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InTrODUCTION. In this article we shall show some results concern-
ing the boundary values of an HD-function (a single-valued harmonic
function with finite Dirichlet integral) given as the limit of HD-
functions.

Let R be an open Riemann surface of hyperbolic type or more
generally a Green space. We consider a D-normal compactification
R* of R, a notion introduced by Maeda [6], and the ideal boundary
4d=R*—R. Several well-known compactifications, for instance, those
of Wiener, Royden, Martin and Kuramochi are D-normal. Every
HD-function # on R is, by definition, expressed as u(a)zglfdw,,
with a resolutive function f and the harmonic measure . The f is
determined except a set of harmonic measure zero and is denoted by
H™y. In some compactifications H % is given as the limit values of
u. We extend the definition of the linear operator H™* to define H*u
for HD-functions # given outside of compact sets on R and prove
Theorem 2 which will play a fundamental role in the sequel. From
Theorem 3 we shall derive Theorem 4 which is regarded as a gene-
ralization of the corresponding theorem in Kusunoki [5] obtained for
Kuramochi boundary.

1. In the following we shall denote by KR an open Riemann
surface of hyperbolic type. First of all we state the following known
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result (Constantinescu-Cornea [1], Docb [3], Maeda [6]) together
with a new simple proof.

Lemma 1. Let R* be any resolutive compactification of R and
4d=R*—R the ideal boundary of R. If u is a harmonic function
on R which is expressed as

w(a) = H,(a) =S‘fdw., . a=R

with a resolutive function f and the harmonic measure o, with
respect to a, then we have

(LHM.|u))(@)= | fldo

where L.HM. v stands for the least harmonic majorant of v.

Proor. Since the resolutive functions are w-summable and |#]

is dominated by harmonic function S | fldw,, L.H.M.|u| exists and
L.H.M.]ulgg‘] fldo.

The opposite inequality is obtained as follows. Since 2 max(#,0) —u
=|u|, 2max(u, 0)<u+L.HM.|u| and therefore
2(u\/0O)Zu+L.HM. |u|

where #\/0=L.H.M. max(u,0). While u=u\0—(—u)\V0, so we
have
u\VO0+(—u)VOZL.HM. |u|

which is the required, because the left hand side is equal to
Hmnx(f,0)+HmBX(—f,O):S‘]fIdw'

CororaLLY. u=H, is non-negative on R if and only if f=0
on 4 w-almost everywhere (w-a.e.).

Indeed, if #=0 on R, then L.H.M.|u| =u hence S‘( | fl —f)do=0

by Lemma 1. The integrand is non-negative, so f=0 on 4 w-a.e.
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The converse is trivial.

From this corollary we know that #= H, vanishes identically if
and only if f=0 on 4 w-a.e. Identifying two functions which are
mutually equal on 4 w-a.e., the mapping

u=H,—f
is then one-to-one and positive linear.

2. Suppose that {u,} is a sequence of harmonic functions on R
which converges to zero on K. T en under what conditions can we
conclude that L.HM.|u,|—0 on R? It is of course true if u, are
non-negative on R, but generally not true if each #, does not have
a definite sign on R. Example I (below) shows that it does not
hold if #, are uniformly bounded. Now we shall prove the following

theorem which provides an answer for above question and is useful
for our later purpose.

Treorem 1. Let {u,} be a sequence of harmonic functions on
R which converges to 0 on R. If the Dirichlet integrals |du,|*

=Skdu,,/\*du” converge to 0 for n—oo, then we have
LHM.|u,)]—0 on R.
Proor. By Royden decomposition one can write as
|, | =v.+¢,

where v, HD(R) and ¢, are Dirichlet potentials on R. Since |u,|
are subharmonic, v,=L.HM.|u,|=0 and

lldv,|<|ld]u,|||=|du.] (Dirichlet principle).
While [|du,[[—0 and [de.[|<[/du,|, hence
ldv.| =0, |lde.]| — 0.

Now we show that the limit function of {v,} exists on R and is
identically zero. Suppose the contrary, then there exists a point
cER and a subsequence {v}} of {v,} such that the limit of {v}(¢)}
exists (may be +oo) and is different from zero. Let {p.} be the
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corresponding subsequence of {p,}. Take again a subsequence {p}*}
of {p¥} such that

1

lde¥* —dekX|<< o

n=1,2, -,

then {p}*} converges quasieverywhere on R to a Dirichlet potential
¢ and || dpF* —de||—0 (Hilfssatz 7.8 [2]). Therefore ||do|| =lim|/dp**||
=0 and ¢ is zero quasieverywhere on K. Since #,—~0 on R, the cor-
responding subsequence {v}*} of {v}} converges to 0 except a polar
set e. While {dv,} is a Cauchy sequence in norm, hence {dv}*} is
so. Then for any fixed point p,ER v}*(p) — v *(p,) (pER) con-
verge to 0 uniformly on every compact set on R. Taking the point
DoEe, we know therefore that v¥* converge to 0 everywhere on R, in
particular limo} (¢) =limv}**(c) =0, which is a contradiction.

ExampeLe I. Let R be a unit disc and
u,(2)=r"sinnd, z=re"

then the harmonic functions #, converge to 0 on R and |u,|<1, but
L.HM.|u,| does not converge to zero.
Indeed,

(L.HM.|u 1)(rew>:i82"|sinn¢| 1-7° do
e 27 Jo 1—27 cos(6—¢) +7*

so, in particular

B 1 (2™ . . 2
(L.H.M.lunl)(O)——z— |sinng|de=-=-.
T JO T

Note that ||du||*=#nn— oo, furthermore

lim (L.HM.|u,|) () =lim |sinnf| =0 for any 6.

Hn->co n—»co

3. A resolutive compactification R* of R is said to be D-normal
(Maeda [6]) if every HD-function # on R can be written as

w(a) =H,(a>=§‘fdw,, . a€R

with a resolutive function f on 4. The f is determined except a set
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of harmonic measure zero as we noted before. Hence we shall write
f=H"u, usHD(R).

Several known compactifications, for instance, tiacse of Wiener, Royden,
Martin and Kuramochi are all D-normal [6]. In case of Wizner and
Royden, H'u is the continuous extension of # onto 4. In case of
Martin, H'u is given as the fine limit of # on 4 which exist w-a.e.
on 4 (Naim [7]). In case of Kuramochi, H'u is given as the
continuation of # onto 4 except a set of capacity zero, hence of
harmonic measure zero (Constantinescu-Cornea [2]).

Next we shall slightly extend the definition of the operator H 7,
that is, we define H'u for HD-functions # defined on the neighbor-
hood of the ideal boundary. Let E be a compact set on R and
ue HD(R—E), then one finds that for a normal exhaustion {R,} of
R the limit function

UCa)=lim H(a)

exists on R, U= HD(R), moreover U is uniquely determined by u
independently on the choice of exhaustions. To see this take a
relatively comrpact subregion E’ containing E(=EUSE) and a
Dirichlet function # on R such that #=u# on R—E’ (for instance,
take E’ with smooth boundary and set #=H} on E’ and #=u on
R—E’), then we know that U is nothing else but the harmonic part
of Royden decomposition of #. Thus we define H'u by

Huw=H"'U usHD(R—E)

This definition clearly coincides with the original one if E is empty.

Moreover #— U is a Dirichlet potential and s#i=# on R—E’, hence
in cases of the compactifications of Wiener, Royden, Martin and
Kuramochi H™'u is given as the extention of # with exactly the
same properties as stated before.

Now we shall prove the following fundamental

TueoreM 2. Let R* be a D-normal compactification of R and
E be a compact set (may be empty) on R. Suppose {u} is a
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sequence of HD-functions on R—E such that u,—~ucHD(R—E)
and ||du,—du|lz_s—0 as v—oo, then we have

lim | Hu,(b) — H'u(b)| =0

y—>ce

for bed=R*—R except a set of harmonic measure zero.

Proor. Take two relatively compact subregions E; and E, of R
so that ECE,, E,CE, and each component of E,—E,; is conformally
equivalent with a ring domain on the complex plane. And define

. {u on R—E,
H} on E;
U, on R—E,
Hf+% on E,—E, with the function f, such that f,=u,
- on 0F, and f,=u on 9E,
HAH on E,

v

Under our hypothesis #,—# (and their derivatives) converge to 0
uniformly on every compact set on R—E, hence #,—# converge to

0 on R. Moreover it is proved that

Because, since |[d@, —da|*=|/da,—da|*, z + ||du,—du||*_s,, it suffices
to show | d@,—di|r,.z,—0, which is seen from Lemma 2 below. Now
let U,=lim H?», U=lim H."», then by Dirichlet principle

H->ec0 n->o0

and further U,—~U on R, which is proved as in the proof of Theorem
1. Hence by means of Lemma 1 and Theorem 1 we know

SAIH“uu—H"uldwzgdlH‘IU,—H'IUldw
—~L.HM.|U,—U|—0.

It follows that by Fatou’s theorem

0= lim| H-u,~ Huldoz0,

y—>00
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which implies our conclusion.

Lemma 2. Let S={p<|z2|<<1,p>0} and f, be the functions
on 8S such that f,(re®) and %—f,,(re“’) (r=p or 1) are continuous
with respect to 0 and converge uniformly to 0 as n—oo, then

ldH}||s—0, n—>oo

Proor. It suffices to prove the case f,(pe’?)=0. Consider the

functions

F,(re®) = ;:z £.(e®)

which belong to class C'(S) and possess the same boundary value
with f,, then by Dirchlet principle

ldH7 i< dF. |

— c,S:’}z(ew)dchS (aia fn(e"e))zda

i S ot 2 =_1_[L ) —2p(1— : L]
with ¢ 21—p)" C: =g 2(1 0):—20(1—p)+p logp .

‘Under our hypothesis |dF,|s—0 as n—oo, hence |dH}|s—0, q.e.d.

The following example shows that the conclusion of above
theorem is false if #, are uniformly bounded and converge to # on R.

ExameLe II. Let #,(2) and v,(z) be the harmonic measure on
R={]z|<<1} with respect to the sets

n—1

An:U {eio; 2—mng0$ 2m+1 77.'}
m=0 n n

and B,=0R— A, respectively. Let w,(z)=u,(2) —v,(2), then |w,(2)|
<1 and

w,(2)—0 on R, but lim|w,(e”®)| =1 almost everywhere on oK.

n—>co

In fact, since v,(z)=u,(ze”""'") we have via Poisson’s formula

if 1—7* €n
e 1S, T e %
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where z=vre?, £=¢'* and
en=6,(2,0) =21’[<1 —cos~Z—> cos(0—¢) —sin% Sin(ﬁ—(o):|

For each z {e,} converges to O uniformly with respect to ¢, consequ-
ently
w,(2)—0, zER.

While, |w,(e’?)| =1 except a finite number of points on 8K, hence

lim|w,(e®)| =1 a.e..

n->o0

We note that on account of the identity #,+v,=1

1

u,=w,\/0— 5

—_ 1
y = w)V0—>—-.
Compare with Example L

4. Theorem 2 gives us some informations for H 'u# when H'u,
possess the known behaviors. As an application of this sort we
shall show the following

TueoreM 3. Under the condition of Theorem 2, if every H 'u,
is constant a, w-a.e. on a given subset y(Cd) with positive har-
monic measurve, thenw H 'u is constant w-a.e. on 7.

Proor. Let f,=H 'u,, f=H 'u and f,=a, (const.) on y except
a set y, of harmonic measure zero. By Theorem 2 we have

lim| f,(6) —f(b)| =0, bed—a,

6 being a set of harmonic measure zero. Let ' =y— (U7,Ud) and b,

be a point of 7/, then there is a subsequence {f,,} of {f.} such that
f(by) =limf,,(b) =lima,,=A.

Clearly #,,—~# on R—F and |du, —dulzz—0, hence again by

"y

Theorem 2
lim|f,,(c) —f(c)| =0, c€4-7,
k—>oc0

0’ being a set of harmonic measure zero. Let ¢ be any point of
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r'—=8'=r—48", 8" =Ur,UsUd, then there exist a subsequence {f,}
of {f,,} such that

f@=limf, (¢)= lima,.
The {a.,} is a subsequence of {a,,}, thus we know

f@=A, qer—38", qed
To apply above theorem to more special but interesting case
ay
we consider the Kerékjarto-Stoilow comgactification R of R and set
for each point ecR—R
4.=NUNR
U

where U run over the neighborhoods of ¢ in R and the clesure is
taken on a compactification R* of K. 4, are connected, closed and
A=R*—R=\J4d,. The compactification R* is said to be of type S if
4, are mutually disjoint. The compactifications of Wiener, Royden,

Martin and Kuramochi are all of type S.

TueoreM 4. Let R* be a D-normal compactification of R of
type S and u be a canonical potential which is single-valued,
regular outside of a compact set E on R, then H'u is constant
w-a.e. on each connected component 4, of A.

Proor. By definition of canonical potentials and Theorem 3 it is
enough to prove the following fact (cf. [4], [5]). Let y be a Jordan
closed curve which divides R into disjoint parts R’ and R”, then

for the generalized harmonic measure

wy=lim Hf* f,=1 on 8R,NR', f,.=0 on 0R,NR"

we have w-a.e.
1 on 4=4NF

H—l 7:{ —
@ 0 on 4"=4NR"

where the closure is taken on R*. To show this let ¢ be a conti-
nuous function on R* such that ¢ is identically equal to 1 (resp. 0)
in the neighborhood of 4" (resp. 4”). Such a function ¢ exists, for
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R* is of type S and 4, 4" are disjoint. Now since w?s converge
vaguely to o, (cf. [2] p. 87), it follows

H(@) = pdote— pdo.= Hy (@)

Therefore Hy=wy. Since w,=HJ" converge uniformly to wy on every
compact set on R, we have for m>n

ldo,—doalz,Z|do.;,—2{dw,, onyr,+ |dwnll,
- S dof —2 X dok + S do*
3R, NR! aR,NR’ 3R, N R

= gyd(w,, —on)*—0, n—soco,

Consequently oy=H,= HD(R) hence H 'wy=¢ w-a.e. on 4, g.e.d.
Theorem 4 can also be proved in quite analogous way as [5]
under the use of normal derivatives in Maeda's sense [6]. So far
as the Kuramochi’s compactification concerns above result is weaker
than Theorem 2 of Kusunoki [5], where the exceptional set is of

capacity zero.
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