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The branching property of semi-groups and branching Markov
processes were treated in Part I but the problem of construction
was not discussed. We shall construct (X° =)-branching Markov
processes in a probabilistic way. We shall first give a theorem on
constructing a strong Markov process from a given Markov process
by a piecing out procedure generalizing a method of Volkonsky [44],
where a lemma on Markov time due to Courrége and Priouret [4]
plays an important role. In chapter III, we shall apply the theorem
to obtain (X°, x)-branching Markov processes and give several ex-
amples.

The numbering continues that of the first part, pp. 237-278 of
this journal. References such as [1] are to the list at the end of
the first part.

II. Construction of a Markov process by piecing out

§2.1. Construction

Let E be a locally compact Hausdorff space with a countable open
base, (W, ) be a measurable space on which a system {P,, x=E}
of {probability measures is given, and u(w, dy) be a stochastic
kernal on (W, B) X (E, B(E)).” Let =WXE, F=BRB(E) and

1) We assume that. for every BE®, Pz[B] is B(E)-measurable in x. A stochas-
tic kernel p(w, dy) is a kernel such that for each w it is a probabillity in dy.
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o= ﬁl.Qj (2;,=9, j=1, 2, ---) with the product Borel field ég,-,

j= i=1
(F;=9, j=1, 2, ---). Further we define a stochastic kernel @(x, dw)
on (E, B(E))xX (2, &) by

2.1  Qx A) =SSAP, [dw] x(w, dy), AEe4,

where we denote w= (w. ). The following theorem is a direct con-
sequence of Ionescu-Tulcea’s theorem (cf. [29] p. 137).

Theorem 2.1. There exists a unique system {ﬁ,, xcE} of

probability measures on (:5, é)ff ;) such that, for every measurable
i=1

funCtion F(wb W2,y °°°, wn) on (-ﬁig;‘) égj) (n:]_’ 2) ”')y
=1 A

@22)  E[Fo, 0, - 0] ={ (@0 don@es, don--

QX xQ

XQ(xn—l) da),,)F(ah, W2, **° wn),
where w;=(w,, x;).

In the following we shall assume that we are given a right
continuous strong Markov process X°=(W, B,, P,, x€E, x,(w), 6,)
on E such that B,=B,,,. We assume also that X° has the terminal
point 4 E; the life time ¢(w) is defined by (0. 7).

Definition 2.1. A stochastic kernel u(w, dy) on (W, J1.) X
(E, B(E)) is called an instantaneous distribution if it satisfies

(2.3) P.[n(w, dy) =p(b:w, dy), T<{]=P.[T<(]
for every B,-Markov time T.

An instantaneous distribution gives a law which tells us how to
piece out paths of the given Markov process x,. We shall define
a new process X.(@), @@ as follows. First of all we put for
o=, y)e2=WXxE,

2. 4) .(0) = {x,(w), t<¢(w),

Y, t=>C(w).
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For a=(w;, w:, -~-)e§, where w;=(w;, ¥;), putting

inf{s; ¢(w;) =0},
oo, if {}=9¢

we define X,(@) on (&, @gj) by

2.5  N@)= {

xt(‘”l)) if Ogth(wl),
Fiwn(@2), if  C(w)<<t<E(w,)+C(ws),

...........................

xt—({(w1)+§(wz)+~~~+§(w,.))(wn+l) ’

(2.6) X.(@)= id n+l

...........................
...........................

N@)

4, if t=3 ¢w,).

The life time ¢ (@) of X,(®) is therefore defined by
~ N(@)
2.7 ¢(@) =J_Z=llf(wj)-

Further we shall introduce a sequence {r,(&), »=0, 1, 2, ---} of
random times by

2.8 70 (@) =0, (@) =r.(@) =C(w), -

nAN@)

(@)= g‘; ¢(w;).

Remark 2.1. If x(w, E— {4})=1, then clearly f’:[r,,<5 for all
n=1,2, ---1=1, x€ E— {4}, where ﬁ is the probability measure
constructed in Theorem 2. 1.

Lemma 2.1. Let P, be defined by Theorem 2.1. If we set

2,= {@; X, (®) is right continuous in t< [0, o)},
then

1'5,[50] =1 for every xE.
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Proof. If we put
51= {@; X,(®) is right continuous in (z,, t.), #=1, 2, ---},
52: {[6; xnzlifgxxt(w’wl), n:l, 21 "'})
t
where &= (wy, 0, +-+) and o,=(w;, x;), then PN,[E] =1 since x,(w)

is right continuous. On the other hand, we have by the definition

of the measure f’, that

Pz —tim |\ Q(x, do)Q(x., don)QCx., o) =1.

n—>oo
on+l

Hence we have P,[2,] =P.[2.N %] =1.
By this lemma we can restrict every quantity defined on 2 to
~ ~ k
£2,. Let ¢, be the projection of 2 to I12; (£,=2) and define
j=1

~ k ~

2.9 B=0i' (RF")/2,,> where F'=T9.QB(E),
i=1
@zv.@kzég’/@, and
k=1 i=1
Tli=5{20, B(E); X.(@), s<t}.

In order to introduce new Borel fields we need

Definition 2.2. Let 7(&) be a random time defined on 2
taking values in [0, o]. @&, @’650 are said to be Rrequivalent,
and denoted as

o~ (Ry),
if
(a) T(@)=T@",
(b) X.(@)=X,(&) for all s<T(®) ,
and

(@ if w(@=<T(@)<w.(@<L@), then w(@)=<T(@)<ru(@)
<E(@) and (&) =,(@) for every j<k; while if T(#)=¢(a),
then T(&)>¢(&) and t;(@)=r,(&) for every j=>0.

2) B/8={ENDs; EEB).
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Definition 2.3. We shall set

(2.10)  B,={A; i) A=D and ii) if 9= A4 and o~& (R.),
then &' A4}.

It is clear that @T is a Borel field on ?50. Several properties of
@T are given in the following lemma.

Lemma 2.2. (i) {3, >0} is an increasing family of
Borel fields on 2,; B.CB, if s<t. Also 3, B,
(ii) .@,,, defined by (2.10) for . (defined by (2.8)) coincides
with B., defined by (2.9).9
(Gii) =, is a B,-Markov time for each n.
Gv) T(&) is a B,(B,o)-Markov time if and only if
a) T(@) is B-measurable and
b) if T(@)<t (resp. T(®)<<t) and o~&' (R,), then T(®)=
T(@).
(v) If T is B-Markov time, then

B,={B; BED such that BN{T<t} B, for all t>0}.

Proof. (i) is clear. As for (ii), take Aew%éfﬁ')/!}; and
assume that @A and @~a&  (R,). Then it is clia_alr from the
Definition 2.2 that @’=A. This proves Ae_@”. Conversely take
AE@T,. If €A and ¢,@=¢@’, then clearly @~a&  (R.,) and hence
€A, Therefore ¢;1(¢k(A))mEO:Aego;l(_(kgig')/!zI:.@'ih.

Since (iii) follows from (iv), we shali_ prove (iv). Let T(®)
be a B,-Markov time and assume that @& {T<t} B, If &'~a
(R,) then by the definition of B, we have @' {T<#,ie., T(@)<t,
and if we had T(&)<s<<T(@')<t then this would imply g {T<s}
and @~a&" (R,).®» Hence @' {T<s}, ie., T(@)<s which is im-
possible. Therefore we have T(&)=T(&"). Conversely if T(&)

3) B, is defined by taking T (@)=t. ‘

4) Therefore “’” will be omitted in the sequel.

5) It is clear that o~o’ (R;) implies o~o’ (Rs) for all s<¢t. (iv) is true for
any system of equivalence relations (R:) having this property.
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satisfies a) and b), then clearly {T<#} e@; and for g {T<¢},
@~a& (R, implies @' {T<t}. Thus {T<¢ €3, and hence T is
a B,-Markov time. This proves (iv).

Finally we shall prove (v). Let B be such that BN {T <%} 3,
for all £Z>0. Take @B and assume & ~& (R;). Then, if we put
t=T(@), we have a=BN{T=1t E.@, and &' ~& (R,). Therefore
&’'€BN{T=t which implies @’ B and hence B E@T. Conversely
assume BE@T and take @ BN {T< ¢} and @ such that &' ~&(R,).
Since T is a B,Markov time, if T(@)<t and @~a& (R,), then
T(@)=T(@) by (iv). Hence @~a& (R;) but this implies @' B
and hence @ €BN{T<t}. Thus BO{T<#} c3,.

Now we shall define the shift operator 6, :’550—43; as follows:
for &= (w:, w,, ws, ***),

((Orrs@ Wes1s Xir1), @2y Opisy **),

it 0(@)<t<t.(@) and t<<C(@),
(o, 0™, ++2),

if ¢>2(@) and k=inf{j; xo(w,) =4}.
By a straightforward calculation, it is easily checked that
(2.12)  X.(0.@)=X..(@) for all 5, t=>0, GEL,.

On the basis of the above notation our theorems of construction

D¢
&
[I

(2.11)

I3

read as follows:

Theorem 2.2. Let X°={W, B, P., x,, 0} be a right conti-
nuous strong Markov process on E with A= E as its terminal
point such that B..,=B, and let p(w, dx) be an instantaneous
distribution. Then the system X= {2, B.., P., X,, 0, ¢} defined
above is a right continuous strong Markov process on E with 4
as the terminal point such that

(i) the process {X,, t<<r, Py is equivalent to the process
{x,, t<<C, P.} and
(i) for every BEJl.. and A= B(E)

Bl{@; w.eB and X.(a)€4}] = P.[dw]u(w, A),
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where we write &= (w1, w,, ) and w;=(w;, x,).

By Remark 0.1 (iii) we have

Corollary X= {90, F,, P,, X,, 6,8 is strong Markov, where
we set F, .@,+o—ﬂ.@,+5

Theorem 2.3. If X°=(x,, P.) satisfies P.[x,..(w) exists in
t€(0,00)] =1 for all x&E, then X=(X,, P.) satisfies P.[ X, (@)
exists in t€ (0, C(w))] =1 for all xeE. If further, supP [E<<oo]
=a<1, then P. [X.o(@) exists in t€(0, )] =1 for all er

Theorem 2.4. If X°=(x,, B., P.) is quasi-left continuous
and £ is totally inaccessible (cf. Meyer [31]), then X= (.Qo, 7, X))
is quasi-left continuous before 5, te., if T,, n=0,1,2, -« and T
are F,-Markov times such that T, T, then

P.imXr,=Xr; T<¢=P.[T<?].

n->o0

Theorem 2.5. 1) Let X°=(x,, B, P.) be a Hunt process
and { be totally inaccessible. Further we assume

(2.13) Pt=+ol=1 for all x€E— {4},

then X= (:5", 13,, F., X,) is a Hunt process.
2) In order that the condition (2.13) be fulfilled, it is sufficient

that p(w, E—{4})=1 for all w such that + ~>¢&(w)>0 and that
one of the following conditions be satisfied;

@) sup P lC(w)<ee]=a<1, or

2 for some ¢=>0. inf P [E(w)>e] =60,

rEE-{4

Proof of Theorems 2.2~2.5 will be given in the following.
We shall give simple applications here but they will not be used in
later sections.

Example 2.1. For a given strong Markov process X°= (W,
B, P, x,,6,,0) on E having |[left llimits with 4 E as its terminal
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point and for a given probability kernal a(x,dy) on (E—{4})
X (E—{4}), define a kernal ux(w, dy) by

A(xey-(w), dy), if 0<<(w)<<+oo and x, €E— {4},

w, dy) = {
w(w, 4y) 814(dy),” if otherwise.

It is easy to see that x(w, dy) is an instantaneous distribution. The
case of i(x, dy)=48.,(dy) was considered by Volkonsky [44].

Example 2.2. Let E'=E°U0E, where E’ is compact and
E° is a dense open set of E’. Let E=E°J{4} be the one-point
compactification of E° and X°=(W, 8,, P., x,,0,,) be a strong
Markov process on E with 4 as the terminal point. Suppose, for
xeE°, P,[l’i{?x,(w) exists in 0F in the topology of E’, {(w)<<+ oo]
=P, [¢(w)<<eo]. If for a given probability kernel z(&, dy) on 0E X E°
we set
alxe_(w), dy), if 0<<¢(w)<<oo,

w, dy) = {
#, 43) 80 (dy), if otherwise,

then we get an instantaneous distribution. The process constructed
by Theorem 2.2 is called an instantaneous return process (cf. Feller

[7], Kunita [26]).

§2.2. Proof of Theorems
We shall give here the proof of Theorems 2.2~2.5. It will

consist of several lemmas.

Lemma 2. 3. .’@=@7b\/5;,1(@) for every k=1,2, -,

Proof. Since BDB,\V6:1(P) ‘is clear, we will prove FHcC
@,Vﬁ;}(@). For this it is sufficient to show {@; wjeB}ﬂSZE
@,,\/0},’(@) for every BE S’ where we write @ = (w1, w2, -+-). This fol-
lows, however, from {@; o, B} N2 = {@; ((i,@)j_kEB} 05065?3(@)
if j>F and {@; 0,€B}N2EDB.,.CB., if j <k

6) 315 (dy) is the unit measure at 4,
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Lemma 2.4. Let T(®) be a @,M-Markov time  (resp. B,
Markov time). Then for every non-negative integer k theve exists
T.(@, &) on 2yX 2, satisfying

() Tu@, &) is B.,QF -measurable,
@Gi) for fixed ®, T.@, ) is a B,.-Markov time (resp. B,
Markov time), and
(i) T(@) V(@) =1(@)+ T(a, 6,,@).
Proof. Let T(&) be a B,,-Markov time and set

Ti(@)=T(@) V(@) — (@) ;

then by the previous lemma there exists a ~7,®@-measurable func-
tion T.(&, @) such that

Ti(@) = Ti(@, 6.,®).
We modify 7, and put

{ T’: ((D’ (D/) ’ if ka ((T)) = XO (&),) ’

le ~) 0 =
(@, &) oo, i X,(@) % X (@).

Clearly T,(@, &) is also @,,@@—measurable. It is only necessary
to prove (ii). For this it is sufficient to show by virtue of (iv) of
Lemma 2.2 that if T.(&, @,)<t and @,~@. (R,), then T.(@, @)=
T.(@, @). Put t,(@)=s and write &= (i, @z, w3, =), @1 = (w1, o1,
o}, ) and @.= (&, w3, wi, -+). Then from T(&, @,)<t and @;~@-
(R)), we have X, (&) =X,(@,)=X,(@.). Therefore if we set

~r 111
@1 = (01, w2, **, w4, O, O3, 03, ***)

@3= (01, ws, ***, w4, 03, 07, 3, ***)
we have, noting ,(@;) =7.(@1) =7 (@) =S,
(2.14) d~a1~ws (R.,).

Moreover, we have
(2.15) b.@=a;, (i=1,2) and
(2.16) 1 ~@; (R.).
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Therefore, from (2.14) and (2.15)
2.17) T.(@, @) = T.(@,, 6.,@)
=g (@) V T(@) — (@

:Th<5:’:') \/ T(CT): -, (izl, 2)
and also

(2.18) (@) V T(@) = (@) + Tu(@, @) <<s+t.
By virtue of (iv) of Lemma 2.2, (2.18) and (2.16) imply
(2.19) (@) \V T(@) =<(@) V T(@).

Then by (2.17) we have T.(@, @,)=T.(&, @,).
The proof when T is a @,—Markov time is quite similar.
Lemma 2.5. (i) For any BEF and Ae.@m

(2.20) P.[A 6.,seB)=E.| P, [B]; Al.

’

(Gi) Let g(@,t) be a bounded BRB0, o] -measurable Sfunction
on 2% [0, o]. If ¢(@)>=0 is .@T,-measumble and AcB,,,

@20  E[g0.,8 0); Al =E.[Ex,[gC, 9] ; Al.

(Gii) Let g(®, &) be a bounded @7,®@-measurable Junction on
2% 8,. Then for every AE.‘E,,

2.22)  E.[4(@ 6,0); A=E.[Ex,[g(, ]| Al

Proof. For the proof of (i), taking A;,e¥’, j=1,2, ---, n, we
have from the definition of PV,,

Pl{@; o€ A, €A, -, 0,E 4.} ]
{00 dod@(X.(@), do)-@(Xer @), d0d||
QUX.,, dow)Q(Xe..,, do,)
{1, 0 donacx., don--Q(X...., doo

'PJX”[{C‘D; wleAH-l: Ty wn—kEAn}]

=Ez[ﬁ¥,k[{@; 0 € Apia, 0, 0 €A ] @ 01 €Ay, -, 0 EAY]
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This proves (2.20) for A={®; o:€A4,, -+, e;€ A, and B={a;
0 €A1, o, 0., € A,}. By a standard argument we have (2. 20) for
any A_E@” ard Be 3. (ii) follows from (i) by a standard argu-
ment. To prove (iii), we first assume g(@, @) =g.(&)g.(&"), where
£, is bounded @,-,-measurable and g. is bounded B-measurable; then
it follows at once from (i). By a standard argument (2. 22) holds for

every bounded .@r,@).@-measurable function g(@, @").

Lemma 2.6. Let T be a B,.-Markov time (resp. $,-Markov
time); then there exists an JIl,..-Markov time (resp. Jl-Markov
time) T'(w) defined on W such that

(2.23) T (w)=T(@) for o< {@; T(@)<<c(®), w,=w},
where we write &= ((w,, x.), w2, w3, **+).

Proof. For a fixed we W, put A,={&; T(®)<<r(&) and w,=w},
where &= ((wy, y), v., ---). First of all, note that if @ and &
belong to A,, then T(@)=T(&"). In fact, if T(@)<<t<t(®), then
we have @~a& (R,) since x.(w,)=x,(w:) for s<¢t. This implies
T(@)=T(@") by (iv) of Lemma 2. 2.

Now set

{T(@), weA, if A.#¢,

2.24 T =
( ) (w) (oo, if A,=¢.

We shall prove T'(w) is Jl,,,-Markov time (JI-Markov time). In
fact, if we assume 7/(w)<<t and x.(w)=2x,(w’) for all s<¢, then
@~& (R,p-iy), where we set @=((w, x), w:, w3, ---) and & =((w/,
%), ws, ws, +=»). Therefore T'(w)=T(@)=T(@)=T'(w'). This
implies that T/(w) is an JI,,,-Markov time by Lemma 2.2 (iv) (cf.
Footnote 5 of §2.1).

Lemma 2.7. Let f be a bounded measurable function on E,
g(x,t) be a bounded measurable function on EX [0,o0] and T be
a .@,N-Markov time. Then
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(2. 25) Elf(Xpg(X.,c—T); T<<]
=E. [ f(X0)Ex, [g(X:, 0)]; T<xl.

Proof. 1t is sufficient to prove (2.25) for g of the. form
g(x, t)=g,(x)g.(¢t). In this case we have by Lemma 2.6

Ef(X)g:(X)g:(c—T); T<r]
=E. [ F(X) Lirrwrccon 8:(X2) £:(C (6 w)) ]

—{ Poldw) s, dy)7Ctrr@)) L () € C0r10)).

This is equal to, since x is an instantaneous distribution,

[, P.Lawl s Lo g Omm)| w0, 49)2.(9).

Then using the strong Markov property of X°={x,, P.}, this is
equal to

E.[fCor) e Eurr [0\ 0, d)()])

=E. [ f(xr) [ Eopr [ 8:(X)£:(D)]]
=E.[f (XD reqEx, [ 8:(X)8:(D]]

and the proof is complete.

Lemma 2.8. Let g(x,t) be a bounded measurable function
on Ex[0, ], T be a B,.,-Markov time and A= By,,. Then
[ & (Xu5r5(0: @), t(6:)); Al
[Ex,[g(X., 0)]; Al

(2.26) E,
=E,
Proof.
E.llisrcnnEx, [8(X, D)5 Al
=E [Lnen-1 (osr-r.<1(§T,,$)}EXT_T,,(&@) [g(X:,0)]; A].
By Lemma 2.4 this is equal to
, Ex[I(TAST)I{OSTI;(:J.ET,,:))<T(ET‘$))E:[g(XT} )]; Al,

where aer,(;,z,h;)(t;T,, @), and by Lemma 2.5 this is equal to
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E.UienEx, Uneroscr Expen £(Xe, 911 | 5 Al

Applying Lemma 2.7 on T,(#, -) and by Lemma 2.5 this is equal
to

E;[[(nsr)Exrk[Ilosr..(u.-)<7)g(Xn t— T (u, '))]"L;§ A]
= E. [T nenToeric.ir <o
-8(X.G,5(6:,®), <(6:,@) — T(@, 6-,@)); A
=E.[Tenlocrrcr o 8(Xe, o i — T3 Al
=E.Izrer,.y 8 X (0:), 0(6:@)); Al

Now summing up the first and the last expressions over &, we obtain
(2.26).

Proof of Theorem 2.2. We have only to prove the strong
Markov property of X=(X,, P;, .@,w). Let f be a bounded measur-
able function on E such that f(4)=0, T be a @,,Lo-Markov time and
Ae_@m. We shall prove

2.27) E.[f(Xr); Al =E.[Ex, [ f(X)]; AP
Set

I:E,[f(XT+,); AN{T<<z, < T+t, for some k}]
and

II=E.[f(Xr.); AN << T, T+t <<tp, for some £} ].
Then clearly the left hand side of (2.27) is equal to I+1I. Now
ELf(Xr.); 0<T, T+t <nu, A
= B f (K Gra)s 0T <2(0,3),
0L T—r,+t<e(6-,@); Al.
By Lemma 2.4 this is equal to
E[ (XG50, (0,8)); 0L Tu(@, 0,3)<(0:,®),
0<Tu(@, 6:,@) +t<t(6:,@); Al

7) For convenience, we set X.(@)=4.
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and by Lemma 2.5 (iii) this is equal to

E.TnyennaEo, [ f(Xruon); 0T, )<r,
0T (u, H)+t<<z] |_].

=0

If we apply Lemma 2.6 to T,(u#, -) we get an Jl,,,-Markov time
T.(u, w) on W. Therefore by the strong Markov property of
{x,, P., Jl,.s} ,» the last expression is equal to

E.Liyenon Exy, [ Expp [ f(2); 08 <€) 5 0< Ti(u, -)<<C) | ]

*=w

=<,va[I(7k§T)ﬂA.EJx7h[E/er(u'.)[f<Xt); 0£t<f]: OgTL(u; ')<T] |~]'

By Lemma 2.5 (iii) this is equal to
E [ Lsnon Exr 5,56 F(X); 0<t <]
0<T(@, 0:,3) <<t(6,@)]
=E LyerangnaEx, [ f(X); 0<t<c]].

Thus we have

Elf(Xr); on<T, T+t<zu.; Al

M

IT=

k=0

=E.[Ex[f(X); 0<t<c]; Al

l

Hence
(2.28)  E.Ex[f(X)]; Al—H=E.[Ex,[f(X); «<t]; Al
It remains therefore to prove
(2.29) I=E[Ey[f(X); <t]; Al,
and this can be verified as follows:

E.Ex[f(X); =<t]; A]

=E [ Ex [ f(X(0.@)); c<t]; Al

By Lemma 2.5 this is equal to

EEx [Ex [ f(X.2)] |

s t<lt]; Al

8) By assumption {x:, B:} is strong Markov and Jlt.eC Bro=%B:; therefore
{xt, Tevo} is strong Markov.
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and by Lemma 2.8 this equals
E, [Ex,(e,u,)wm[f(Xf-) & (@) <t; Al

-'r Brw)
Because of r(ora)):rm—T on {r,<T<ry..}, the above expression
becomes

,;:)E:[I(nsr<r,,ﬂ}va,hl[f(Xt—u)l | T; na— 1 <t; Al.

FThel™

Since {r;— T<H N{e.<T<ti}MNA is @,-M-measurable, by Lemma
2.5 this is egual to

S B verens i crsnon F (X,  (0r, )))]
S E. Uinzrcncrana f(Xun)]
L f(Xre); AN{T<w,<T+t for some k}]

[l
~ M M

Il

This completes the proof.

Proof of Theorem 2.3. The first assertion is almost clear from
the defirition. Assume

sup P.[f<Coo] =a<C1;

seE- 10
then
P.lc,(@)<oo, N(@) = o]
=FE [ Py.[t,1<<oo, N=+00]; X.€E— {4}, r<<oo]
<a sup P. [tye1<loo, N=+o0].

xeE-— (4}

Thus we have

sup P.[e,(@)<<oo, N(@) =oo ga sup, Pz, (@) <<eo, N(@B)=o0

rEE- {4}

and hence

sup ﬁ [r,<Too, N=oo]|<a".

xsE—(4}

This proves that for every x€E— {4}
P.[r.<<oo, N=o0]<lim P.[r,<<oo, N=00] =0,

n-»co
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that is,
P.leo(®) =o0 or N(&)<<oo]=1.

Now the second assertion is clear from this and the way of the
construction.

Proof of Theorem 2. 4.
P [lim X, = X;; T<(]

n-»c0

—S P lim Xy, = Xr; re<T< t0ra).
k=0

n-»oc0

Applying Lemma 2.4 for T, and 7T, we have
E[lier,.:XT; Tk<T£Tk+l]

= P.lim Xni.5,5(0. @) = XriG35,5 (01 @)
@<T, T"(@, 6-,0) <(6,®)]

= EL[ Py, [lim Xrico = Xoicooni 0<T*(, )<s] |3 <.
Noticing that x, is quasi-left continuous and ¢ is totally inaccessible,
the last expression is equal to

=E.[Pr, [0<T*(t, )<7] | ; u<<T]

=ﬁ[1k<T§tk+l].
Thus we have

ﬁ,[lianzXT; T<5] :2 ﬁ:[?k<T£Tk+1]

n->co 0

—P[T<C].

oo

Proof of Theorem 2.5. The first assertion follows from Theo-
rem 2.3 and Theorem 2.4. Now suppose

(2.30) u(w, E— {4})=1 for all w such that &(w)>0,
and X°=(x,, P.) satisfies
@) S}slpMP, [E<Too] =a<1.

We have noticed in the proof of Theorem 2.3 that (i) implies
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Plea(w) =400 or N(@)<<oo]=1;
but by (2.30),

PIN(@)=+o0]=1 for x€E— {4}.
Hence,

P.le(@) =+ or N(@)<oo] =P.[1.(&) = +oo]
=P[E(&)=+o]=1 for x€E— {4}.
Next we assume (2.30) and

(ii) ‘inf P,[C(w)>e] =0>0 for some ¢=>0.

Since {¢(@)<Too} CU ﬂ {C(w,,)<e} " we have for x€ E— {4}

k=n+

2.31)  Pll@<e]<limP.[ m (e <e} N {m<<oo}]
_hmP[PX— [O{C(wk)<e} v T,,<°°]

n->co

On the other hand, for x€E— {4}

PID )< 1 <ELPo [0 )< Cwn)<e]
< sup PO C@)<e ] PIC@w) <]
and hence

sup, P[0 )< 1<(1-0) sup P10 Cw)<a}.

xEE - {4} k=1

This indicates that we should have

Sup P D{C(wk)<e} =0

_{A
and hence by (2.31)""

}V’,[E(c?))<°°] =0 for every xE — {4}.

9 o=(w1, @2, =), wy=(wj, x;).
10) By (2.30), Pa[X:SE— {4}, v<{oo]=Pa[z<loo] if xEE—{4}.
11) By (2.30), Pol XraEE— {4}, ta<loo] = Pa[taloo] if x&E—{4}.
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III. Construction of branching Markov processes

In this chapter we will construct an (X°, z)-branching Markov
process (cf. Definition (1.6)) in a probabilistic way. Given a Markov
process X° on SU {4} with 4 as the terminal point, we will first of
all construct the #n-fold direct product X} of X° and the n-fold
symmectric direct product Xv of X°, which are Markov processes on
SWJ {4} and S"U {4}, respectively, with 4 as the terminal point.
Then we shall construct the direct sum X of Xn, which is a Markov
process on §= GOS"U{A} with 4 as the terminal point. We will
next construct nfrom X° and a branching law = an instantaneous
distribution x (cf. Definition (2.1)) for the process X. Then we
will piece out the path functions of X by 2 according to the previous
chapter to get a strong Markov process X on é\, which will certainly
be the (X°, =)-branching Markov process. The other analytic ways
of construction will be discussed in Chapter IV.

§3.1. Direct products and symmetric direct products of a
Markov process

Let S be a compact Hausdorff space with a countable open base;

and let S™, S", §= US and S= SU {4} be defined as in §0.2. Let

X ={W, x2(w), .@‘,’, P,", x€SU{d}, 6, ¢ be a right continuous

strong Markov process on S U {4} with 4 as its terminal point such

that @?=@?+0-

Definition 3.1. (i) For each n=1, 2, -, a Markov process
X¥x={x¥, BF, P} on S®J{d} with 4 as the terminal point is
called the n-fold direct product of X° if it satisfies

3.1 EX" [ fiQf8&f.(x)] HE" [fi(xD]
for every x= (%, X., -+, X.), [;€C(S), i=1,2, -+, n, and {=0.?

1) 4 is attached to S as an isolated point. {° is the life time.
2) f1®--@fx is a continuous function on S™ defined by f1®- @ fu(%x1, X2, ***, Xn)
= "rlf,'(x;). We set f(4)=0 for every function f.
i=1
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(ii) For each n=1,2, :--, a Markov process )’f’;: {x,,@,, 13:?‘)} on
S"\J {4} with 4 as the terminal point is called the n-fold symmetric
direct product of X° if it satisfies

(3.2) EQ[7(2)] = LESL£(x)]

for every x=[%, %, -+, x,], f€C*(S), and t>0.

The direct product and the symmetric direct product of X° are
uniquely determined from X° up to equivalence because of the dense-
ness of the linear hull of {fi®f.Q--®f,; fi£C(S)} in C(S™) and
the linear hull of {fls: FEC*(S)} in C(S").»

Now we shall construct a version of the direct product and the
symmetric direct product of X° in the following way. Let W be
the n-fold product of W, whose elements will be denoted as w= (w,
w., -+, w,), where w;& W, and put

(3.3) ¢(w) =min {¢ (w.)}
o (@), e, B(w,)), i t<<C(w),
4 * () = h
G xF () {A, if t=C@0),
(3.5) 6, = (0w, 6°w,, -+, 6°w,),
(3.6) TFW=g(W™, B(SDOULL}); xX(w), s<t), TE™ =\ TI¥™,

>0
Plx---x PL[A], if x=(x,, -+, x,)ES™,
3.7 PX»[A ={ ’
@D L4] P)x.-x PMA], if x=4,
for A ™,

By Theorem 3.1 given below, one can see that the process
Xx={W®, z¥w), Br”=Trp, P, x€S™U {4}, 6., §

defined above is a strong Markov process and it satisfies clearly (3.1).
Hence, it is a version of the zn-fold direct product of X°. We will
call this X} the canonical realization of the n-fold divect product
of X°. Now let p be the natural mapping S®—S" and set

3) Cf. Lemma 0.2.
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(3.8) £(W) =p[xF(W)],»
(3.9) T =a(W®, B(S"U{L); z.(@), s<t), 375:):;/0 T

and define {P}, x=S"UJ {4} on TIv by

Pl x--x P [A], if x=[x,, %, -+, x,]ES",

3.10) Pw[A ={
(.10 A = o PITAL, if x—a

P is well defined just as in Lemma 1.1. We shall define the process
X, by X,= (W, 2,(@), B =T, P, xeS"U {4}, 6, C@)}. X,
is the process induced from X} by the mapping p in the sense of
Dynkin ([6] Theorem 10.13, p. 325), ie., X,=p(X*). The process
f,, is certainly a version of the zn-fold symmetric direct product of
X°. We will call this X, the canonical realization of the n-fold
symmetric divect product of X°.

Theorem. 3.1. The canonical realization of the n-fold direct
product X} and the canonical realization of the n-fold symmetric
divect product X, are vight continuous strong Markov processes
on SWU{4} and S*U {4}, respectively. If X° has left limits, then
X* and X, have left limits.

Proof. We shall prove this theorem only for Xj: the proof
for Xv follows then from the Theorem 10.13 of Dynkin [6]. First
we shall prove the following

Lemma 3.1. () Let ATl and Awgy be the j-section of
A defined by Awin={w; w=w,, -, w,) €A} for fixed wW(j)=
Wy, =+, Wiy, Wiyq, ==+, w,). Then for each W(j), A belongs to
IJn.»
(Gi) Let T(w) be an IJNXy-Markov time; then for each fixed w(J),
the j-section Ty of T defined by Timgy(w,)=T(@W) is an T,
Markov time.
(iii) Let T be an J*-Markov time and ASJTIES); then for fixed

4) We extend p as the mapping S™U {4}—>S"U {4} by setting p{4} =4.
5 T=c(W, B(SU{4}); xi(w), s<t) and hence JI,CB,.
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wW(7), Awun belongs to Tlrapiee.”

Proof. (i) We assume n=2, the case of #=1 being clear.
Fixing w(j), set B={A€ T ™; Awn<€Tl}. Then clearly B is a
sub-Borel field of J7*™ over W™, For re $(5™) and s<{,

{w; x*(W)ery ={w=(w, -, w.); (X(wy), -, x:(w,))ET,

S<C0(u’,~), i:]-: 2) ttt n}y
and hence its j-section is given by
{w;; xg(wi)er[xg(wn), vy 10w j=1), 20w je1), oo, #2wad]s
{xF@) ETYmon= | s<Cw)}?, if s<<¢(w;) for all i#j,
o, if otherwise.

Thus {x*(w)esr}esb. Also we have for s<¢,

W, if for some k#j, {"(w)<s,

(W) =4} 1z ={
{x¥ (W) = 4} tzin {w;; ¢ (w;)<s}, if otherwise,

and hence {x*(w)=4}€B. This proves {xfer}eP for all st
and re$(S™U{4}); therefore I} =35.

The proof of (ii) and (iii) is clear from (i) since
{w;; Taon<<t} ={T<t}uwum
and
AN A{w;; Taa <t} ={AN{T<t}}wun-
Now we return to the proof of the theorem. We shall prove

only the strong Markov property of X}, the other part of the theorem
being trivial. For this it is sufficient to prove®

6) T ={AE TE™; AN{T<t}€ IBF™ for every t=0}
={A€TEM; A(NT <t T for every t=0}.
5.0 is defined similarly.
7) For '€ B(S™) and for a fixed x(5)=(x1, =", Xs-1, Xje1, =, Xn), Dlxcsy] is
the j-section of I': I'txcpyi={xj; (%1, =, Xj-1, X5, Xju1, =+, Xn) E T}
8) For convenience, we set xX=4 and we extend every function f defined on
S as a function defined on S™U {4} by setting f(4)=0.
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EX®[ f(atin); Al=EX°[EX°1f(0]; A)

for every feC(S™), an JI}P-Markov time T and A€ Jf%. We
may assume f=g,8g.Q:Qg., & C(S) since the linear hull of
such functions is dense in C(S™). Then,” if x= (x4, %2, ***, X.),

E*®[ f(xk); Al
—E% % - X E° [ T1g: (2% s (wy); Al
i=1

=g S PC.(dw) P.(dwy) -+ P°.(dw,_,)

Wx...xW
n—1
{SWPS, (dwu)il;llg; (x?+T[5(,,)](wi))gn (x?(ﬁ‘}[,;(,,)]w,,)) - IA[E(n)](w”)} *

n—1
Note that for fixed w(n), I1g(Xlirz,,(W.)) is Tz, measur-
i=1
able in w,, then by Lemma 3.1 and the strong Markov property of
X" the above integral is equal to

S S P?.(dw,) P%,(dw,) - P°,_.(dw,_,)

WX xW

AL P T (g (9) Ty ) Bty ) 12,201
= B85 X B4 TLg, (31 (10)) B [ 8,65 Al

Repeating this, we have
EPLf(xhn); Al
= Ex®[[EY,) 2.(D); Al
=EXEZ"[f(xD)]; Al

Theorem 3.2. () If X°={W,x, &, P, xS U{4}, 6, ¢
is quasi-left continuous before &°, i.e.,

Pl[limxf, =% T<<C)=P[T<]

m->co0

for every xS, and for every increasing sequence {T.} of Bi-

9) We extend each g: as a function defined on S U {4} by setting g:(4)=0.
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Markov times such that T,1 T, then X} and X, are also quasi-
left continuous before €.

(i) If X° is a Hunt process and & is totally inaccessible (cf.
Meyer [31] p. 130), then X} and X, are Hunt processes.

Proof. 1t is clearly sufficient to consider the case of X. Let
T.% T be an increasing sequence of JI5’-Markov times; then by
Lemma 3.1,

Pi"Mlimxf, =xF, T<<¢]

= P8, Pox oo x PO lim b, () = 2 (w)} N (T(@) <E(@))]

:S SP&(de---PS,_I(dw»_I)

Wx..xW
(PN 05 Tim e, (0) = 24 (), T() <8 ()} gy
ﬂ {wu; lim x(}m[;(,,)](wn) = xg'[ﬁ(")](wn>, TW(")]< C(wn)} ] }

=§ - ( Pocawd - P (dw ) (LI o tim o, 0

Wx.xW

= 25w, T(@) <€ (W)} mon s Troon<<C(w.)}]}
— P {lim st () = )} N AT @) <EG@)} .
Repeating this we have
Py [lim xf,(@) = xf (W), T<C] = Pr[T<{].

(ii) can be proved quite similarly if we note that if ¢° is totally

inaccessible and {7} is an increasing sequence of %'-Markov times
such that 7,1 7T, then

UT<CYUUITAC =€) N{T<oo} = {T<oo).

§3.2. Direct sum of X} and X,

Given a right continuous strong Markov process X° on SU {4}
with 4 as the terminal point such that B,,=3,, let X* and f,,
(n=1, 2, --) be the canonical realizations of the #-fold direct product
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and the n-fold symmetric direct product of X°, respectively, defined
\\'in the previous section. Let 5\’“:05‘"’ and S*=8*{J {4} be the
topological sum of S and its one-poi"r:: compactification, respectively;
then the natural mapping p from S™ to S” can be extended from
3\* to é\, where we set p(8) =0 and p(d4) =4.

Now put

G WO= s} W=UW®,

x*(W) defined by (3.4), if wel) W,
(3.12) x,*(w)z{ (#) defined by (3.4), if wel
a, if W=wss WO,

= Z(iw) defined by (3.3), if we W,
(3.13) C(@):{c(w) efined by (3.3), if weJ

+oo, if W=wse WO,
_ (80 defined by (3.5), if we W,

(3.14) o,w:{ y 3.5
Wa, if W=wyes WO,
(3.15) T =o(W, B(S*); x*(@), s<1), e =\ I,

(3.16) PYA]=PI»[ANW®™], xS, ATz ™
P3[A] =0, (A), AETIZ,

and P is any probability measure on (W, J1%) such that
PH[xF(w)=4 for all {>>0]=1.
Definition 3.2. The stochastic process
X*= (W, x* (@), Bf =T, P2, x=8%,6,, &}
on S* defined above is called the direct sum of X}
Now let

(3.17) () =p(xr (W), we W,

10) ws is an extra point.
11) Note that if A€ J%, then ANW ™ & JIE™.,
12) We consider 4 as the terminal point of X*, and hence § is the life time.
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and define 57,, 9l.. and ﬁx, xES/.\, for x,(w) in a similar Way} as
(3.15) and (3.16).

Definition 3.3. The stochastic process
X= (W, 2.@), B=Ts, Pe, x€8,5, )
on S is called the direct sum of X,.®
Clearly X is the process induced from X* by the mapping o,
ie, X=p(X*).

The following theorem is a direct consequence of Theorem 3.1
and Theorem 3. 2.

Theorem 3.3. X* and X are right continuous strong Markov
processes on S* and 5\, vespectively, with 8 and A as traps. If
X° has left limits (is quasi-left continuous before &°, is a Hunt
brocess and &° is totally inaccessible), then X* and X have left
limits (rvesp., are quasi-left continuous before £, are Hunt pro-
cesses).

§3.3. Construction of an instantaneous distribution

Let X°={W, x(w), B, P!, x&€SU {4}, 6!, & be a right conti-
nuous strong Markov process on SU {4} with 4 as the terminal

point such that B=&,,. Further we shall assume

(3.18) Pl[¢°=t]=0 for every {=0 and xS
and
(3.19) Pl x_exists, {*<<oo] = PI[{°<<oo] for every x<S.

Let X ™(n=1, 2, ---) be the canonical realization of the n-fold sym-
metric direct product of X°, and X be the direct sum of X (cf.
Definition 3. 3).

Now let =(x, dy) be a stochastic kernel on S></S\”’ such that

13) We consider 4 as the terminal poin/t\ of X, and hence ¢ is the life time.
14) i.e.. it is a kernel on (S,/.?(S)/)\X (S, B(S)) such that for each fixed xS
it is a probability measure on (S, B(S)).



390 N. Tkeda, M. Nagasawa, S. Watanabe

(3.20) r(x, S)=0 for every x&S.

If we restrict this kernel on SX S, then it is a substochasti: kernel
with the property (3. 20), and conversely, a given substochastic kernel
7 on SX 8 with the property (3.20) defines a stochastic kernel on
Sx § with the property (3.20) by setting

(3.21) a(x, {4)=1—=n(x, 8), x&S.

Hence it is equivalent to give a stochastic kernel on S><§ with the
property (3.20) and to give a substochastic kernel on Sx S with
the prorerty (3.20). It is also equivalent to give a system {g.(x),
n.(x,dy)}, where q,(x), n=0, 2, 3, --- are non-negative .@(S);measur-
able functions such that

ACIESY

and =,(x, dy), n=0, 2, 3, --- are stochastic kernels on SXS”, by the
relation

(3.22)  n(x, E)=%q"(x)n,,(x, ENSY, EcB(S), xS,

(3.23)  q.(x)=n(x, S, n,(x, E) =q"—(1x)—n(x, E)» EcB(S.

Given a stochastic kernel on Sx S with the property (3. 20), we shall
define a kernel 4/ on (W™, J1™) x (:9\(”), -@(é\m))w) by

(3.24) o (W, dx,, dx,, -+, dx,)
f igl @@ =gocu (W) 7 (Xogupy-(w5), dxa)]ga(xzo(wi_ucw;)) (dx;),
= if 0<<€¢(w)<<eo,
l&p_...,,, (dx., dx., -, dx,), if (W) =0 or (W) =co,

~—

where ﬁ)=(w1, Wy, **, wn)'

15) Let wma(dy) be a probability measure on S" and set =n(x, dy) =m.(dy) if
gn(x)=0.
Py PATEAY Pa
16) SM=8x8Sx---xX8.
N~

n
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Let y be the mapping defined by (0.19) and define a kernel x on
(W, 5ie) % (8, B(S)) by

(3.25) w(w, dx) =4 (W, y'(dx)).
We have in this way a stochastic kernel on (L_JIW"‘), fFJVL,) X (:S\, .@(é\)).
We set further

(3.26) n(ws, dx) =85 (dx).

Thus we have defined a stochastic kernel on (W, 57700) X (é\, _‘B(é\)),
and the following theorem is clear from the definition.

Theorem 3.4. (W, dx) is an instantaneous distribution for
the process X.

§3.4. Construction of an (X°, =)-branching Markov process

For a given X' satisfying (3.18) and (3.19), and a given sto-
chastic kernel z(x, dy) on Sx/g satisfyirg (3.20), we construct the
direct sum X of the cancrical realizations of the symmetric direct
prcducts of X° and the instantareous distribution gz of X as in the
previous sections. Now we apply Theorem 2.2; we have a right
continuous strong Markov process X = {5, X, (®), Py, xeg, ¥.,0, ¢
on /S\ with @ and 4 as traps such that &F,,,=%,. We will show that
X is the (X°, z)-branching Markov process (cf. Definition (1.6)).
First, it is easy to see that (@) defined by (2.8) coincides with
that defined by (1.7). Also it is clear that X satisfies the conditions
(C.1) and (C.2) by the way of the construction and by (3.18).
Next, we shall prove that X has the property B. IIl. In fact, if x=[x,,
X5, ***, X,], we have by Theorem 2.2 (i) and (ii) that, for f& B*(S),

(3.27) E.[F(X); t<c] =E.[f(£); t<C)
={ - {Pocaw) - Poaw) (I (AR 00)) e}

= ILEL [ f(x2(w)); ¢<C"]

=ILE,[f(X); t<r],

M
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and for fe B*([0, o) X S),

S

(3.28)  E.[f(r, X); «<t]
E| | w@, anfe@), y; Ea<t]
£l

= xl: ”.Sggl(z(;)=§°(w;)5t) (w) 'n(xgo(w,')"(wi)) dxl)

Mg o (d) LAC ), %) |

SP?‘X '“XPB;-lXPBfHX ...XP‘?’[dwl’ ..

=520, 1) Topen§ 5 b, dxDFEw), )
W xW dw;_l, dwi+1’ "t dw"]

I FE W), xeep @) - Tisoirecren] } ]
JEi
= ZSWP?,» [dw,] ([{go(,,,,.)s,)gg,a(w,., dx)J/c\(C"(w,-), x)

. S SP’?‘X e X Psi—]XP£i+lX XPB”[dwl, .ee,
WxeexWw dwi—-l: dwi+1: R dwn]

: ,E: ( .?(C (W), Xeowp (W) * Ligocwpcgotuy ] } )

n

=31 | Pulreds, Xedy) (s ) IE, [ s, X5 s<el).

i=1

Therefore, by Theorem 1.2 (d), X is a branching Markov process.
Finally we shall show that X is the (X°, =)-branching Markov process.
In fact, {X,, t<<r, P,} and X° are equivalent and hence the non-
branching part of X coincides with X°. Next we have, for xS,
feB*(S), geB(S) and 1>0 that

(3.29)  E.[e"f(X.)g(X.)]
=B g (x| _ntw, dn)fy) ]

—EY g (x%) Ssn(xgo_, dy)f y)]

_ E,:e‘“g( X")Ss”(x”’ dy)fA(y)]
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and therefore = is the branching law of the process X.
Summarizing the above arguments, we have the following

Theorem 3.5. For a given right continuous strong Markov
process X'=(x}, B on SU {4} with 4 as its terminal point satis-
fying (3.18), (3.19) and B).,=B, and a given stochastic kernel
n(x,dy) on SxS satisfying (3.20), we construct the direct sum
X of the canonical realizations of the symmetric divect products
of X° and an instantaneous distribution p as in §3.2 and §3.3.
Next, applying Theorem 2.2 for X and p, we construct a right
continuous strong Markov process X=(X,, F,) on S such that
Fo=F,. Then X is the (X°, n)-branching Markov process.
Further if X° has left limits, then X has left limits for t<<t.,
and if X° is quasi-left continuous and &° is totally inaccessible,
then X is quasi-left continuous before r...

The last assertion of the theorem follows immediately from
Theorem 3. 3, Theorem 2.3 and Theorem 2. 4.

§3.5. Examples

Example 3.1. Branching process with a single type

Consider the simplest case when S={a} then S can be identi-
fied with Z*=1{0,1,2, -} and S with Z*=Z*{+o0}.”» Therefore
a branching Markov process on /S\ is a Markov chain on zZ such

that its system of transition matrices {P;;(¢), t=>0, ¢, 7 =Y *1 satisfies

{%P,,(t}f":<%P1j(t)fj)‘, O<f<1) ZZOJ 1; 2) Tty
P, .-(t)=1

It is easy to see that P;;(#) defines a strongly continuous semi-group
on C,(Z"), and hence X is a Hunt process. This implies that X is
a minimal Markov chain. If we set

17) Cf. Example 1.3.
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b;=FE;[z]?, m,=P/[X.=]]
where r is the first jumping time, the property B. IIL. of §1.2 is
equivalent to
(3.30) bi=1b, and m;;=m 141, £=0,1,2, -,
Thus a Markov chain on Z¥ is a branching Markov process if

and only if it is a (b;, m:;)-minimal chain with the property (3.30).
Fundamental equations which will be treated in Chapter IV are
given as follows: if we set, for 0<{f<C1

u(t, is )=TFDH =S POf, =12,
u(t; f)=ut, 1; f)
and v
F(f)=Zm.f,
then B
(3.31) u(t; 1) =f-e"”1’+blg;F(u(t—s; f))etvds, (S-equation),

@32 LD s ) —uts O,

u(0+, f)=f, (backward equation)

and

ou(t,i; f) _ _ou(t, i f)
(3.33) ——T—~b1(F(f) f)——af ,

u(0+,i; f)=r% i=01,2, -, (forward equation).
Now assume

m1,0=P;[X:=0] =0
and

71, =P [ X:=4] =0.

We shall prove an intimate relation between the uniqueness of the
solution of S-equation (3.31) and the occurence of no explosion in
a Corollary of Theorem 4.7, ie., P:[e,=+o]=1 if and only if
u(#)=1 is the unique solution of (3.31) with the initial value f=1.
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As is well known (and it can be proved easily) #(f#)=1 is the unique
solution of (3.31) or (3.32) if and only if

1-0 df

__.__:+00,
S F=F(f)

(cf. Harris [8]). Here we shall give another probabilistic proof of

this fact. The proof is based on the following

Lemma 3.2. E,[e,] =0 if and only if P,[es=0c0] =1,

Proof. “If” part is trivial and hence we shall prove “only if”
part. Assume P,[e,=oo]|<C1. Then P,[e.>1] —=-T,/1\(1)<1 for every
t>0. In fact, if for some f, T,/l\(l) =1, then T,.,/l\(l) = T<n_1),(T,/1\) (D
— T 1(1)=-=T1(1)=1 and hence lim T, 1(1)=P,[e,—=oo] =1.

n->co

But this is a contradiction. Therefore T,/I(l)<1 for every ¢>0.
Next we shall show that for fixed #,>0

T, 1)< (T, 1))
In fact, since T\1(3)=(T1(1)) <TA(1), i=1,2, -,
T,,1(1) =T, (Ter1,1) (DT, 1(1) Terne, L (1) << (T, 1(1))"
Hence T,/l\(l)ge"’“ for some constant K>0. Therefore

Eile)) = S‘” T2 (1)dt <o

Now it is clear that e,=r. a.s. under the above assumptions.
Hence E,[e ] =E,[r.]. Since

Too =k_21 (s —14e1) zgf(ﬁu-ﬂ)):

oo

E.[r.] =3 E\[Ex., []].

k=1

On the other hand

E.[Ex. =S ey 1
1[Exe, <] n,2=1 23 Pt i Nt N+ +m+1 by

and noting that, for 0<Te<{1,
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1—)mtnmatdmt

oo,
ntn,+ - +n+1

1 m=1

2 22 T1,m+1° " T, ny+1
k= np=1
we see that E;[r.] =co is equivalent to

[ =

1-€ k=1n

Mz

oo
n tngteetn
D A I dé
1 =1

=S E( (5)>dg S:eﬁ—F(e) = e

Therefore by the above Lemma, P,[e,=-+oo]=1 if and only if

Il

1-0
S ;( )dé 4+ oo, The conclusion is still valid when m,,>0:

the proof is reduced to the case m.,=0 by the transformation of §5. 5.

Example 3.2. Branching process with finite number of types

Let S={a, a., -=*, @} ; then S can be identified with

k
h
(ZYV=Z"XZ "X XZ'={i={ly, 1., ", ly; L, EZ"}
and S with (z +)"— (ZY)*J{+o}. Therefore a branching Markov
process on Sis a right-continuous Markov chain on 4 4 such that

TN
its system of transition matrices {P;;(¢), t>=>0, i, ]EZ“"’} satisfies

{; R,j(t)f(j) - Ili[](; Pe,,j(t) 'ﬂj)>i1 18))
P...-.()=1,
where f=(f1, fo, =+, f), 0 fi<<1, i=(iy, 22, =+, 44) and e,=(0, -+,

I-th

-,0). From this it is easy to see that P:;(#) defines a strongly
continuous semi-group on CO(EF"’), and hence X is a Hunt process.
This implies X is a minimal Markov chain. By Theorem 1.4, it is
given as an (X°, n)-branching Markov process. In this way every
branching Markov process on 3\ is determined by a Markov chain X°
on SU {4}, with {4} as its terminal point, and a substochastic kernel
n(e;, dy) on SX 8 such that z(e;,, $)=0, /=1,2, ---, k. But every
such X° is given in the following way: given 0<r;;<1, =;=0,

18) F)=firfizfir.
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2m=1,14,7=1,2,+, k and 0<b; <<+ o0, 0<c;<<+o0 i=1,2,-, k,
)2'° is the e J ©C% subprocess'® of (7;;, b;)-Markov chain x, on S=
(eq, ez, *++, €,).2” Thus there is a one-to-one corrvespondence between
the set of all branching Markov process on S and the set of all
systems {b,, ¢:, m:;;, n(e;, dy)} i, j=1, 2, «--, k satisfying the above
conditions.

Given such a system {b,, ¢:, m;;, (e;, dy)}, define a sub-stochas-
tic kernel ’(e;, dy) on SX S and b, i=1,2, ---, k, by

{n’(e;, {ej}):-b—%mi, i,j=1,2 - k

ﬂ/(ei’ {y})= bic n(e,‘, {y}), i:l’ 2’ e k, yes__s’
and

bi=b+c., i=1,2, - k,
Set

F(f)=5i (e, fCy,

then the fundamental equations which will be discussed in Chapter IV
are now given as follows: if we set, for f=(fi, ---, fi), 0<f. <1,

ult, i3 £) =;P,-.,-<t>f(j>,
u(t; f)=.; £, u.(t; ), -, mt; £,

where

u,(t; flr=ult, e; f),
then

330wt fH=fie+ | Fu—s; f)etas,
i=1,2, -, k, (S-equation)
3.35) D (ts £ =bUF @t ) —u £}
u;(0+,f) =f;, 1=1,2, -, k, (backward equation)

19) ¢ is a function on S defined by c(ei) =ci, i=1,2, -+, k.
20) That is, x¢ is a Markov chain on S such that Ee;(¢) =b;! and Pe;[x,=e;]=mij,
where o is the first jumping time.
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and

@3 BELD sy -p G

A\

u(0+,i; fH=13), iESEZ"("), (forward equation).

Example 3.3. Age dependent branching process

Let S=[0, o], k(x) be a non-negative locally integrable function
on [0,o0) and {g.(x)}:=, be a sequence of non-negative measurable
functions on [0, o) such that Zj‘,oq,,(x)sl and ¢;(x)=0."> Define
a probability kernel z(x, dy) on”_SXS by

@30 Fx H={ Apnts, dy)

_ {an(x)f"(O), xe [0, ),
f(oo)’ X =+ oo,

Let X° be the e 5”‘"’“-subprocess of the uniform motion %, on S.
By Theorem 3.5 we have the (X°, =)-branching Markov process X,
and we shall call it an age dependent branching process. The
fundamental system of X is given as (77, K, =), where

T f(x) =eJ2 "% f(x+ 1), xE][0, o0),
=f(o0), x=oo,

\"Kxs asanf() =Tik-Hds

and = is defined by (3.37). Hence u(?, x)=T,f(x)=E.[ f(X)],
feB*[0, =]*, satisfies the S-equation:

(3.38)  u(t, x)=f(x+t)e S s
+ S’k(x+ el i"“"""ioqn (x+7)u(t—r, 0)dr.

Now let
H={feB(S); flt-»EC[0, >)}.

Then for the semi-group 7T, of the uniform motion,*® H, and flo are

21) We extend k(x) and ga(x) as functions on [0, o] by setting them 0 at x=oc0.

22) 1i.e., the semi-group T defined by ch(x)={;gi_;t)' ’;ig}’ o)
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given by
v ={fEB(S); flw,~ is uniformly continuous on [0, o)}
(cf. Chapter IV) and
H=H.

In the following we shall use the results which will be developed in
Chapter IV. It is easy to see that the fundamental system is H-regular
(weakly H-regular) if k2 and ¢, are in H, (resp. in H). The infini-
tesimal generator Ay and the weak infinitesimal generator L are
given by
Auf(x)=Auf(x) =f"(x)

with domains

D(Ay) ={feH,; [’ exists and ' H,}
and

D(A,) = {fe H; f’ exists and f'€ H}.

By a corollary of Theorem 4.10, we see that

(i) if k£ and ¢, are in H, and feB*(S)ND(A,), then u(Z, x)
=T, f\(x)=E,[?(X,)] is in D(Ay) for all £>>0, strongly differenti-
able in ¢ and satisfies

ou(t,x) _ ou(t, x) - . B
(3. 39) { ot ox +k(x>{§qn(x)u (¢, 0) —u(t, x)}

u(0+, x) =f(x),

(ii) if % and ¢, are in H and feB*(S)ﬁD(Z”), then u(Z, x) is
in D(XH) for all £>>0, has right-hand derivatives D} u(¢, x) in ¢ and
satisfies

Diu(t, x) =M+k(x) iq,,(x)u"(t, 0)—u(t, x)¢,
ox n=0

u(0+, x) =f(x).
Next set

(3. 40) {

G(x; f)=2ng.(x)-F(0).
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Then (¢, x) = M,f(x) =E.[ f(X,)] satisfies
(3.41)  v(t, %) =f(x+)e S o
+ S;k(x-l- e d T OUG(x+r)u(t—7r, 0)dr,

where

G(x) =2 nq.(x).

Further if G(x)€ H, (G(x)€ H) and f€D(Ay) (resp. D(Ay)), then
v(t, x) is in D(Ayx) for all >0, strongly differentiable in ¢ and
satisfies

ov(t, x) _ ov(t, x) B
(3.42) { o =g TR@IG(E, 0 —v(, D],

v(0+, x) =f(x),
(resp. v(t, x) is in D(ZH) for all £2>0, has right-hand derivatives in

t and satisfies (3.42), where 66_1;

is now replaced by the right-hand

derivative).

Example 3.4. Branching diffusion processes

By a branching diffusion process we mean a branching Markov
process whose non-branching part X° is given as an e “-subprocess
of a conservative diffusion process X={x,, P.; on a manifold S,
where A, is a non-negative continuous additive functional of *,. In
the following we shall consider some of typical examples.

(A) Branching Brownian motions

Let S =I§}' =R"U {co} be one-point compactification of N-dimen-
sional Euclidean space RY and X = {x,, P} be a standard Brownian
motion on S.*® Let k=C(S)* and define A, by

A,=S;k(xs) ds.

Let X° be the e “-subprocess of X. Let ¢.=C(S)*, n=0,2, -,
such that >1¢,(x)=1 and define =(x, dy) by
n=0

23) oo is attached to RY as a trap: P.[xr=co, for all t>0]=1.
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(3.43) n(x, dy) = an(x)l?[, ,](dy) ®

Then we have the (X°, n)~branch1ng Markov process X, and we shall
call it a branching Brownian wmotion.* The fundamental system
(T, K, =) of X is given by

Tifw = Pt 5, DF()dy,  xeRY,

K(x; dsdy) =P°(s, x, y)k(y)dyds, x€R",

where P°(s, x, ¥) is the fundamental solution of
ou _ 1
ot 2

It is easy to see that the fundamental system is regular. Hence we

du—Fk-u.

can apply all the results in Chapter IV, and we see that
u(t, 1) = T.f(x) =E.[f(X)], fEC*(S)", x€R",

satisfies S-equation;

@4 ult, »=T@+ | THFC; utt—s, ))ds,

where

(3.45) Fx: /) =320.()f"(®).

If further f&eD(4)(NC*(S),* then u(¢, x) belongs to D(4) N C*(S),
is strongly differentiable in ¢ and satisfies

ot
lu(t, ->=fl—0, (10).

n

ou 4 CBr N
3. 46) {——7u+k {F(-; u)—u},

N
24) B[, 5x1(dy) is a unit measure on [x, -, x]JES™
25) It is clear that if x=[x1, -, x4], x; ERY for all { then with Px-probabillity

one X, eﬁgo(Rm)/A«U {4}). We are interested in the part of process
X on this space.

- 26) D(A) {fEC(RN) AfCC(RN)} where C(RN) {feC(rY); hmf(x) exists}.
Thus C(RN) and 'C(S) are essentially the same space. D(4) comcxdes with the

domain (in Hille-Yosida sense) of the infinitesimal generator A(=%Z ) of the semi-
group of the standard Brownian motion x: on C(RY).
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If G(x)eC(R")*, where

G(x) = S3nq.(x),

then v(t, x) =M, f(x)=E,[}/(X,)], x&RY defines a strongly conti-
nuous semi-group on C(R") with the infinitesimal generator L given
by

(3.47) Lu==--u+k(x)(G(x)—1) u,

NI&I

(3.48) D(L)=D(4).
Hence we see that M, is represented as
M, f(x) =E.[ef -0 f(x,)]

in terms of the standard Brownian motion x,.

If, in particular, a(x)eC/ER”) and we define 2 and ¢, by k(x) =
la| (%), qo(x) =T, q:(%) =Ii-r-0°” and ¢q.(x) =0 (n=3,4, ),
then M, is the semi-group corresponding to the infinitesimal generator

%+a, or

M,f(x) =E.[efee* f(x))].

Many arguments can be carried over to the case of unbounded
k: we can construct the (X°, x)-branching Markov process X by
Theorem 3. 5 and if, e.g., #(x, dy) =d...(dy), then u(Z, x) =E,[;‘\(X,)]
is a solution in a weak sense of the equation

ou _ 4

S =gtk —uw), u(0+, )=f.

The case of k(x)=]x|” was considered in Ito-McKean [19].

(B) Branching A4-diffusion processes

Let D be a bounded domain in RY with sufficiently smooth
boundary 6D and &/(x), b'(x) (i, j=1, 2, ---, N) be sufficiently
smooth functions on D=DJ3D such that év‘___,la""(x)é"é’ =c|&]® for

27) I{) is the indicator function of the set { }. a =(—a)\/O0.
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every &= (&, &, -+, &) Set

)= 3 2@ (0va) L)+ Sp -2,
where a(x)=[det(a’(x))]™". It is known that for given c€C(D)
and B=C(D) such that ¢>0 and B>>0 there exists a unique
diffusion process X°=(x?, PY) on DU {4} with 4 as the terminal
point such that if f is sufficiently smooth, #(¢, x) =E?[ f(x))] defines
the solution of

ou _ 4.
?i_t_—Au c-u,
(3. 49) o
% 4. =039
(an B u) ap 0.

If ¢(x)=p(x)=0, the corresponding process is conservative: we shall
denote it by X=(x,, P.) and call it the reflecting A-diffusion process
on S=D. Then X° is the e *-subprocess of X, where A, Sc(xs)ds

+{'sr)do ™ Let a.(0€€(S), a.()=0 and Tg.(»=1, and
define n(x,dy) by (3-43). We shall call the ('1;(?", 7 )-branching

Markov process X a branching A-diffusion process.

The fundamental system (77, K, =) is given by

TifCo) =\ Pt 2 ) f()m(dy),
K(x; dsdy)=P°(s, x,y)c(y)m(dy)ds+ P°(s, x, y) 3(y) mi(dy)ds,

where P°(s, x, y) is the fundamental solution of (3.49) (cf. Naga-
sawa-Sato [37], Ikeda-Nagasawa-Sato [17]). In this case 77 maps
B(S) into €C(S), and from this we see that the semi-group T, of X

2) jd=y/Ee .

29) —a% is the derivative in the direction of the inner normal at 8D determined

by the metric tensor ai/(x).

30) ¢; is the local time on 8D of x;: the precise definition and the above facts
we refer to Sato-Ueno [39].

31) m(dx)=V'a(x) dx'dx*--dx", and 7 (dx) is the surface element on 8D.
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maps C,(S) into C,(S) and is strongly continuous. Hence X is a
Hunt process. u#(¢,x) =T,.f(x), f€C*(S), xS, satisfies

(3.50)  ult, x)=T°f(x) +S;SSK(x; dsdy)F(y; u(i—s, -)),
(S-equation)
where F(x; f) is given by (3.45). Hence u(¢, x) can be regarded

as a solution (in a weak sense) of
%:AHC(F(-; w) —u),

.51 D (s 1)~} oo =0,
on
u(0+, -)=f. (backward equation).

Remark 3.1. If ¢=0, (3.51) is a parabolic differential equation
with a non-linear boundary condition.
Now assume >7¢,(x)=a(x)eC(D); then v(¢, x) =M, f(x)=
n=0

E, []Y(X,)] , feC(D) satisfies

@.52) ot =T+ | K dsdy)asdnit—s,5),

and hence v(¢, x) can be regarded as a solution in a weak sense of

ov
{W—Azwc(a—l)v,
(3.53) ov _ _
L%-{—B(a Dov|sn=0,
v(0+, ) =f.

The expectation semi-group M, can be represented in terms of the
reflecting A-diffusion X=(x,, P,) as

M. f(x)=E, [e.r;(a-l)(x;)m,] )
where A’:Stc(x‘)ds_,_gtﬁ(xs)d(ps .

(C) Branching A4-diffusion processes with absorbing boundaries

Let (x,, P.) be an absorbing barrier A-diffusion.process, ie. a
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diffusion processv on S=DUJ {8} with 6 as a trap such that v(Z, x)
=E.[f(x)], for sufficiently regular f=C,(D),*® is a solution of

ou _ . _
W—Au, lxl_r)rslu(t,x) 0,

where A is the same differential operator as in (B). For given
c(x)eC(S)* and ¢.(x)=C(S)* such that ¢,(x)=0 and >q.(x)

=1, let X°={x), P} be the eJ ;"(")'“~subprocess of X and ;_(iae de-
fined by (3. 43). We shall call the (X° =)-branching Markov process
X a branching A-diffusion process with absorbing boundary. In this
case it is easy to see that if we set T={9,9, [d, 01, [5, 9, 8], ---},
then, with probability one for all P,, X, T implies X, T for all

s>t. It is natural to set
(3.54) ¢&,=I,(X,)

and call it the number of particles, that is, we are interested in
only those particles which are in D. Then the extinction time and
the explosion time are defined respectively by

es=inf{t; &=0} =inf{¢; X, e T
and

es=lime,, where e¢,=inf{¢; &, >n}.

n-»c0

%A and c(x)=c (constant) was studied by

Sevast’yanov [41] and Watanabe [46].

The case when A=

(D) One-dimensional branching diffusion processes

Let X=(x,, P.) be a regular conservative one-dimensional diffu-
sion process on S=[r,, 7,] with appropriate boundary conditions.
Suppose the local infinitesimal generator of X is given as

_u'(dx)
Au(x = D) )

32) D is a domain in RY with sufficiently smooth boundary and DU {8} is its
one-point compactification.
33) Co(D)={f; continuous on D and lirralf(x) =0}.

34) wu*(dx) is the Stieltjes measure of u*(x) —du (if u* is of bounded variation).

dx
Cf. Ito-McKean [19].
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Let 2(dx) be a non-negative Radon measure on S and A, be the
cotresponding additive functiornal.*® Given ¢,(x)=C(S)" such that
g,(x)=0 and iq"(x)sl, define =(x,dy) by (3.43). Let X°={x],
P2 be the e“:'-éubprocess of X. We shall call the (X°, n)-branching
Markov process X a one-dimensional branching diffusion process.
If P°(¢, x,y)m(dy) is the transition probability of %}, then the kernel
K(x; dsdy) is given by

K(x; dsdy) = P'(s, z, y)k(dy)ds,
and hence u(¢,x)= T,,?\(x)zE,[]/c\(X,)], xES, satisfies
(.55 ult, )=\ P(t %, 9)7C)mdy)

+ S;dsSSP"(s, X, ) FCy, u(t—s, ) k(dy)

(S-equation)

where F(x; f) is given by (3.45). If »; (j=1 or 2) is regular and
the boundary condition of x! is given by

pPu(r)+ (~1)pP 2% ou )+ b lim A'u(x) =0,
(PE"ZO, i=1,2,3),
u(t, x) can be regarded as a solution in a weak sense of

ut(dx)+k(dx)(F(x; u)— u)
at m(dx)

(3.56) PluGr) = F(ry )]+ (=1 pP 2 ()
+p§'3) lim Aou(x) :O’

x->rj

u(0+, -)=/1.

If a(x) = io nq,(x) € C(S), then v(t, x) = M,f(x) = E.[ f(X,)] satisfies

35) Aa=Sstp(t x)k(dx) where ¢(t, x) is the local time at x&S. cf. [19].

B _ u(dx)— u(x)k(dx)
36) Au(x)= i d)
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@5 ot )= Pt 5 )A(5)mdy)
+{'as{ Prcs, 2. aCrv—s »k@n,

and hence v(f, x) can be regarded as a solution in a weak sense of

v _ v'(dx) + (@—1D)v(x)k(dx)

ot m(dx)
(3.58) lpﬁﬁ(l —a(r))o(r)+ (=1 pP2L(r)+ pP lim A'w(x) =0,
v(0+, ) =f(x).

M, f(x) is expressed in terms of the original diffusion process
X=(x,, P) as

M, f(x) =E.[efie0ea0 £ 1) ).

Example 3.5. Electron-Photon cascades

These branching processes are discussed in detail in Harris [8]
Chapter VII. Unfortunately a cascade process with infinite cross
section can not be put into our formulation and so we shall formulate
only a cascade process with finite cross section.

Let S=[0,00]x{1,2,3} and 7T} and K be defined by

(3.59) T3 f(a, ) =f(a,j)e ",

3.60) | K((a,); dsdnf(y)=c,fla, e ds,
0<<c;<<oo, j=1,2,3, ac|0, o).

Let n(x,dy) be a substochastic kernel on Sx S such that z(x, S)=0
and satisfies the following conditions:
3.61) x((a, 1), {y=1[(au,2), (a(l—u),3)]€S* 0<u<1}) =1,

(3.62) Ix((a, k), {y=1[(au,1), (a(l—u), k)| €S* 0<u<1})=1,
k=2, 3.

Let X° be a Markov process on S U {4} with {4} as its terminal
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point such that its semi-group is given by (3.59). We shall call
the (X°, n)-branching Markov process X an electron-photon éascade
Dprocess with finite cross section. Physical meanings are the follow-
ing; the number @ in (@,1)€ [0, o] X {1}, (a,2)E [0, oo] X {2} and
(a,3)e [0, o] X {3} represent the energy of a photon, of a positive
electron and of a negative electron, respectively. (3.61) describes
the law of pair production of positive and negative electrons, and so
on.

We set further the following assumptions;

(3. 63) CO:C3,

(3.64) there exist measurable functions k,(#%), k.(#) on [0,1]
such that &,(#)=k,(1—u) and for every E€ %[0, 1],

w((e, 1), {y = [(au,2), (@(1—1),3)]; weE)) = k(w)du,

=((a, ), {y=[(an, 1), (e(1-), B); u=EY) = mGau,
k=2, 3.7
In the sequel we do not distinguish positive and negative electrons
and therefore consider only such feC*(S) that f(a, 2)=f(a, 3).
It is clear from (3.63) and (3.64) that E(,,_z)[f/'\(X,)] =E(a,a)[f/\<X,)]
for every feC*(S) with f(a,2)=f(a,3).
Now #,(4, @) = E n [ (X)), (j=1,2) satisfy

(ul(t, a)=f(a, 1)e‘cl‘+c18;{S:ug(t —s,an)u,(t—s,a(l—u))

(3. 65) kl(u)du} eereds

t 1
L u:(t,a) =f(a, 2)e“2‘+c28 {S u, (t—s, au)u,(t —s, a(1—u))
. 0 0
kz(u)du} eevds,
(S-equation),
and hence they satisfy the backward equations:

37) By (3.61) and (3.62) it follows that \ ki(w)du=1, i=1,2.
0
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{ 661;1 (t,a)=—cu (¢, @) +c1S:u2(t, aw)u,(t, a(1—u)) by (u)du,

(3. 66) 1
I%(t’ @)= —ca(t, @) +6280”1(t’ an)u: (¢, a(l—u)) k. (u)du.

A\

v;(t,a)=M.f(a,j) = E.»[ F(X)], (j=1,2), satisfy

f' 0.(¢, a)=f(a, e+ czg; {S: [v.(t—s, au)
| o (t—s, a(l —u))]kl(u)du} eevds
(3.67) ¢ (el
=f(a, 1)e“1‘+20180 {Sovz(t—s, au)kl(u)du} e r°ds,

v.(t, @) =f(a,2)e "+ CZS; {S: [v.(E—s, au)
+0.(t—s, a(l—u)) 1 k() dub 2 ds,

7

and hence they satisfy

f %(t, @) = —ci(t, @) +2c181v2(t, aw) k() du,
(3. 68)
v, o !
L"aT(t’ a)=—c0,(¢, a) +czg [v.(t, au)

+v.(t, a(1—u)) ] k. (u) du.

Consider, for instance, the number N,(E) of electrons at time ¢
whose energy is greater than E. If we set

1, x=(a,2) and a>F or x=(a,3) and a>E,
gs(x) = {

0, otherwise,

then clearly N,(E)=g:(X,). For 0<i<1, set fe(x) =22:; then
E,[j/’;(X,)] =E.[A2Y®], xS, It is easy to verify that

(3. 69) Eoplfo(X)] =Ea L fon(X)],

and hence if we set
(3.70) ¢i(t, E)=Eq, ,[2"®)] (7=1,2),

we have from (3.66) that
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% (1, E) = —cipn(t, E)+ c18:¢2<z, %>¢2(t, —f%)kl(u)du,
(3.71)

1
% (1, B) = —cun(t, B+ o (. £ Yo (8,55 euCirau.
Similarly if we set m;({, E)=E, »[N,(E)], (j=1,2), then we have
from (3.68) that

O (t, B) = —comi(t, B+ 26 m(t,
0

k(1) du,
(3.72)

‘l‘rj &’trj

amz (t,E) = —c.m. (¢, EN’“’-S{ ‘(

e o
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)
)

(u)du.



