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IN T R O D U C T IO N . In th is article w e shall show some results concern-
ing the boundary values of an HD-function (a single-valued harmonic
function w ith  fin ite  Dirichlet in tegra l) g iven  as  th e  lim it  of H D
functions.

Let R  be  an open Riemann surface of hyperbolic type or more
generally a Green space . W e consider a D-normal compactification

R * of R , a notion introduced by Maeda [6] , and the ideal boundary
A = R" — R .  Several well-known compact  ifications, for instance, those
of W iener, Royden, M artin  and Kuramochi a re  D-normal. Every

HD-function u  o n  R  i s ,  by definition, expressed a s  u(a) fcico

w ith a resolutive function f  and the harmonic measure 0). The f  is
determined except a set of harmonic measure zero and is denoted by
H - l u .  In some compactifications H - lu is given as the lim it values of
u .  We extend the definition of the linear operator H - 1 to define 11- 1t1
for HD-functions u  given outside of compact sets on R  and prove
Theorem 2 which will p lay a  fundamental role in  the sequel. From
Theorem 3 we shall derive Theorem 4 which is regarded as  a  gene-
ralization of the corresponding theorem in  Kusunoki [5] obtained for
Kuramochi boundary.

1. In  the follow ing w e shall denote by R  an open Riemann
surface of hyperbolic typ e . First of all we state the following known
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resu lt (Constantinescu-Cornea [1] , Doob [3] , M aeda [6 ] ) together
with a  new simple proof.

LEMMA 1. Let R* be any resolutive compactification of R and
J=R*— R the ideal boundary o f R .  I f  u  is a harmonic function
on R which is expressed as

u (a )= H f (a) A f c i c o ,  a R

with a resolutive function f and the harmonic measure (.0,, with
respect to a, then we have

(L.H.M.1u1)(a) 4 1  f  Ida).

where L.H.M. v stands for the least harmonic majorant of v.

P R O O F . Since the resolutive functions a re  w-summable and I  u
is dominated by harmonic function I f I d c o , ,  L .H .M .lu l exists and

ficho.

The opposite inequality is obtained as  follows. Since 2 max (u, 0) — u
=  l ui , 2 max (u, 0) u +L.H.M. u l  and therefore

2(u\/ L.H.M. I u i

where u V 0 = L.H.M. max (u, 0 ) .  W hile u = u V 0 — ( — u) V 0, so we
have

uv o+ (— u)  V a<L.H.M. I u I
which is the required, because the left hand side is equal to

H r n a x ( f  ,  0 )  ±  H im ax(- if,0) f d0).

CORORALLY. u= H1 is non-negative on  R  if and  only i f  f 0
on J (0-almost everywhere (w-a.e.).

Indeed, if u 0 on R, then L.H.M. I u  = u  h e n c e  (  f  I —f)dw = 0

by Lemma 1. T he integrand is non-negative, so f O  o n  J w-a.e.
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The converse is  trivial.
From this corollary we know that u =  H f  vanishes identically if

and only i f  f = 0  on J  w-a.e. Identifying two functions which are
mutually equal on d  60-a.e., the mapping

u= Hf  f

is then one-to-one and positive linear.

2. Suppose that { u„} is  a sequence of harmonic functions on R
which converges to zero on R . T  en under what conditions can we
conclude that L.H.M.ju„ 1 —.0 on R ?  I t is  of course true i f  u„ are
non-negative on R, but generally not true i f  each u„ does not have
a definite sign on R .  Example I (below) shows that it does not
hold i f  u„ are uniformly bounded. Now we shall prove the following
theorem which provides an answer for above question and is useful
for our later purpose.

THEOREM 1. L e t fu j be a sequence o f  harmonic functions on
R which converges to 0 on R .  If  the  D irich le t integrals lidu,P

I du, A*du, converge to 0  f o r n--.00, then we have

0  on R.

P R O O F .  By Royden decomposition one can write as

I =  + ç 9 „

where v”EHD(R) and ç9,, are Dirichlet potentials on R .  Since I u”
are subharmonic, y„ =L .H.M . I u, 1 and

l!dv,II<IldI u„lIf=Ifdu,11 (Dirichlet principle).

While II du„I1—.0 and 114.1i<Ildu„ II, hence

If dv„ 0, I14„11 -. O.

Now we show th a t the lim it function o f {y„}  ex ists  on R  and is
identically zero. Suppose the contrary, then there exists a point
c E R  and a subsequence {e} of {v„} such that the lim it o f  {v:(c)}
exists (m ay be +  o o ) and is different from zero. Let { 4 }  be the
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corresponding subsequence of { 9 „ } .  T ake  aga in  a subsequence {4 * }
o f  {4} such that

11(14 *  —.44:i ll<  2
1  ,  n = 1 ,  2, •••,

then {4 ' }  converges quasieverywhere on R  to a Dirichlet potential
ço and j f d * (Hilfssatz 7.8 [2] ). Therefore I141!
= 0  and („9 is  zero quasieverywhere on R . Since u„--->0 on R , the cor-
responding subsequence {v,?*} o f  {v,*, } converges to 0 except a polar
set e. W hile {dv„} is  a Cauchy sequence in norm, hence { dv r}  is
so. Then for any fixed point p o R  v „**(p) — vo** ( po) ( p E  R )  con-
verge to 0 uniformly on every compact set on R . Taking the point
PoEre, we know therefore that e *  converge to 0 everywhere on R, in
particular lim v,*, (c) =lim v:*(c)= 0, which is a contradiction.

EXAMPLE I. Let R  be a un it disc and

u„(z)=r" sin n , z  =

then the harmonic functions u„ converge to 0 on R  and I u„ I L51, but
L.H.M.Iu„1 does not converge to zero.

Indeed,

1—r2 (L.H.M. I u. I ) (r e )-   2
1 V : I sin nça 1-2r c ciço

o s (0 -0 + r 2

so, in particular

i(L.H.M.Iu„I)(0) —
2 n  Voi r l sin nço14—

Note that IIdu 112 = n7t 0 0 ,  furthermore

lim (L .H.M .Iu,1)(e)=1im  I sin n e 1 =0  for any O.

3. A resolutive compactification R* of R  is said to be D-normal
(Maeda [6] ) if  every HD-function u on R  can be written as

2

u (a)=H f (a)=Ic Ito , , a R

with a resolutive function f  on 4 .  The f  is determined except a set
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of harmonic measure zero as we noted before. Hence we shall write

f =1 1 - 1 u, u E H D ( R ) .

Several known compactifications, for instance, those of Wiener, Royden,
Martin and Kuramochi are a ll D-normal [6] . In case of W iner and
Royden, H - lu  i s  the continuous extension of u  o n to  J . In case of
Martin, H - lu  is g iven as the fine lim it of u on J which exist w-a.e.
o n  J  (N a im  [7]). In  case  o f Kuramochi, H - lu  is  g iv en  as the
continuation of u  onto zl except a  s e t  of capacity zero, hence of
harmonic measure zero (Constantinescu-Cornea [2] ).

Next we shall slightly extend the definition of the operator H ",
that is , we define H - lu  for HD-functions u  defined on the neighbor-
hood o f th e  ideal boundary. L e t E  b e  a compact set on R  and
uEH D (R — E), then one finds that for a normal exhaustion {R,,} of
R  the limit function

U(a) =lim H „R.(a)

exists on R , U E H D (R ), moreover U  is uniquely determined by u
independently o n  th e  choice o f  exhaustions. T o  see  th is  tak e  a
relatively compact subregion E '  containing E (=E L JaE )  and  a
Dirichlet function a  on  R  such  that ft= u on R — E ' (for instance,
take E ' with smooth boundary and set a= H r  on E ' and u on
R — E'), then we know that U is nothing else but the harmonic part
of Royden decomposition of a. Thus we define H - lu  by

H "u = H "U  , u E  H D (R -

This definition clearly coincides with the original one if E  is empty.
M oreover —11 i s  a Dirichlet potential and fti= u on R — E', hence
in  ca se s  o f th e  compactifications of W iener, Royden, Martin and
Kuramochi H u  i s  g iv e n  as the extention o f  u with exactly the
same properties a s  stated before.

Now we shall prove the following fundamental

THEOREM 2. L et R * be a D-norm al com pactif ication of  R  and
E  be a com pact se t (may be empty) on R .  S uppose { u„}  is a
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sequence o f HD-functions on R—E such that u,—)-uEHD(R—E )
and as then we have

lim1H - lu,(b)—H - lu(b)I= 0

fo r  bEJ=R*—R except a set of harmonic measure zero.

P R O O F .  Take two relatively compact subregions E, and E, of R
SO that E cE ,, E icE , and each component of E2—E, is conformally
equivalent with a  ring  domain on the complex p lane. A nd define

ru on R—E,
11 = i

H., »  o n  E ,

u, on R—E,
H f E,2 - E  o n  E,—E, with the function f ,  such that f,=u,

on 6E2 and f„—u on 6E,
H„E,o n  E,

Under our hypothesis u,—u (and their derivatives) converge to  0
uniformly on every compact set on R—E, hence fiv —ei converge to
0 on R .  Moreover it is proved that

Because, since lid =11d22,— dall 2E,_T,+1!du,—dull 2R_T2 , it suffices
to show which is seen from Lemma 2 below. Now
le t  U„=lim H4^, U—lim IC., then by Dirichlet principle

and further U,--->U on R, which is proved as in the proof of Theorem
1. Hence by means of Lemma 1 and Theorem 1 we know

, 111- 1 u,—H'uId(D A IH 'U ,— H - 1 171e10)

= L.H.M.1U,—

It follows that by Fatou's theorem
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which implies our conclusion.

LEMMA 2. L e t S= {p<jzi<1, p>0} and f „  be the functions

on as such that f„ (re '° ) and ;   f„ (re '') (r = p  or 1) are continuous

with respect to 0 and converge uniformly to 0  as n - - . 0 0 ,  then

n--> 0 0

PROOF. It suffices to prove the case f„(pe° 9 )==- 0. Consider the
functions

F„(re )—   r  f  „ ( e )1—p

which belong to class C 1(S-' )  and possess the same boundary value
with f„ , then by Dirchlet principle

27r 2

=c, f7,(ew)d0H-c,V 7r ( af „(e19 ) )  de0 - 0 ao
1+ p 1 1with c1= 2(1—p) c,— 

 1 - 2  
[  ( 1  — p)°— 2p (1 — p) + p2 log 1 1 .

' p 2 P

, Under our hypothesis if dF„h—.0 as n--->00, hence ildH;j10--->0, q.e.d.

T h e  following example shows that the conclusion of above
theorem is false i f  u„ are uniformly bounded and converge to u on R.

E X A M P L E  II. L e t  u„(z) and v„(z) be the harmonic measure on
R= {izi < 1} with respect to the sets

m --12 m 2m +1 I .A„-=-U le ;  21. 8 ‹
m=o n

and B ,— R —A. respectively. Let w,,(z) = u„(z) — v„(z), then jw„(z)1
and

on R, but lim I w„(eie) I = 1 almost everywhere on R .

In fact, since v„(z) =u„(ze -  In ) we have via Poisson's formula

4lw„(re19) 1 - r2 
27r 3A,, 1Z —C12[1z—C12+e„1
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where z = re°, C=e 1 9'  and

„ = e„(z , = 2 r [ (1 — c o s  cos(0 — ço) —  sin7r 7r

For each z  fe„} converges to 0  uniformly with respect to C, consequ-

ently
w „(z)— .0, zE R .

While, I w „ (e )1 =  1  except a  finite number of points on aR , hence

sin (0 — ço)1

lirn lw „(e )
n—>co

W e note that on account of the identity u ,+ v l

u„=w„VO—. 1v = ( — w)VO2

Compare with Example I.

=1 a.e..

1
2

4 .  Theorem 2  gives us some informations for II - 1 u when II - 1 u,
possess the known behaviors. As an application of this sort we

shall show the following

THEOREM 3. Under the condition of Theorem 2 , if every 11- 1 u,
is  constant a„ (o-a.e. on a given subset r(c.61) w ith positive har-
monic measure, then f l 'u  is  constant w-a.e. on r.

P R O O F .  Let f ,= H 'u „, f =1 -1 - 1 u  and f,=er„ (const.)  on 7  except

a set 2-„ o f harmonic measure zero . By Theorem 2  we have

f ,(b) —  f  (b) =0, bEJ—  ,

8 being a set of harmonic measure zero. Let rr =r —  (UrU8) and bo

be a point of y ', then there is a subsequence { f„ }  o f {f„} such that

f  (b0)=1im fb0)— lim a„ =A .

Clearly tt„,-->u o n  R —  E and !I du„ k —  dulf,,-->0, hence again by

Theorem 2

lim l f  „,(c)—  f (c)I =0, c E J -8 ',

a' being a  se t o f harmonic measure zero . Let q  be any point of
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r' r —a", 6" = U r ,U a u  ,  then there exist a subsequence { f ,e }

o f { f „ }  such that

f (q) =lim f „(q) =lim a, ,,.

The {a , „ }  is  a subsequence of { a , } ,  thus we know

f(q )—  A , qE r q . e . d .

To apply above theorem to more special but interesting case

we consider the Kerékjart6-Stoilow compactification k of R  and set

for each point e ER— R

rul Ur- 1R

where U run over the neighborhoods of e  in k and the cicsure is
taken on a compactification R* of R .  4, are connected, closed and
J=R* —R= UJe. The compactification R* is said to be of type S if
4, are mutually disjoint. The compactifications of Wiener, Royden,

Martin and Kuramochi are a ll of type S.

THEOREM 4. Let R* be a D-normal compactification of R of
type S and u be a  canonical potential which is single-valued,
regular outside of a compact set E on R, then II - 1 u is constant
w-a.e. on each connected component J e o f  J.

P R O O F . By definition of canonical potentials and Theorem 3 it is
enough to prove the following fact (cf. [4 ] , [5 ] ). Let r  be a Jordan
closed curve which divides R  into disjoint parts R ' and R ", then
for the generalized harmonic measure

f „ -1  on aR,, R ', f,= 0 on 8R„nR"

we have w-a.e.
1  on 2 =  nk

H - 1 0),=
{ 0  on A " 4 n R "

where the closure is taken on R * .  To show th is  let b e  a conti-
nuous function on R * such that yo is identically equal to 1 (resp. 0)
in the neighborhood of 4 ' (resp . 4 "). Such a function 4, exists, for
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R* i s  of type S  and A', J "  are disjoint. Now since co l: .  converge
vaguely to w , (cf. [2] p. 87), it follows

Hf,;(a)= I-4(a)
aR„ 4

Therefore H 9.= w .  Since w„-- H9: converge uniformly to w y  on every
compact set on R, we have for ni>n

lid „— d com ill.S11 d w„9.— 2<d a)” cicom >,„+ fdûimfJ,,

= cho,*, — 2 cico*+ dw,*„
aR„nR, 8R . n 81?„, n

d(co„— w,,,)* ,

Consequently 0)7 = E H D (R) hence 11- 1 (07 =  w-a.e. on J, q.e.d.
Theorem 4  can also be proved in  quite analogous way as [5]

under the use of normal derivatives in  Maeda's sense [6] . So far
as the Kuramochi's compactification concerns above result is weaker
than Theorem 2  of Kusunoki [5] , where the exceptional set i s  of
capacity zero.
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