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Introduction

L e t W  be a Riemann surface of infinite genus. A  connected

subregion S1 o f  W  will be called normal i f  it has positive finite
genus and its relative boundary consists of a finite number of mutual-

ly disjoint dividing analytic Jordan curves. We stress that a normal
subregion is not necessarily a  relatively compact region. I t  m a y
have, besides the relative boundary, the ideal boundary.

In §§2, 3, we introduce two intrinsic conformal invariants ,u(ii)
and M(11) for a normal subregion a

Suppose that W  is decomposed into a  sequence 42,17=, o f nor-
mal subregions. Consider a canonical homology basis {A., B k

.i}f±, of
f / ,  modulo dividing cycles. Set D.= U;:=1S21. The main purpose of
this paper is to establish the following evaluations which lead to a
generalized bilinear relation:

Suppose ,u(S- 2,) /2 (resP. M(1-2 0 5 M ), k=1, 2, ••-. Then, we
have

g ,

1(6, 0)*)—E E 6 CD)!
k = i A Y, BYW BY Ay

p)Ildilw-D.110)11w-D„ (resP.

fo r a ll a , co * l'h o (W )n r:( Iv)»
1) This is a revised version of the contents of the talk given at a seminar held

at Kyoto University on March 14, 1966.
2) In  this paper, differentials are complex in general.
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Most of the ideas in  this work have their origins in  R . Accola
[1], [3] , M . M ori [7] and K. M atsui [6] . In th is note, as for the
notation and terminology, we follow L. Ahlfors and L . Sario [4] .

§1 . Preliminaries

Periods reproducing dif f erentials. W e shall recall som e of
the basic properties o f period reproducing differentials. A  detailed
explanation is found in  M . Yoshida [13] .

L e t  W  b e  a n  arbitrary Riemann surface, and c  be a  finite 1-

cycle o n  W . Then w w  E  rh„ ( w)) is  a  continuous linear func-

tional on W ) .  B y  a n  elementary theorem in  H ilbert space
theory, there exists a unique a-  (c)* e F, .  ( W ) such that

w= ( w ,  (c)*) for a ll wEr h s ,( W).

When it is needed to indicate the basic surface W , (c )  is written
as Tiw ( c ) .  It is called the r b s ,-period reproducing dif ferential fo r
c. It follows immediately from the definition that

"d(c )*  j !  (c) V.

The following properties o f  (c) are well-known :

(ii) ii(c) is  a  real distinguished differential in  Ahlfors' sense.

(iii) (a (c) , ii(d )* )— cx d , e., (c )=c x d  for any cycle d.

(iv) I f  c  runs through all non-dividing cycles, t h e n  ( c )  span
r, 0 ( W ) nrtc(W )-
The following interesting fact was found by B. Rodin [6] 3 )

( y ) I l a ( C ) 1 ! 2 =  2(6

where e  denotes th e  fam ily of cycles which a re  homologous to o
modulo dividing cycles, and 2(e) denotes the extremal length o f e.

3 )  It is  R . Accola  [2 ] who first gave an extremal length interpretation to the
norm of a rh-period reproducing differential.
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Approximation theorem s. W e shall state two 'lemmas which
will be needed later.

Lemma 1. Let n  denote any  regularly  im bedded relativ ely
com pact subregion o f  W  w hich contains c  and each  of whose
contours is  a div iding cycle  of W . Then

(c) — aw(c) as n t W.

P ro o f .  Let n '  be another such region containing Then, the
restriction of & , ( c ) *  to  f2 is semi-exact. Hence, by making use of
( i ) ,  we have

Giv(c)*, iia(c)*)D 4 a , (c)* = iia„,(c) tv .
Hence

— aQ, (c)112. Ilan(c) II — (c) II + (c)
Ii (c) —  Ilaw(c) II v.

Therefore 11 ihz (c) J d ecreases as f2 W . Hence, the above inequality
implies

l (c)-6"-E2,(c)lju—“) as ( 2 t  W.

We conclude that cliz ( c )  tends to a differential of rt,(W ) which we
denote, temporarily, by a. Then it follows that

jl iiQ(c) —(4—.0 as f2 Is W.

For any w E r,„ (W ) we have

(co, a*) (co, a*)gz=lim (co, a-Q(c)*) =
O fW Q1,11,

This shows that 6 =

Consider the exterior V  of a regularly imbedded relatively com-
pact subregion o f W . L e t  C ( V )  be the space of real analytic
functions on a V, and H D (V ) the space of Dirichlet finite real har-
monic functions on V.

Sario's principal operator 1,1,, is  a linear mapping o f Cw (0 V)
into H D (V ), which is characterized by the following properties (cf.

[13 ] )
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1) L i ,v f =  f  on 3 V for all f E C '( V ) ,

2) (dL i,v f , 0)
* )v = Av f for any

3) (dL i ,v f ) *  = 0  for any dividing cycle r o f  W contained in

V.
I f  we adopt this characterization a s  th e  definition of L , as in

[13], we need to give a  proof of the following face )

Lemma 2 .  L et n be a regularly  imbedded relatively  compact
subregion o f  W  such  that SID W— V, and let f C ( a V ) .  Then

— L ,,vrm f)Ilm o-10  as  SIT W.

P ro o f .  For the brevity o f notation, put L i,vn u f = U Q . Let SI'
be another regularly imbedded relatively compact subregion contain-
ing SI. Then we have

(du o , duo ,)yn.Q-= Ç U S 2  (diSQ0 *  =  II chtudi 2vnar
ay

and

ild (M2 — u0')II■7no= II dth2IIT, no —  2 II duo,  , r1S2' ! !  d U 0 ' II I nS2

II .

W e can  infer, b y  a  customary reasoning, that tha converges to  a
harmonic function locally uniformly and in norm o n  V . It is evident
that this limit function satisfies the above conditions 1) —3) which
characterize L i , v f .  We thus conclude that L 1 , v 0 E 2 f  converges to Li,vf
in  norm.

G eneralized bilinear re la tio n . Now suppose W  has infinite
genus and  let {A } , B,} 7, be a canonical homology basis of W modulo
dividing cycles. { A „ B ,}  has the following intersection property:

A i x A k — B ,x B k = 0  a n d  A f x B k = 8 , ,  for a ll .1, k.

L et { p(n)} 7=1 be a  strictly increasing sequence of natural numbers.

4 )  Both in  L . Ahlfors and L. Sario [4] and B . Rodin  and L .  Sario [9] , th e
convergence of Li,ynof is first proved and then L i , v  f  is defined as the lim it of
LI,vnu f .
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We will say that the generalized bilinear relation holds with respect
to  {A ,, B ,} an d  {p (n )} i f  we have

(1) (a, w * ) = 1 i m 2 6 a (i))
i=i A; B i

for all aE r, o ( W )  and (0E rhs( W)•

Theorem o f R . Accola and M. Mori. In the rest of this sec-

tion we shall write F ,  rh„„ etc. for r ho ( W), r„„, ( W), etc. W e  use
the orthogonal decompositions

rho= rh. + (rho n rt.),

Ph,. = rh ,+ (r7,0 n ri ,„)
to obtain

0 = 6 1 + 6 2 , where a, G  r h „, and a, G  rho F1 ,
= ,01 +  ,  where w i e r h,  and w2 I' flP, .

Then, (d, o f ')  = ( 62, t o : )  because of the orthogonalities: r h „, "F t ,  and

"'ha r t  . O n the other hand, since a l  a n d  (0, are exact, a, and (02
have the same periods a s  a and (0 respectively. We have thus shown

that (1) holds for all dE r ho an d  coEr h,  if and  only i f  it holds for
all a, co* e r ho n .  The idea of this reduction process is due to M.
Mori [7], p. 93 .

Now, after K . Virtanen [12], R. A ccola [1 ] an d  M. Mori [7] ,

we introduce linear operators 7„ on rh O  fl Ph, a s  follows:

T,,a = P { — a)a- (115) + a)a(A 5 )} for 0-E r ho n r:„ .
A i B i

T h is is  th e  distinguished differential characterized by th e  property

that it has the same periods a s  a along A 5 , B 5 , 1 < j P ( n ) ,  and has

vanishing periods along A,, B 5 , j >p (n ) .  Since

PC, , )

( T o  ,  w * ) = E 6 co a cb) for a ll (0* M)È F  nr,t,
j= 1 A i .6 , B., A i

th e  generalized bilinear relation (1 ) holds for all a, (0*E rho n rit, if
and only i f  T „a converges to a  weakly for all dErhenrrs,..



220 Michio Y oshida

I f  T 6  converges weakly fo r a  fixed a, j! Tell is bounded in  vir-

tue of the principle of uniform boundedness; see, for example, [10],
p. 174, Problems 25. a. I I I !  T„a11 is bounded for every 6 E  nm  (the
bound may depend on a) ,  the same principle implies the boundedness
o f 11T„11; see [ 1 0 1 ,  p .  171, Proposition. The validity o f  (1 ) thus

implies the boundedness o f 11Z11.

Conversely suppose 11T„11.< M . A s stated i n  ( i v ) ,  { j ( c ) }  span

r ho (- W t. H en ce  g iv en  dE r ho a n d  e> 0 , there exists a  finite

linear combination, say ai, of a(A.,) and d (B )  such that 116— iiili<e.
For a sufficiently large n, we have a n d  hence

T „ajl —a-4+ T„(a — i)11<(1 + M

Therefore, T e  co n v e rg e s  to  6  strongly. Consequently, th e  bound-

edness o f 11T„11 implies the validity o f (1 ) .  This completes a  proof

of the following theorem.

Theorem 1. (R . A ccola [1 ], M . M ori [7] ) If Te converges
to  a  weakly f o r  all  6Erhonr, J T„Il is bounded. Conv ersely  i f
IIT„11 is bounded, T e  converges to  6  strongly  fo r  all  aer ho n r t .
T hus the generaliz ed bilinear relaiton (1 )  holds w ith respect to
{A„ B ,} and {p(n)} if and only  if the  norm s IIT„il of the linear
operators T . associated w ith { A , B }  a n d  {P(n)} are bounded.

If the generalized bilinear relation (1) holds, we have (r.nrh,)
irz , and hence rhonr,,,cr,.. On the other hand, it holds always

that P ho n r  h , D r  „ m  . Thus the validity o f (1 ) implies r r- h0 -  he - hm •

However, R. A ccola [1 ] showed that the relation  rho n r„,=rh.
is not always t r u e .  Therefore there exists a surface on which the
generalized bilinear relation does not hold with respect to any { A , B,}
an d  {P(n)} . In the following sections we shall introduce two con-

formal invariants of a normal subregion 11 of W in order to establish

criteria which ensure the validity o f (1).
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§ 2 .  Conformal invariant p(s-2)

Let SI be a normal subregion o f W . Let {A „ B X = i  be a canon-
ical homology basis of s-2 modulo dividing cycles. We define a  con-
tinuous linear operator TQ,147 on r h o (  w) w )  by setting

T . , ,  =  { — a)aw(-13;) 6 w (A )
j -1 A i

for 6E r h o (  w) n w ). W e shall use a shorter notation To  for
T 0 , w  in case this abbreviation causes no ambiguity.

Observe that 712 6. is  the regular distinguished differential which
is characterized by the property that 0.— T . a is exact in SI and T0

is  exact in W — SI. Hence, T Q  is  defined independently of the choice
of { A , B .} .  F u rth erm o re  T0= T . ,  i f  S/ and SY share the same
canonical homology basis. In particular, if 11/ C12 and if SY has the
same genus as SI, then T o = T 0 '. W e  note

(T . 6 , W *)W ( d  S (7)
( 7 ) )B i A i

We shall prove

for a ll  w E r k „

Lemma 3. Let dErh o ( W )  and (Dc  ( W ) •  L e t V  be a reg-
ularly  im bedded planar subregion o f  W  such  that 8V is compact.
Let u  be a harm onic function in a neighborhood o f  V  such that
du— a." T hen

(a, w ) , =  u c e .
av

P ro o f .  Let D  be a regularly imbedded relatively compact sub-
region o f  W  such that D V. D enote by o'D the projection of the
restriction a DE r, (D )  on the subspace r , o ( D ) .  Then it is w ell-
known (see pp. 292-293 o f [4] ) that

iid- 64D - - . 0  as D  W.

Let u p  be the harmonic function on Vf- - ] D such that d u p = o -p  and

5 )  Th is is possible because rho(W)crnse(W)-
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up= u  a t a fixed point of V .  It follows that up converges to u uni-
formly o n  V .  Since 6Derho(D), up is  constant on each contour of

D  contained in  V . Hence,

( aD , (0)  y n o  = Uati.5*  •
J ay

By letting D t  W, we obtain the desired equality.

Lemma 4 .  Let SI be a normal subregion of W. Suppose that
(0

* Er h p ( w )  n r (W ) .  Then,

(a, (.0*
)  Q =  ( T Q  6, (0)

a 5-2  
U(b

where the integration is taken in the Positive sense along an
and u  is  a harmonic function defined separately on each contour
of an such that du= c.

P r o o f .  Let D  be a relatively compact region o f  W  such that
ancp and S2—D consists of a  finite number o f regions of the char-
acter described in  Lemma 3. Denote by u a harmonic function on
s-1,—D such that du=o. B y G reen 's formula we have

(a, ca* ) K 2n0= ( T o  a  W
*

) w
— I U D

a u a Dr) Q

Lemma 3 yields

(a, a)* ) Q - D = I  
Q

U0-5
8 D O  

and our lemma is proved.
N ext, after R . Accola [1 ] and [3 ], we introduce a  conformal

invariant for a family of subregions. Let R„ be regularly
imbedded subregions o f  finite genus o f  W  w ith  compact relative

boundaries aR, such that the number o f th e components of aR, is
greater than one for each i. Suppose R , are mutually disjoint. Let

0R1=a1UQ1 be a partition of aR, into two disjoint non-empty cosets
of contours. Let u , be the harmonic function on R, such that u,= 0
on a„ u 1= 1  on a n d  u, has L 1-behavior along the ideal boundary
of R , .  Denote the union of R, by R .  Setting ex— Ua„ — UIS'„ define

UC0
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pR(a, max II du,q 2 .

We define a harmonic function u on R  by u =u ; on R . and state

Lemma 5. Suppose that the number of the components of
the ideal boundary o f R  is finite. Let y and w  be square integra-
ble harmonic functions on k .  Then

u = t 
vdwI PR(a, (3)11d0RildiOR

fo r some tE [0 ,1 ] .

P ro o f. Regard each R , as the interior of a compact bordered
surface. In other words, we may suppose that each component of

the ideal boundary o f R , is realized as an analytic Jordan curve or

as a  po in t. Consequently we may assume th at u .  constant and

has zero flux along each ideal contour of R ,  and that u , is harmonic
at each point-like component. The rest o f th e proof is similar to
that of the lemma o f R . Accola [3].

W e now return to a normal subregion SI o f  W and define an

intrinsic conformal invariant p ( i )  o f  S i  in  th e  following manner.
Consider a normal subregion n o o f  W such that S20 c SI, that SI, has
the same genus as SI, and that the relative boundary o f each com-
ponent of û —  contains points of both 611 and 8SIo . Such a  sub-
region will be called admissible. We define

(h) =inf m_ 0 ( 1l,, an)

where SI° runs through admissible normal subregions of W .

With these definition and notation, we state

Theorem 2 .  Let 6 , CO
*
 E  r h o (  W) nnt,( w ).  Then

(2) I ( T .6 , CO
*

) w + p(m)
and

(3) 1 + p(f2).

P ro o f .  W e first treat the case where the number of the com-
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ponents of the ideal boundary o f  n  is  f in ite . For any e > 0  there
ex ists a normal subregion SIE c,f2 such that n ,  has the same genus
as SZ and that ,u (aSZE , an)</i(S-2,) + E . In  S2—SIE ,  a  and co are

exact, and hence can be expressed as a= dv  and co= dw  respectively
in SI—S1E . Taking 11—  SZE as  R  in  Lemma 5, we find that there
exists tE [0, 1] such that the level curve u = t   is composed of a finite
number o f mutually disjoint analytic dividing Jordan curves and that

v dw I<{ p(n )+ el
t

B y  ,f1' we denote the normal subregion o f  W bounded by the level
curve u = t .  Then SZE c SZ'c ,f2 and T , .  It follows from Lem-
ma 4 that

co*), = (0*), ,v d C v

Hence

I (712 a, (.0*)w of') + {p(n)±e}
{1 + p(S I) +} IIIIQIlWII.

N ex t w e  trea t the general case. R eca ll th a t { ( c ) }  span
r ho ( W ) n r (  W )  as stated in  ( i v ) .  Therefore, in  proving (2 ) we
m ay assume that both 0- and co are expressed as finite linear com-
binations:

6 = Eg  a„,aw ( c )  and  co*— E
tn =1 n=1

Let D  be a relatively compact normal subregion o f  W such that D
contains a i l ,  a ll c„, and c„'  and such that E2nD is connected. Set

o- D =t“ a„, 0 (c,,,) a n d  co'DK = b„ dp(c).

Then by Lemma 1

i!o'D — and !I»D )IID 0 a s  D  W.

As we have already proved,

(4) ( Tono,Dao, O f t)  D I {1 ± k t(s D)} 10- DiionDlio),9142nD •

To complete the proof, observe first that
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ll TK2nD,D6D —  T , all D

=  ll E  {— ( D, a 0(A. ; )*)aD(B ;) + if- D(/3,)*)ap(A,)}
j=1

— (a, a ,(2 61; )* )aw (B  ;) (a, a w(B ,)*)a,(24 .01110—o
J - 1

as D t  W .

W e shall next show that ,u (n n D ) , a ( i )  a s  D t  W . It is eas-
ily seen that p a i r lD ) ,u (n )  an d  ,u (n riD ) decreases a s  D t  W.
Consequently lim p ( ?  f l  D )>  p (n ) .  To establish the opposite ine-

DfiN
quality take an  Do w h ich  is  ad m iss ib le  in  th e  sense described in
the definition of p(1- 1). We may assume 8110 c D .  L e t  {R ,}  be the
components o f f2—,1-10 . L et u  be the harmonic function in
which is equal to 0 on afl o  an d  1 on OE/ and which has L 1 -behavior
along th e  ideal boundary o f n — a ) . Define t t ,  i n  (SI—S20 )FID
sim ilarly so that u p =0  on 8f20 , u 0 =1 o n  8,(2 an d  up has L 1 -behavior
along apn(E1—F20). By Lemma 2 Ild(up—u)if ( K2-Q0onD- - -).0 a s  D t TY »
Hence

t/o-uo (MG , 8E1) max II lim maxIldtiDli 2RinD
1,1W 1.5iV

=lim pai-DonD(ano, p (r in D ).W D,r4V

O n  account o f  t h e  arbitrariness o f  n o , i t  f o l lo w s  t h a t  p(n )

lim p( n D ) .  Letting D t  W in  (4 ), we obtain (2).
/7-rw

By setting w* = T 0 6, we derive (3 ) from (2).

Corollary 1. Let {nk} 7=, be a d ecom position  of W in to norm al
s u b r e g io n s .  Set D ,,= U=1 f2,, a n d  T  = i 1  TS2„ • S uppose m(E2k)
S te , k= 1, 2, •••. Then

IIT„11. 1+
and

0)*)w — ( T o-, (-0*) w w

fo r  a n y  6, to* E r ho( W )n r L (W ) .

6 )  I f  W-n is not compact, we imbed n in another Riemann surface W ' so that
'-n  is compact and apply Lemma 2.
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P ro o f .  For d, co* e r h o (  W) n rt,( w),

I ( (0* )wl (Tokd, 0)*),,I (l+p) E 110. 11,2k11(0*110,
k-1 k-1

<(1+At)IlailD„1100 * iiDn< ( 1 +P)ilollivfiw* liw.

Substituting T„a fo r  co* in  this inequality, we obtain II T„ag,<(1

P )  ail w Zallw. Hence, 11 Z6iliv (1+ P)iicrilw for any 6 E r ho n Ft, , i.e.,

IlT„il< l± p .

Therefore, by Theorem 1, T,,6 converges to 6  strongly. W e have

1(6, (0*)w—(T„a>to*)wl_ E  I (Tu,d, (.0*)w I
k=n+1

+ II II II w II +11) I! j! 
k=n+1

This corollary, together with the reduction process given in ,§1,
implies

Corollary 2. Under the sam e condition as in the above coro-
llary,

g k

( 6 , ) w =  E A,6 li„
k=1 j=1 —;

f o r any  aErh o ( W )  and  wErh,( W).

§ 3 .  Conformal invariant M(11)

Let SI be an arbitrary Riemann surface of positive finite genus
g , and {Ai , B1} .1, be a canonical homology basis of f2 modulo divid-
in g  cycles. T h e  well-known relation: (a(14,), il(B „)*) —  A i x B k

together with Rodin's result mentioned in  -§1, implies

2 ( 2-4 2 (k ) 1 .
Set

M (S1) =inf V2(71,),1(k) ,

where {A i , ranges over all canonical homology bases. Note that

M (S -1) .  g .  T h e  sum 1/2(;47i )2( 3) w as first in tro d uced  b y

A )
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Y. K usunoki [5], and then utilized by K. M atsui [6 ] although they
did not consider its infimum.

For m r  (n )  we set_ 1, 2 —  h se .,

R ( 0)1 , (0 2 )  = 0)1 032— 0)1 (32) •1=1 A i Bi Bi A i

It should be remarked that this quantity does not depend on the
particular choice o f  a  homology basis {A , B .} . T h i s  is seen from
Green's form ula as fo llow s: T ake a  canonical subregion n o which
contains all A „  B , .  Then

(Oh , Co.):  ) (0 1 632 = W1 0)2)— V10)- 2,1=1 A i Bi Bi A i 8520

where u  i s  a  harmonic function defined separately on each contour
of 6E20 such  that du—w 1 .

We shall now give the key lemma.

Lemma 6. Suppose (01 , (02 r,,„(12). Then

R(0) 1 , (02)1 2M(12)1k0,11 0 11(02 11,-,

P ro o f .  It holds that (0i = (co l ,  d(A ; ) * ), cii2 =  ( d h ,  ô-(B; )* ),
A,

ild (A ;)11=  2( 71J )  and iia(Bi)11— 2 (k ) . H ence, by the Schwarz
inequality we have

   

( 1 ) 1
11

21  °111 011(0211 1/A(A ) A ( B ) .

Thus

I R C(0, , (02) 1 211(0111.11(0211. .*1 1/2(ii)2( -1-3;) •
L et W  be a Riemann surface of infinite genus, and S/ be a nor-

mal subregion o f  W . W ith the same notation as in §2, the above
lemma implies

IC(0* , T 2 0.)Tv _- .2M(12) iia62i!0h2

for any 0-, w* E rho ( w) n rt( W ) .  From this follows

Theorem 3 .  L e t {S-20}7=i be a decom position of  W into normal
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(a, 0)* )w — E  E (  3  „  ak-i kcï")! .2 M11 , 111,,,„11°-)11,D„
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subregions, and {A", .B;} i ! ,  be a canonical hom ology  basis of
modulo div iding cycles (k = 1, 2, •••). suppose mmosm. Then

fo r  any  6 , (0
*
 G rho( W ) n W ), and

gk
(a, w*),,,-= E E a

k=1 j=1 Ai;

fo r  any  a E r „ ( W )  and  w E r,„(W ) .

§ 4 .  Conformal invariant /.1(8,Q)

L e t n  b e  a  no rm al subregion o f  W , and consider two normal
subregions El i  an d  n, o f  W such that c,0„ 1- 2E  and that these
three regions have the sam e genus. W e shall ca ll such  a  p a ir (11„
SID adm issib le . W ith the notation in § 2 , we define

,u inf ths2 _cs1 (ani , ans),

w here {fl, n 2 }  ranges over all admissible pairs of normal subregions.
B y the same reasoning a s  in  §2 , we obtain

Theorem 4. T.11 1+ tt (a(1) .

Corollary. L e t  { W ,}  be an increasing sequence of normal
subregions o f  W  such  that the genus of W . is  s tric tly  sm alle r
than  the genus o f  W 1  and W = U W „.  L e t { A „ B }7=1 be a  ca-
nonical hom ology  basis o f  W  modulo div iding cycles such that
{A,, B } ? f orm s a basis of W .  I f  ,u(aW „) is bounded, then it
holds that

p(n)

(0*) w = lim  E a a
, - 1  J A  J B J B

fo r  any  d E  rho (  w) and w  r,„ ( w).
W e h av e  ,u ( a n K  p ( r i ) .  However, ,c2 (0 (1 )  is  n o t  a n  intrinsic

invariant of SI. It m ay be p roperly  ca lled  a relative invariant. This
corollary is a  generalization of Theorem 2  of R . A ccola [11, p. 155;
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see also Remarks in R. Accola [3], p. 610, 5.
It is  easy  to  fin d  a Riemann surface and a decomposition into

normal subregions { 2 k }  such that the genus g, o f S2,, is not bound-
ed while p(1- 1,) is bounded. Since m(s-lk) gk, 111(12k) is not bound-
ed in this case. However, it is an open question whether there exists
an example in which M (S),,.) is bounded while ,u(1- 2,,) is not bounded.

§ 5 .  Special case where M (14) is bounded

Let {f2k } 7=1 be a  decomposition o f  W  in to  normal subregions.
In th is section, we fix a canonical homology basis { i r i , ./3 } ,!41 o f  n,
once for all. The notation (71) Q ,((247), resp.) will be used to in-
dicate that the curves are in û , .  ( W  resp.). The same remark ap-
plies to ( -/ -3 ,) 0 , ,  and ( i jb w .  W ith  K . M atsui [6 ] we consider the

special case that g ,S g< 0 0 , A ((2 21-ki )Q „)S20<00 and 2((g)g2,,) 20

Theorem 5. F or any w E r,„ (W ),
g.

ZE(lak,./1 2 + lb,,;19.S2g 2 0 lf0V <00,
k 5=1

where a, ,(0 and b,,A
Conversely, fo r  any system o f  complex numbers {a,., 5 , b,,,} satis-

f y i n g  E E ( I a k .3 1 +  I b k ,5 1 ) < C X ) ,  there exists a unique differential
k j=1

in  rho( Tv) r ir t (  Tv), which has (k J and b,, 5 as At-and B I,Lperiods
respectively.

Proof. Since a,. 1 = (w, ei.k(Aki ) * ) . „  and bk ,)= (w, a.k(BD*).,„

g (lak,;1 2 H-lbk.,1 2 ) 5 {2( ( -24b. -,) A(CF31).k)}11 , 01%,5=1 5=1

2,g2011°, 1126„ •
Hence

(I akj1 2 +1b,,51 2) <2g20Eliwiroh=2,g201k011 2-k 5=1

In order to prove the converse, we note 2((g7I)w )SA ((71 )Q k )  and
2((.141;)w ) 2 ( (b k,)0k) and have
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g i
aw(B ) +bc; aw(A ) }IISÂt (lak .il+Ibk .;1).;=1 i=1

gk
Therefore, E E { — ak , a-w(B) + bk.; dw(A k;) }  converges. It is easy to

k  j=1
check that this differential has the required properties.

§ 6 .  Covering surfaces of Schottky type

In  th is  la st section, we shall give some examples of Riemann

surfaces which admit such decompositions as described in §§3, 4.
Let R  be a Riemann surface with finite genus g 2 .  We draw

mutually disjoint non-dividing loops c1 ,••-,c 1 on  R , and cut R  along
c„•••, c 1 . We denote by SI the resulting surface, which we assume

to be connected. Consequently  l g  and the genus o f n is g — l.
W e take an infinite number o f  replicas o f  n, and glue them

along opposite shores of c , ( 1 S j < / )  so that w e obtain a regular
covering surface W  o f R , on which all the inverse images of c, are

dividing curves. It is konw n th at WEE O H D  i f  / > 2 ;  see  [11].
Next we construct a little more general surfaces in the following

manner. We consider a  finite number o f  not necessarily compact

bordered Riemann surfaces S ( 1 ) , •••, 1-2,( - )  of positive finite genus with
compact borders and we prepare an infinite number o f replicas of

each o f th em . Glue them along contours so that on the surface W
thus constructed  all the jo in ts are dividing curves. W r i t e  W

U Elk, where n- - „ is  one of the replicas of —1-2( 1 ) , ••-, —DP") . E vidently
k=1

both g(S2k) and M ( ( 25 )  are bounded, and hence the generalized bi-
linear relation of the type described in the introduction holds for W.

Finally we remark the fo llow ing fact: Suppose that no) are all
compact and that in  W =  U 5  n o  contour of S 2 5  i s  left unglued.
Then W O K , 7 ) . (  W E  O K D  means r„(w)nrt,(147)--- {o}, or equiv
alently r5 , ( W ) = 17 1 2 „( W ) . )  To prove th is, take any d v E rh ,( w )
nrt,(W). W e shall define { W„} by induction. Set W1 =r2 1 ,  and

denote by W „,, the surface obtained by gluing all the adjacent ,0,'s

7 )  Th is class O K !) is denoted by O f f i i ,  in  [4].
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to  W „. By Lemma 5

u = t  „

where u is  the harmonic measure o f OW„.,, w ith  respect t o  W„,,—
W„, t„ is some va lu e  o f [0, 1] and W ( ")  i s  th e part o f W„,, whose
boundary is th e  level curve u = t , .  A s  n--.00, iidvac.) tends to
IidvII a n d  l!dvgy„„-Tr„ tends to  0  w h ile  daw _w„caTivu, awu,i) is
bounded. This shows that Ildva=0.
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