R$ and a subsequence $\{v_n^*\}$ of $\{v_n\}$ such that the limit of $\{v_n^*(c)\}$ exists (may be $+\infty$) and is different from zero. Let $\{\varphi_n^*\}$ be the

corresponding subsequence of $\{\varphi_n\}$. Take again a subsequence $\{\varphi_n^*\}$ of $\{\varphi_n^*\}$ such that

$$||d\varphi_n^{**}-d\varphi_{n+1}^{**}||<\frac{1}{2^n}, n=1, 2, \cdots,$$

then $\{\varphi_n^{**}\}$ converges quasieverywhere on R to a Dirichlet potential φ and $\|d\varphi_n^{**}-d\varphi\|\to 0$ (Hilfssatz 7.8 [2]). Therefore $\|d\varphi\|=\lim\|d\varphi_n^{**}\|=0$ and φ is zero quasieverywhere on R. Since $u_n\to 0$ on R, the corresponding subsequence $\{v_n^{**}\}$ of $\{v_n^*\}$ converges to 0 except a polar set e. While $\{dv_n\}$ is a Cauchy sequence in norm, hence $\{dv_n^{**}\}$ is so. Then for any fixed point $p_0\in R$ $v_n^{**}(p)-v_n^{**}(p_0)$ $(p\in R)$ converge to 0 uniformly on every compact set on R. Taking the point $p_0\notin e$, we know therefore that v_n^{**} converge to 0 everywhere on R, in particular $\lim v_n^{*}(c)=\lim v_n^{**}(c)=0$, which is a contradiction.

Example I. Let R be a unit disc and

$$u_n(z) = r^n \sin n\theta, \quad z = re^{i\theta}$$

then the harmonic functions u_n converge to 0 on R and $|u_n| \le 1$, but $L.H.M.|u_n|$ does not converge to zero.

Indeed,

$$(L.H.M.|u_{n}|)(re^{i\theta}) = \frac{1}{2\pi} \int_{0}^{2\pi} |\sin n\varphi| \frac{1-r^{2}}{1-2r\cos(\theta-\varphi)+r^{2}} d\varphi$$

so, in particular

$$(L.H.M.|u_n|)(0) = \frac{1}{2\pi} \int_0^{2\pi} |\sin n\varphi| d\varphi = \frac{2}{\pi}.$$

Note that $||du||^2 = n\pi \rightarrow \infty$, furthermore

$$\lim_{n\to\infty} (L.H.M.|u_n|)(e^{i\theta}) = \lim_{n\to\infty} |\sin n\theta| = 0 \text{ for any } \theta.$$

3. A resolutive compactification R^* of R is said to be D-normal (Maeda [6]) if every HD-function u on R can be written as

$$u(a) = H_f(a) = \int_{A} f d\omega_a, \quad a \in \mathbb{R}$$

with a resolutive function f on Δ . The f is determined except a set

Some remarks on boundary values of harmonic functions 319

of harmonic measure zero as we noted before. Hence we shall write

$$f = H^{-1}u$$
, $u \in HD(R)$.

Several known compactifications, for instance, those of Wiener, Royden, Martin and Kuramochi are all D-normal [6]. In case of Wiener and Royden, $H^{-1}u$ is the continuous extension of u onto Δ . In case of Martin, $H^{-1}u$ is given as the fine limit of u on Δ which exist ω -a.e. on Δ (Naim [7]). In case of Kuramochi, $H^{-1}u$ is given as the continuation of u onto Δ except a set of capacity zero, hence of harmonic measure zero (Constantinescu-Cornea [2]).

Next we shall slightly extend the definition of the operator H^{-1} , that is, we define $H^{-1}u$ for HD-functions u defined on the neighborhood of the ideal boundary. Let E be a compact set on R and $u\!\in\! HD(R\!-\!E)$, then one finds that for a normal exhaustion $\{R_n\}$ of R the limit function

$$U(a) = \lim_{n \to \infty} H_{u^n}^{R_n}(a)$$

exists on R, $U{\in}HD(R)$, moreover U is uniquely determined by u independently on the choice of exhaustions. To see this take a relatively compact subregion E' containing $\overline{E}(=E \cup \partial E)$ and a Dirichlet function \tilde{u} on R such that $\tilde{u}=u$ on R-E' (for instance, take E' with smooth boundary and set $\tilde{u}=H_u^{E'}$ on E' and $\tilde{u}=u$ on R-E'), then we know that U is nothing else but the harmonic part of Royden decomposition of \tilde{u} . Thus we define $H^{-1}u$ by

$$H^{-1}u = H^{-1}U, \quad u \in HD(R-E)$$

This definition clearly coincides with the original one if E is empty. Moreover $\tilde{u}-U$ is a Dirichlet potential and $\tilde{u}=u$ on R-E', hence in cases of the compactifications of Wiener, Royden, Martin and Kuramochi $H^{-1}u$ is given as the extention of u with exactly the same properties as stated before.

Now we shall prove the following fundamental

Theorem 2. Let R^* be a D-normal compactification of R and E be a compact set (may be empty) on R. Suppose $\{u_{\nu}\}$ is a

sequence of HD-functions on R-E such that $u_{\nu} \rightarrow u \in HD(R-E)$ and $||du_{\nu} - du||_{R-E} \rightarrow 0$ as $\nu \rightarrow \infty$, then we have

$$\lim_{\nu \to \infty} |H^{-1}u_{\nu}(b) - H^{-1}u(b)| = 0$$

for $b \in \Delta = R^* - R$ except a set of harmonic measure zero.

PROOF. Take two relatively compact subregions E_1 and E_2 of R so that $\overline{E} \subset E_1$, $\overline{E}_1 \subset E_2$ and each component of $E_2 - \overline{E}_1$ is conformally equivalent with a ring domain on the complex plane. And define

$$\tilde{u} = \begin{cases} u & \text{on } R - E_1 \\ H_{r_1} & \text{on } \overline{E}_1 \end{cases}$$

$$ilde{u}_{
u} = egin{cases} u_{
u} & ext{on } R\!-\!E_2 \ H_{f_{
u}}^{E_2-\overline{E}_1} & ext{on } E_2\!-\!E_1 ext{ with the function } f_{
u} ext{ such that } f_{
u}\!=\!u_{
u} \ & ext{on } \partial E_2 ext{ and } f_{
u}\!=\!u ext{ on } \partial E_1 \ H_{
u}^{E_1} & ext{on } \overline{E}_1 \end{cases}$$

Under our hypothesis $u_{\nu}-u$ (and their derivatives) converge to 0 uniformly on every compact set on R-E, hence $\tilde{u}_{\nu}-\tilde{u}$ converge to 0 on R. Moreover it is proved that

$$||d\tilde{u}_{n}-d\tilde{u}|| \rightarrow 0$$

Because, since $\|d\tilde{u}_{\nu}-d\tilde{u}\|^2=\|d\tilde{u}_{\nu}-d\tilde{u}\|^2_{E_2-\overline{E}_1}+\|du_{\nu}-du\|^2_{R-\overline{E}_2}$, it suffices to show $\|d\tilde{u}_{\nu}-d\tilde{u}\|_{E_2-\overline{E}_1}\to 0$, which is seen from Lemma 2 below. Now let $U_{\nu}=\lim_{n\to\infty}H^{R_n}_{u_{\nu}}$, $U=\lim_{n\to\infty}H^{R_n}_{u_{\nu}}$, then by Dirichlet principle

$$\|dU_{\nu}-dU\| \leq \|d\tilde{u}_{\nu}-d\tilde{u}\|$$

and further $U_{\nu} \rightarrow U$ on R, which is proved as in the proof of Theorem 1. Hence by means of Lemma 1 and Theorem 1 we know

$$\int_{A} |H^{-1}u_{\nu} - H^{-1}u| d\omega = \int_{A} |H^{-1}U_{\nu} - H^{-1}U| d\omega$$

$$= L.H.M. |U_{\nu} - U| \to 0.$$

It follows that by Fatou's theorem

$$0 \geq \int_{\frac{1}{\nu + \infty}} |H^{-1}u_{\nu} - H^{-1}u| d\omega \geq 0,$$

Some remarks on boundary values of harmonic functions

which implies our conclusion.

Lemma 2. Let $S = \{ \rho < |z| < 1, \rho > 0 \}$ and f_n be the functions on ∂S such that $f_n(re^{i\theta})$ and $\frac{\partial}{\partial \theta} f_n(re^{i\theta})$ $(r = \rho \text{ or } 1)$ are continuous with respect to θ and converge uniformly to 0 as $n \to \infty$, then

$$||dH_{f_n}^s||_{s} \to 0, \quad n \to \infty$$

Proof. It suffices to prove the case $f_n(\rho e^{i\theta}) \equiv 0$. Consider the functions

$$F_{n}(re^{i\theta}) = \frac{r-\rho}{1-\rho} f_{n}(e^{i\theta})$$

which belong to class $C^1(\overline{S})$ and possess the same boundary value with f_n , then by Dirchlet principle

$$\|dH_{f_n}^s\|_s^2 \leq \|dF_n\|_s^2$$

$$= c_1 \int_0^{2\pi} f_n^2(e^{i\theta}) d\theta + c_2 \int_0^{2\pi} \left(\frac{\partial}{\partial \theta} f_n(e^{i\theta})\right)^2 d\theta$$

with $c_1 = \frac{1+\rho}{2(1-\rho)}$, $c_2 = \frac{1}{1-\rho^2} \left[\frac{1}{2} (1-\rho)^2 - 2\rho(1-\rho) + \rho^2 \log \frac{1}{\rho} \right]$. Under our hypothesis $\|dF_s\|_s \to 0$ as $n \to \infty$, hence $\|dH_{I_n}^s\|_s \to 0$, q.e.d.

The following example shows that the conclusion of above theorem is false if u_n are uniformly bounded and converge to u on R.

Example II. Let $u_n(z)$ and $v_n(z)$ be the harmonic measure on $R = \{|z| < 1\}$ with respect to the sets

$$A_n = \bigcup_{m=0}^{n-1} \left\{ e^{i\theta}; \frac{2m}{n} \pi \leq \theta \leq \frac{2m+1}{n} \pi \right\}$$

and $B_n = \partial R - A_n$ respectively. Let $w_n(z) = u_n(z) - v_n(z)$, then $|w_n(z)| \le 1$ and

 $w_n(z) \rightarrow 0$ on R, but $\lim_{n \rightarrow \infty} |w_n(e^{i\theta})| = 1$ almost everywhere on ∂R .

In fact, since $v_n(z) = u_n(ze^{-i\pi/n})$ we have via Poisson's formula

$$|w_n(re^{i\theta})| \leq \frac{1-r^2}{2\pi} \int_{A_n} \frac{arepsilon_n}{|z-\zeta|^2 [|z-\zeta|^2 + arepsilon_n]} darphi$$

where $z = re^{i\theta}$, $\zeta = e^{i\varphi}$ and

$$\varepsilon_n = \varepsilon_n(z,\zeta) = 2r \left[\left(1 - \cos \frac{\pi}{n} \right) \cos(\theta - \varphi) - \sin \frac{\pi}{n} \sin(\theta - \varphi) \right]$$

For each z $\{\varepsilon_n\}$ converges to 0 uniformly with respect to ζ , consequently

$$w_n(z) \rightarrow 0, z \in R$$
.

While, $|w_n(e^{i\theta})| = 1$ except a finite number of points on ∂R , hence

$$\lim_{n\to\infty} |w_n(e^{i\theta})| = 1 \ a.e..$$

We note that on account of the identity $u_n + v_n = 1$

$$u_n = w_n \lor 0 \rightarrow \frac{1}{2}, \quad v_n = (-w_n) \lor 0 \rightarrow \frac{1}{2}.$$

Compare with Example I.

4. Theorem 2 gives us some informations for $H^{-1}u$ when $H^{-1}u_{\nu}$ possess the known behaviors. As an application of this sort we shall show the following

Theorem 3. Under the condition of Theorem 2, if every $H^{-1}u_{\nu}$ is constant α_{ν} ω -a.e. on a given subset $\gamma(\subset \Delta)$ with positive harmonic measure, then $H^{-1}u$ is constant ω -a.e. on γ .

Proof. Let $f_{\nu} = H^{-1}u_{\nu}$, $f = H^{-1}u$ and $f_{\nu} = \alpha_{\nu}$ (const.) on γ except a set γ_{ν} of harmonic measure zero. By Theorem 2 we have

$$\lim_{\stackrel{\longrightarrow}{\nu\to\infty}} |f_{\nu}(b)-f(b)|=0, \quad b\in \Delta-\delta,$$

 δ being a set of harmonic measure zero. Let $\gamma' = \gamma - (\bigcup_{\nu} \gamma_{\nu} \cup \delta)$ and b_0 be a point of γ' , then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that

$$f(b_0) = \lim_{k \to \infty} f_{n_k}(b_0) = \lim_{k \to \infty} \alpha_{n_k} \equiv A.$$

Clearly $u_{n_k} \rightarrow u$ on R-E and $||du_{n_k} - du||_{R-E} \rightarrow 0$, hence again by Theorem 2

$$\lim_{k\to\infty} |f_{n_k}(c)-f(c)|=0, \quad c\in \Delta-\delta',$$

 δ' being a set of harmonic measure zero. Let q be any point of

323

 $\gamma' - \delta' = \gamma - \delta''$, $\delta'' = \bigcup_{\nu} \gamma_{\nu} \cup \delta \cup \delta'$, then there exist a subsequence $\{f_{\nu_n}\}$ of $\{f_{n_n}\}$ such that

$$f(q) = \lim_{n \to \infty} f_{\nu_n}(q) = \lim_{n \to \infty} \alpha_{\nu_n}.$$

The $\{\alpha_{\nu_n}\}$ is a subsequence of $\{\alpha_{n_k}\}$, thus we know

$$f(q) = A$$
, $q \in \gamma - \delta''$, q.e.d.

To apply above theorem to more special but interesting case we consider the Kerékjartó-Stoilow compactification \widehat{R} of R and set for each point $e\!\in\!\widehat{R}\!-\!R$

$$\Delta_e = \bigcap_{U} \overline{U \cap R}$$

where U run over the neighborhoods of e in \widehat{R} and the closure is taken on a compactification R^* of R. Δ_e are connected, closed and $\Delta = R^* - R = \bigcup_e \Delta_e$. The compactification R^* is said to be of type S if Δ_e are mutually disjoint. The compactifications of Wiener, Royden, Martin and Kuramochi are all of type S.

Theorem 4. Let R^* be a D-normal compactification of R of type S and u be a canonical potential which is single-valued, regular outside of a compact set E on R, then $H^{-1}u$ is constant ω -a.e. on each connected component Δ_e of Δ .

Proof. By definition of canonical potentials and Theorem 3 it is enough to prove the following fact (cf. [4], [5]). Let γ be a Jordan closed curve which divides R into disjoint parts R' and R'', then for the generalized harmonic measure

$$\omega_{\gamma} = \lim_{n \to \infty} H_{f_n}^{R_n}, f_n = 1 \text{ on } \partial R_n \cap R', f_n = 0 \text{ on } \partial R_n \cap R''$$

we have ω -a.e.

$$H^{-1}\omega_{\gamma}\!=\!egin{cases} 1 & ext{on } \varDelta'\!=\!\varDelta\capar{R'}\ 0 & ext{on } \varDelta''\!=\!\varDelta\capar{R''} \end{cases}$$

where the closure is taken on R^* . To show this let φ be a continuous function on R^* such that φ is identically equal to 1 (resp. 0) in the neighborhood of Δ' (resp. Δ''). Such a function φ exists, for

 R^* is of type S and Δ' , Δ'' are disjoint. Now since $\omega_{a^*}^{R_*}$ converge vaguely to ω_a (cf. [2] p. 87), it follows

$$H_{f_n}^{R_n}(a) = \int_{\partial R_n} \varphi d\omega_a^{R_n} \longrightarrow \int_A \varphi d\omega_a = H_{\varphi}(a)$$

Therefore $H_{\varphi} = \omega_{\gamma}$. Since $\omega_n = H_{f_n}^{R_n}$ converge uniformly to ω_{γ} on every compact set on R, we have for m > n

$$\begin{split} \|d\omega_{n} - d\omega_{m}\|_{R_{n}}^{2} &\leq \|d\omega_{n}\|_{R_{n}}^{2} - 2\langle d\omega_{n}, d\omega_{m} \rangle_{R_{n}} + \|d\omega_{m}\|_{R_{m}}^{2} \\ &= \int_{\partial R_{n} \cap R'} d\omega_{n}^{*} - 2\int_{\partial R_{n} \cap R'} d\omega_{m}^{*} + \int_{\partial R_{m} \cap R'} d\omega_{m}^{*} \\ &= \int_{\Upsilon} d(\omega_{n} - \omega_{m})^{*} \rightarrow 0, \quad n \rightarrow \infty. \end{split}$$

Consequently $\omega_{\gamma} = H_{\varphi} \in HD(R)$ hence $H^{-1}\omega_{\gamma} = \varphi$ ω -a.e. on Δ , q.e.d.

Theorem 4 can also be proved in quite analogous way as [5] under the use of normal derivatives in Maeda's sense [6]. So far as the Kuramochi's compactification concerns above result is weaker than Theorem 2 of Kusunoki [5], where the exceptional set is of capacity zero.

REFERENCES

- [1] Constantinescu, C. and Cornea, A.: Über das Verhalten der analytischen Abbildungen Riemannscher Flächen auf dem idealen Rand von Martin. Nagoya Math. J. 17 (1960) 1-87.
- [2] ---: Ideale Ränder Riemannscher Flächen, Berlin (1963).
- [3] Doob, J. L.: Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier 12 (1962) 573-621.
- [4] Kusunoki, Y.: Theory of Abelian integrals and its applications to conformal mappings. Mem. Col. Sci. Univ. of Kyoto Ser. A. Math. 32 (1959) 235-258.
- [5] ————: Characterizations of canonical differentials. J. Math. Kyoto Univ. 5 (1966) 197-207.
- [6] Maeda, F-Y.: Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ. Ser. A-I 28 (1964) 113-131.
- [7] Naim, L.: Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier 7 (1957) 183-281.

Kyoto University and Kobe University