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The branching property o f  semi-groups and branching Markov
processes were treated in Part I  but the problem of construction
was not discussed. We shall construct (X°, 70-branching Markov
processes in  a  probabilistic w a y . We shall first give a  theorem on

constructing a strong Markov process from a given Markov process

by a piecing out procedure generalizing a method o f Volkonsky [44] ,
where a  lemma on Markov time due to  Courrège and Priouret [4]
plays an important ro le . In  chapter III, we shall apply the theorem

to obtain ( X°, 70-branching Markov processes and give several ex-

amples.

The numbering continues that of the first part, pp. 237-278 of

this journal. References such as [1 ] are to the lis t a t the end of
the first part.

II. Construction of a Markov process by piecing out

§ 2 . 1 . Construction

Let E  be a locally compact Hausdorff space with a countable open
base, ( W , g ) be a  m easurab le  space  on w hich  a  sy s te m  { P,, x .E }
of [probability measures is given, and ,a(W , d y )  b e  a  stochastic
kernal on ( W, .S ) x  (E , g(E )). 1) Let Q =  W X E, = g 0 g ( E )  and

1 )  We assume that, for every B E g ,  P.[1 3 ] is g(E)-measurable in  x .  A  stochas-
tic  k e rn e l p(u), dy) is a  kernel such that for each to it is a  probabillity in dy.
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-

S 2=112, (S 2,=S 2, j = 1, 2, • • •) with the product Borel field 0  g i ,
1=1 1=1

( g  j

=—
g  = 1 ,  2 , • ••). Further we define a stochastic kernel Q(x, dw)

on (E , g (E ) )x  ( s 2 , g )  by

(2.1)Q ( x ,  A ) 1  P . [d t v i , a ( w ,  d Y ) , A .E g ,
A

where we denote û= y ) .  T h e  following theorem is a direct con-

sequence o f Ionescu-Tulcea's theorem (c f .  [2 9 ] p. 137).

Theorem 2. 1. There exists a unique system {I5 „  x e E }  of

probability measures on (A  ® 9 )  such that, fo r  every measurable

function F(c01, (02, ••, coO on (112,, ® 9 )  ( n = 1 ,  2, •••),
1=1 1=1

(2.2)( 0 2 , •  •• , co n )] •• Q ( x ,  d(01)Q(x1, d(02)•••
IdX••• X 12

x clto „ ) P((01 ., oh , • ••,

where co,— (w „ x ,).

In  th e  following we shall assume that we are given a  right
continuous strong M arkov process X° = (W , -B,, 13 „ x eE , x ,(w ), 0 ,)
on E  such that 2 3 ,= A + 0 . We assume also that X° has the terminal

point d e E ;  the life time C (w ) is defined by (O. 7).

Definition 2. 1. A  stochastic kernel p (w , d y )  o n  ( W, Ms) x
( E ,  g ( E ) )  is called an instantaneous distribution i f  it satisfies

(2.3)P . [ P ( w ,  dY ) = P(Orw , dy ), T<C1-13 .[T <C ]

for every g9,-Markov time T.

An instantaneous distribution gives a law which tells us how to
piece out paths o f th e  given M arkov process x,. We shall define
a  new process X,(ã), c o e i i  as follows. First o f  a ll w e  put for

(w, y) Q== W x E,

(2.4) t(co) =
t<C(w),
t C(w).
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For CO= (oh, (02, • • •) E where w =  ( w ,  y 3 ) ,  Putting

linf { j; C(w i ) =0} ,
(2. 5) N(C6) =

0 0, if { = 0 ,

we define X ,(61) on (S2, g ; )  by
j=1

if 0 < t< C ( w i ),

-ktœsc.1)(0)2), if C (w i)< t< C (w i) +  C (w 2)

(2. 6) X,(C6)=
—Wu, 0+60v2)+ • +“, , 0)( ( .0  n +1) ,

n+1

if E  C (W / )< t < E  C ( W i ) ,
5=1

N(o)
if t>EC(vv i ).N 3=1

The life time Z: . :( ( 6 )  of X,(6)) is therefore defined by

N(Z)
(2. 7) C ( i)  =  E

J=1

Further we shall introduce a  sequence { r„(eii), n = 0 ,  1 ,  2 ,  • • . }  of
random times by

(2.8)r o  (a)) =0, r(ei")) (CO C(W i ), • • •

nA N ()

j=1

Remark 2.1. I f  p(w, , E— {4} )=1 , then clearly P x  [I-„< e  for all
n=1, 2, • • •] = 1 , xE  E—  {J}  ,  where P ,  is  th e  probability measure
constructed in  Theorem 2. 1.

Lemma 2. 1. L et 13:  be def ined by  Theorem  2. 1. I f  we set

S2- 0= {(7); Xt(C0) is right continuous in  tE [0, co)),
then

715., [Z ] =1 f o r every  xEE.
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P ro o f .  I f  we put
—
S2i= {0); X,(Co- )  is right continuous in  ( r „ ,  r ” d - i.) ,  n= 1 , 2 , • -} ,

14= {C6; X .  =rim X, (w,,+ 1 ), n=1 , 2, • -}
14, 0

where (7)= (oh, oh, • • •)  and oh = (w,, x ; ) ,  then /3: [S2- 1 ]  = 1  since x ( w )
is right continuous. On the other hand, we have by the definition

of the measure î l . that

15.[,72'2] =1im••• Q(x, deol)Q(xi, da>2)•••Q(x„, d o ,)=1 .

Hence we have ./- 5  [ lio] = [ r- Cs-22] =1.
—

By this lemma we can restrict every quantity defined on S2 to
-S-20 . Let ço, be the projection of S2 to II S2, (S2, =S2) and define

j= 1

(2. 9) =  (0  g ' ) / S 2 o ,2 ) w here g ' =  X _ O g (E ),

gj= f ftr k
=  9 - 7 0 and

k=1 j= 1

Yl t =cr B (E ); X ,(6 )), s<t}

In order to introduce new Borel fields we need

Definition 2. 2. L e t  T(Co-)  be a  random time defined on  S2,,

taking values in [0, 00] . Cr), 2 ' E120 a r e  said to be R T -equivalent,
and denoted as

(7)—(71 (R i ) ,

if

(a) T(Co) =  T (V ),

(b) = X , ( ') f o r  all s<T (6 ))

and

(c ) i f  ri,(Co") T(C6)<I-k+1((i)) (CO, then rk (Coa ) K T(a3')Grk+1(V)

S C ( V )  and r i (C6)---c i ( C 6 ')  fo r  every j < k ;  while i f  T (6-)) >C(cr,),

then T(Co- ') >Z ; (55 ')  and r  (55)=---r ; (6)') for every j  O.

2 )  g/72„-tEni2-0; E 2 } .
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D efin ition  2 . 3 . W e shall set

(2. 10) -70 = { A ; i)  A E -249 and ii) if (7) A  and C6—C6' (R T ) ,

then E A} .

It is clear that :47. is a Borel field on 5-2 0 . Several properties of
..4 7, are given in the following lemma.

Lemma 2.2. ( i ) t>0} 3) i s  a n  increasing  f am ily  of
B orel f ields on iio ; A c .4 ,  if  s t. A ls o

(ii) def ined by  (2. 10) f o r r, (def ined by  (2. 8)) coincides
with def ined by  (2. 9). 4 )

(iii) r” is  a  :4,-Markov tim e f o r each n.
(iv) T(C6) is  a  --g),( - 3,+0)-Markov tim e if  an d  only  if

a) T(6)) i s  -j-m easurable and
b) i f  T (c())<t (resp. T ( a) <t)  and cz----07/(R,), then  T(5))=

T(V ).
( y )  I f  T  i s  -j,-M ark ov  time, then

Aa= {B; B E  suchsuch that B n{ T <t}  G . -A  f o r all t>0} .

P ro o f .  ( i )  is  c lear. A s for ( ii) , take AEçoIT'(09 . )/Do and
,=1

assume that cu- A  and ( R „) .  Then it is clear from the
Definition 2.2 that V G A .  This proves A E .4 „ .  Conversely take
A E k , k . I f  @GA and çokeb=gak Co- ',  then clearly u6—o f  (R ,)  and hence

CO- 1  G A .  Therefore vv7 1 (o(A))F1720=AE07 1 ( 0 g ')/ S-2-0=
Since (iii) follows from (iv ), we shall prove (iv). L e t  T(c6)

be a  A -M arkov  time and assume that eiiE {T<t}  t . I f  (D'—c0-

(R ,) then by the definition of 70, we have (Z' E {T t } ,  i.e., T (6 0 < t,
and if we had T (o )< s < T (e -0- ') < t  then this would imply eijE {T<s}
and ei-j— e  (R s ) . 5 ) Hence YE  {T <s} , i.e., T(co- ') < s  which is im-
possible. Th ere fo re  w e have T(6))---- T (6 1 ) . Conversely i f  T(6))

3) A is defined by taking T(c;:)) t.
4) Therefore " '"  will be om itted in  the sequel.
5 )  It is clear that co— co' (R e )  implies ca----co' (R e )  for all s t. ( iv )  is true for

any system of equivalence relations (R e )  having this property.
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satisfies a) and b ),  then clearly {T <t} E  '-_-.; and for ei5E {T t } ,
co- —a' (R,) implies V E  {T <  t} . Thus { T t }  E ,  and  hence T  is
a  A-Markov tim e . T h is proves (iv).

Finally we shall prove ( v ) .  Let B  be such that Bn{T<t} E A
for all t > 0 .  Take (ZEB and assume c ii' — ii—Cii (R 7 ). Then, if we put
t= T (5)), we h ave -6)- E B n {T = t} E A  and  V — eii (R ,). Therefore
co- ' EBn  {T= t}  which implies Co'EB and hence B E A , .  Conversely
assume B G A , and take (DeBn {T <t}  and V  such that V—e,-)(R ,).
Since T  is  a  .7.,-Markov t im e , if  T(ai) t a n d  5)--- e  ( R , ) ,  then
T(c7)) — T (V ) by ( i v ) .  Hence eij —V (R T )  b u t this implies V E B
and hence VEBF1 {T <t}  .  Thus B r1{ T S t}  EA.

Now we shall define the shift operator é, : .60--->iio a s  follows:
for 55.---='(wi, (02, (03, •••),

((0t-,,(zwk+i, x0+1), ( 0 0 + 2 , C O k + 3 , . .• ) ,

Theorem 2.2. L e t  X ° = g t ,  P,, x,, et} be a  right conti-
nuous strong M arkov process on  E  with J E E  as  its  terminal
poin t such that 1-"Bt+0= g t  an d  le t u(w , dx ) be an  instantaneous
distribution. Then the system X = {:(2'0, A+0, 715x, X ,, ét, -C-}  defined
above is a right continuous strong M arkov process on E  with d
as the term inal point such that

(i) th e  process {X „ t <z , P ,}  is equivalent to th e  process
{ x „ t<C, Px } an d

(ii) f o r every B eY l_ and A e g ( E )

71-) ,[ {to ; w1 B  and X.,(COG A)] 13.,[dw] A(w , A),

{

(2. 11) if rk ((i)) <  t G rk + i(C ii) and t < - .C(5)),
-
0,53=

( w l  co k-I-1 . . . ) ,

if t> Z ; (6 )) and k=inf  { j ;  x o ( w , )  zi} •
By a  straightforward calculation, it is easily checked that

(2.12)X ,( i i t e D ) =  X,+,(6i) for all s, t > 0, a)E90
On the basis of the above notation our theorems of construction

read as follows:
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where we write (2)- —(0)1,0)2, •••) and a);  = (wi, x5).

By Remark O. 1  (i i i )  we have

C orollary. X = { Z 0,9,, )57,, X , ,  , 6 is strong M arkov , where
we set _g -

E > 0

Theorem 2. 3. I f  X° =(x „ P x )  satisf ies P,[x,_ 0 (w )  ex ists in
tE (0 ,0 0 )]=1  f o r all x E E , then X — (X „ -15, )  satisf ies TP-x[X,_0(e0- )
ex ists in  t ( 0 ,  (w)), —1 f o r all x e E .  I f  f u rth e r, sup Px [C<00]
=oz <1, then Pi[X ,_,,(6i) exists in  t e a  00)] =1  f o r  all x e E .

Theorem 2.4. I f  X° ---(x„ Px )  is quasi-lef t continuous
and C is totally  inaccessible (cf. M ey er [31] ), then X =(:60,9 ,,
is quasi-lef t continuous before e , i.e., if  T ,„ n =0 , 1, 2, ••• and  T
are  9 . ,-M arkov  tim es such that T .  T ,  then

[lim X T ,=X T ; <e] =PA T < -e] .

Theorem 2.5. 1 )  L e t  X° —(x„ Px )  be a  H u n t  process
and C be totally  inaccessible. Further w e assume

(2.13)1 5 ,  =  D o i  =1 f o r all x eE—  {J} ,

then X =(2- °, -15„  „  X , )  is  a Hunt process.
2 )  In order that the condition (2. 13) be fulfilled, it is sufficient

that p(w, E—  {J} ) -= 1 f o r all w  such that +00>C (w )>0 and that
one of  the follow ing conditions be satisfied;

(1) sup P x [C(w) <00] = a < 1 ,  or
.TE E -  ( 4 1

(2) f o r some e 0 .  i n f  P x [C ((0 )>  e ] =8>  0,
r .E -  ( 4 )

Proof o f Theorems 2. 2-2. 5  will be given in  the following.
We shall give simple applications here but they will not be used in
later sections.

Example 2. 1. For a given strong Markov process X °=(W ,
_B „Px , x „e„ C) on E  having [left !limits with zle E  as its terminal
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point and for a given probability kernal d y )  on  (E— {J })
x (E—  {J} ), define a kernal p(w , dy ) by

p ( W  ,  d y ) =
1,a(x )_(w ), dy ), if 0  <C (w )<+ co and x 4._GE — {X ,
8 { i } ( d y ) , ° )i f  otherwise.

It is easy to see that p(w , d y ) is an instantaneous distribution. The
case o f ( x , dy)=8 (,) (d y )  was considered by Volkonsky [44].

Example 2. 2. Let E' =E° U a E, where E '  i s  compact and
E ° is a dense open set of E ' .  Let E =E °U  {J } be the one-point
compactification of E °  and X °  ( W, .0 „ P x „ 0 ,, C) be a  strong
Markov process on E  with J as the terminal point. Suppose, for
xGE°, P,.[lim x ,(w ) exists in OE in the topology of E', C(w)<+ 0.0]i1.

P,[C(w )<00] . If for a given probability kernel i't( , dy) on aE x E°
we set

ifi(x<_(w), dy),
dy )=

8 i41(d.Y),
i f  0 < ( w ) < ' ,
if otherwise,

then we get an instantaneous distribution. The process constructed
by Theorem 2. 2 is called an instantaneous return process (cf. Feller
[7] , Kunita [26] ).

§2. 2. Proof o f  Theorems

We shall give here the proof o f Theorems 2. 2-2. 5. It will
consist of several lemmas.

Lemma 2. 3. = V -é; for every  k  = 1, 2, • .

P ro o f .  Since .'- D..- -B,.,» B ; k
1 (249) . i s  clear, we will prove

Ak V 0---;-ki (-44) .  For this it is sufficient to show {ei-i; w i E /3} nijo
A,v for every B E g l where we write Co- = (w i, • • • ) .  This fol-

lows, however, from {(r); 0),E B} {(76; (OTA B} n :(2— o G

if j > k  and {e6; wi EBM:(2 0 E :0 „C A , if j< k .

6 )  8 1 4 1 (d y )  is the unit measure at 4.
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Lemma 2. 4. Let T(6,- )  be a :B',0-Markov time (resp.
Markov tim e ). Then for every non-negative integer k there exists
T,,(65,6)- ' )  on i2- 0 X -S2- 0 satisfying

(i) T2 (6), czi) is  - -_- „0measurable,
(ii) f o r  fixed • )  is  a ff9,,o-Markov time (resP. -4-9,-

Markov time), and
(iii) T(a)) V rk(e()) =T - k (6 ))+ T1(co",é,,,(76).

P ro o f. L et T(6- -) )  be a  2 -B 4 O -Markov time and set

T ) =  T(ôD)V  rk(e6) — rk(C6);

then by the previous lemma there exists a  j9r,0 -ffJ-measurab1e func-
tion T;(6), a/) such that

T;(iD)=T;(c7), -b„cf,

We modify T; and put

(T;(6), (7/), if X „(a))= X o (a)'),
T,(@,6/)— if X „(5))*X 0 (a/).

Clearly T,,(a , co- ' )  is  a lso  -. „0:6-measurab1e. I t  is  only necessary
to prove (ii). For this it is sufficient to show by virtue of (iv) of
Lemma 2. 2 that i f  T 3 (a), a'),) <  t  and a)", ( R t ) ,  then 7;(6"), (70  =
T k (a), a)2 ). P ut rk (c7)) and w rite ai= ((Di, (02, (03, • •-), = (col, (IA,

o4, • • •) and a h =  ( 4  4  (023, Then from Tk(er), 531)< t  and (111—(-63

(R ,), we have X„((7)) = X0(553) = X0((-o2). Therefore if  we set

(w1) a ) :27  •", ahel (°L w 13, •••)

("(7)f,= ( ( o i ,  (02, •••, (01, 4  4  (4 , •-• )

we have, noting z- 2@7;;) = r 1 (6%) = rk (5)) S ,

(2. 14)

Moreover, we have

(2.15) (i1=1, 2) and

(2.16) 65 —(74 (R,,,).
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Therefore, from (2 . 14 ) and (2. 15)

(2. 17) T,(6) , (T) =Tu(Co% é.„(70- ;)

T ( )— r k ( c z : )

=rk(d)- ) V T ( 6 )  —s,( i  = 1 ,  2)

and also

(2. 18) rk(@;) V T(0) ) = r ( ã )  +  T,(6), ro i ) < s + t .

By virtue o f ( iv ) o f  Lemma 2. 2 , (2 . 18) and (2 . 16 ) imply

(2. 19) r,, ( ) V T (e -01) = 7 4(Q V  (6-.) )

Then by (2 . 17 ) w e have T,(6), er),) =  7;(6), (i)e).

The proof when T  is  a  :43,-M arkov time is quite similar.

Lemma 2. 5. (i) For any BE.  and A E -A

(2.20) - A [A , -érk ei)- E B ]= É x [i5x , [B ]; A].

(ii) L et g (a) , t )  be a  bounded :0-0_B [0, 00]-m easurable function
on 2 0 X [ 0 ,  0 0 ] .  I f  a ( ô ) > 0  is ..7B „-m easurable and

(2.21). - - k , [ g ( é . „ ( 6 ,  e l ) ;  A] =Îg x [k x ,[g ( •  ,  s)] ; Al.

(iii) L et g(e6, ei:/) be a bounded ..43- „ 0 -.. -m easurab le  function on
—
pox ,Q0. Then f o r every

(2.22). - g x  [g ( 6 ) ,  b '„ ( 6 ) ;  A] = t 1 [É x . , ,[g (u , • ) ]1 _ ; A].

P ro o f. For the proof of ( i ) ,  taking A i E g r ' , j  =1, 2, ••., n ,  we
have from the definition of /--'-;„

f5x [{(7); co1 EA1, co2EA2, ••., 0)„ A „ )]

=  • • • f  Q (x , doh. )Q(X ,,(67)), doh) • • •Q (X •rh - i(), clo)L) •••J JAk Ak + I

•Q(X,„ c104+1)•••Q(X-,-,_„ ch0„)

••• Q (x , d0)1)Q (X ,„c1(02)•••Q (X ,„ do),)
A l A k

• E { C6  ; (.0 1 A k + 1 ,  •  •  •  (O n- k E  A . } ]

[15x„ [{ai; colEAk+i, * * * ,  0).-k E A „} ]; {a); 0)1E 4 ,  — , wkE Ak}]
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T h is proves (2. 20) fo r  A= {63; w j A 1 , •  •  , te k  ilk} an d  B= {ro;
co i  E  Am , •••, co,,_,, E A „} . By a standard argument we have (2. 20) for
any A E A ,  ar d BE -E .  (ii) follows from (i) by a standard argu-
ment. To prove (iii), we first assume g(6.), V )=g i(C g 2 (co ') , where

g 1  is bounded _4-3„-measurable and g , is bounded -measurable; then
it follows at once from  (i). By a standard argument (2. 22) holds for

every bounded .4-3,,Ø_ - -B-measurable function 6 - / ) .

Lemma 2. 6. Let T  be a ..4 -31 , 0 -M ark ov  time (resp. :B i -Markov
time); then there exists an 7 7 , 0 -M ark ov  time (resp. g1 1 -Markov
time) T '( w )  defined on W  such that

(2.23)T ' ( w )  =  T ( '03) for co E  {at); T ( o i) < ( ) , =  W} ,

where we write D= ((wi, x1), w2, oh, • •-) •

P ro o f. For a fixed wE W, put A ={ 6);T (5))<r(Co") and wi = w} ,
where 65= ((w1, y), w2 , First o f a ll, n o te  that i f  65 and 65'
belong to A_ then T (co)=T (eo '). In  fact, if T(Co- ) < t <r(e7)), then
we have (6 —6-/  (R 1 )  since x ( w 1 ) =x ,(w ;) for s K  t .  This implies
T(Ci) = T(C5') by (iv ) o f Lemma 2. 2.

Now set

I T (6)), ebEA „, if
(2. 24) T '(w )=

if

We shall prove T '(w )  is  A + 0 -Markov time (77 1-Markov tim e). In
fact, if we assume T '(w )< t  and x ,(w ) =x s (z e) for all s t ,  then
Co-  —6-1(R,,,,,c0-) ) ,  where we se t Co-  = ((w, x), w2, w3, • • •) and CD' = ((iv%

(0, w , • ••). Therefore T' (w ) = T(63) = T(co')=T ' (w ').  This
implies that T '(w )  is an 17, 0-Markov time by Lemma 2. 2 (iv) (cf.
Footnote 5 of §2. 1).

Lemma 2. 7. Let f  be a bounded measurable function on E,
g ( x , t )  be a bounded measurable function on Ex [0, 00 ] and T  be
a -J , 0 -M ark ov  time. Then
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(2.25)[ f ( X T ) g ( X ,  r— T ) ; T <r]
--- -É.,[f (X T )f ;cr[g(X „ r ) ]  ;  T < r ] .

P ro o f. It is su ffic ien t to  p rove (2 . 2 5 ) fo r  g  o f th e  form
g(x , t)= g 1 (x )g 2 (t). In this case we have by Lemma 2. 6

[ f (X T )g i (X ,)g,(1-- T );

= E.,[f(X T) I g 1(X,-)g2(C (or ,  w))]

13 ,[dw] p(w, dY )f(x7A .)(w)) 1(7.,<) g1(Y ) g2(C(er, to)).

This is equal to, since , u  is  an instantaneous distribution,

P,[dw]f(xTOTT'<s}g2(C(OT , w)) dy )g,(y ).
VV

Then using the strong M arkov property of X ° =  { x t ,  P ,) ,  th is is
equal to

E,[f(xT0IIT'<s)E, T
, [g2(C) E p.(w , dy)g,(y )]]

— E,[f (x T
,) I i r

,
< < 4.,[g ,(X .,)g ,(r)11

[ f (x T ) I ,7 „ f „ T [ g i ( x , ) g , ( , ) i i

and the proof is complete.

Lemma 2 . 8 .  L et g ( x , t )  be a  bounded measurable function
on  E x  [ 0 ,  0 0 ] ,  T  be a L o-M arkov  time and A E A + 0. Then

(2.26)z ( b - T e D ) ) ;  A]
= f , [ f x r [g(X „ r ) ]  ;  A].

Proof.

k x [1 { „ , , ,k + o k x r [g (x „  r ) ]  ;  A]

• x r_rk ark -c.-,)[ g ( x -  r ) ]  ;  A ] .

By Lemma 2. 4 this is equal to

[ 1 [, 711107',(c. „Z )<T (Ii„Z )l k a [  g ( X , r ) ]  ;  A],

where a= X r h ( Z . 7 9 , ) ( 6 + „  as), and by Lemma 2. 5 this is equal to
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ÊTr r ) ] A].

Applying Lemma 2.7  o n  T ,(u , • )  and by Lemma 2.5 this is equal
to

r —  k •  ) ) I ; A]

= E, [ I IT 1(0  T 7i7,Z)<r(67,7;))

• g (X , (
-
67, -

) ( OT ,C6), r(0- „63)—  T,(65,7ir k e b ) ) ;  A]

— E(,[1 -
 Irk < r ig  (X, k „,, rk + , T ) ;  A]

=k [I,,,r<rk ,,ig(x T arz )( -6-+Te6), , (e- 7.6))); A].

Now summing up the first and the last expressions over k, we obtain
(2. 26).

Proof o f  Theorem 2. 2. W e have only to  prove the strong
Markov property of X = (X „  P,, A+0) • Let f  be a bounded measur-
able function on E such that f ( J )  =  0 , T  be a L o-Markov time and
A E ff'3 , 0 . We shall prove

(2. 27) rk i[ f (x T +,); A] =  f . [ fx , [  f (X , ) ] ;  A] .7 )

Set

I= E l[f(X T + e); An {T < t- ,< T + t , for some k)]
and

II= É.,[ f(XT+,); An {rk <  T, T+ t < rk + i  for some k l] .

Then clearly the left hand side o f (2. 27) is equal to  I+  I I .  Now

'E [ f (XT + ,) ; r 5 T ,  T -F t < r k + i , A]

=k .[ k ) ;  0  < T  rk  < r ( -6+„65) ,

O T —rk -F t<r( -6,,C6) ;  A ].

By Lem m a 2. 4  th is is equal to

Ê, [ f (XTk( „)+ ,(k eD )); O < T k ( a i  -6+1,,55)<T-C0 r ,

O <T k (16,b-.,,c75)-Ft < r ( -6„(6); A]

7 )  F o r  convenience, we s e t  X.C2L)=4.
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and by Lemma 2. 5 (iii) this is equal to

0  < T k (u , •  )<  r,

O < M u ,  • ) + t< r ]

I f  we apply Lemma 2. 6 to  Tk ( u ,  • )  w e  g e t an R +0 -Markov time
M u , w )  o n  W .  Therefore by the strong Markov property of

{x„ P-71,-0 } ,8 ) the last expression is equal to

Z [Iirk rIn A •E x „ [E x T ; ( .,. ) [ f(xt); 0 < t < ];  o<Tk(u, •) <C] . 1

— Z[1{,k :0-}nA• k x „ [ : —E x T (  v . ) [ f ( X t ) ;  0 < t< r ] ;  O < T k (u , •  ) <Ti “

By Lemma 2. 5 (iii) this is equal to

f ( Z ) ;  0 G t  < 7 ] ;

0<T,(C6, - -„(5)) <T(brk(7))1

= -Elir[„„<„,„}nA kx,[f(xt); o t <r]].

Thus we have

I I = E Z [ f(X r+ t ) ;  r k < T ,T -h t< rk + i ;  A]
k =0

= Z [Ê x T [ f(X t ) ;  0 < t  < 7 ] ;  A].
Hence

(2.28)- É - "  [Èx r  [ f ( X , ) ] ;  A] —  I l= k [É x r [ f(X t) ;  r < t ]  ;  A].

It remains therefore to prove

(2.29)I =  Z [ E  x r [  f ( X ) ;  < 1 . ]  ;  A],

and this can be verified as follows :

E .[É x r [f (X t); t • < t ] ;  A]

670); r < t ]  ;  A].

By Lemma 2. 5 this is equal to

kx[Êx T r fx ,E f(X ,- . ) ]  I ;  r < t ] ;  A]

8 )  By assumption f x t ,  g c l  is  strong M arkov  and 12t*GEfft.0=- 2 c ;  therefore
{xt, 72 0 . 0 )  is strong Markov.
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and by Lemma 2. 8  this equals

[kx,( -0- 7,7,)(éro [ f (x i - ) ]  La 9 <  t ;  A].

Because o f  (0, (6) = rk+, — T  on {rk <7' < rk+i} , the above expression
becomes

I ; rk+, — T t ;   A].
k=0

Since {-1-k+1 — T t} n{-c-k T<rk+i} nA is _43-1,-m easurable, by Lemma

2. 5 this is equal to

(T
0
O ) ]

= E Z[I(7k<7<7,<T+t}nA•f(xi+T)]

f (X T + ,);  An {T <r,<T + t  for some k} ]

=I.

This completes the proof.

Proof  o f  Theorem  2. 3. The first assertion is almost clear from

the definition. Assume

sup P.,[C<cx)] =a < 1 ;
SEE— Ed}

then

[1-„(eD) < . ,  N (6)) = co ]

=' -k [15x , [ r _ i < ,  N =  + .0 ];  X rE E —  {J }  ,  r <c>.]

<a sup 7P, N =  + 0 0 ].
S E E —

Thus we have

sup 15, [ (e0< o‹), N ( 6 ) )  Do] <a sup P: [r„ , (d i) < o e , N (6 3 )= -00]
E E -  { 4 }„ E _ i o

and hence

sup i 3:[1-„< . ,  N = . ] c v " .
F E E—

This proves that for every {J}

P [ < . ,  N  = -15., [r„<c). , N = 00] = 0 ,
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that is,
[r. (CO) = 00 or N C(0<c>.] =1.

Now the second assertion is  c lear fro m  th is  and the w ay of the
construction.

Proof o f  Theorem 2. 4.

[lim XT  =x7.; 7 - ‹ -e]
PI • CO

= E  [ l i m = XT; 7 , <T <rk +i] •

Applying Lemma 2. 4 fo r T „ and T , we have

P l[lim X ,„=X T ;

=  . XT „1- )(b--,.(t-j) X e c „ I ( j r , ;
n - o o

rk <T,Tk(co-,-Ôrk6))<7(ëkco-)]

=k 1[152f, X rq „ • )= X e ( ,.) ; O <T k (U, • )< 1-1 r, < T ] .

Noticing that x t is quasi-left continuous and C is totally inaccessible,
the last expression is equal to

= k [r'x r k  [O< T k (u, • ) ‹ r ] rk < T ]

'16 .r [rk <T <rk +i]•

Thus we have

:15 [1ina XT„ =  XT; < C ] = E  Px [ 7 k<T <T k +11k=0

[T <e]

Proof o f  Theorem 2. 5. The first assertion follows from Theo-
rem 2. 3 and Theorem 2. 4. Now suppose

(2. 30) ,u(w , E —  {J }  )  = 1  for a ll w such that C(w)> 0,

and X ° = (x„ P x )  satisfies

sup P ,[C <0 .] =a<1 .
seE-fdl

We have noticed in the proof of Theorem 2. 3 that ( i )  implies
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"15 =  +  co or N(55)<0.0] =1;

but by (2. 30),

[N(c-0) = + = 1  for x E E -  {J} .
Hence,

[r,..(6)) + co or N(Cfi) < co  = f ) : [r .0( Z ) +o1
=  [4:- =  . 0 ,  = 1  for xEE - {d} .

Next we assume (2. 30) and

(ii) inf P,[C (w)> e] = a> 0  for some e > 0 .
‘GE - 14 1

Since {C(C6)<00} u n  {c (w o < e } , "  we have for x G E  -  {d}
/1= 1  k = n + 1

-  -
(2. 31) Px [e(c-6)<.]<iim  P, [  n  {C (w k) < }  (.1 { <c>°}1

-
= lim E [k x , [n {c(wo<.}1;

n->co k = 1

On the other hand, for x E E -  {J}

[F7 {c(wo<}1<E7r[,[n-  {c(wo<} ; cox,)<EI,
k=1k 1

<  sup P  [ n {c(0)<} • /5.. [c(w)<] ,10)
YE E— k 1

and hence

sup 1-5 11(5 {C(wk)<4 ] <(1—ô)—8) sup [  { c(wk)<) ] •
x E E -  (4) k-=1 x E E -  ( 4 1 0 = 1

This indicates that we should have

sup T3r [ f l  {c(w0)<} =o,
E— {41k = 1

and hence by (2. 31) 1 1 )

= 0  for every x E E -  {4} .

9) (7)= (col, co2, •-•), coi = (w j, x j) .

10) By (2.30),  -P-x [1 6 -E E -  {d }, r<00 ] =  -13.[1-<0.0] i f  x E E  -  {d ).

1 1 )  By (2.30), 7"3.[x.,-„ E- 0), ,n<00] = K [ r n< o o ]  i f  x E E -  {d }.
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III. Construction of branching Markov processes

In this chapter we will construct an  (X°, 70-branching Markov
process (cf. Definition (1. 6)) in a probabilistic w a y . Given a Markov
process X° on S U {J} with J as the terminal point, we will first of
all construct th e  n-fold direct product X„* o f  X ° and the n-fold
symmectric direct product X. o f X°, which are Markov processes on
S U  {J } and S "U {J }, respectively, with J a s  th e  terminal point.
Then we shall construct the direct sum if o f i -c„ which is a Markov

/ N

process o n  S = U S "U {J } w ith  J  as the term inal po in t. We will
n=0

next construct from X ° a n d  a  branching law rc a n  instantaneous
distribution g  (cf. Definition (2. 1)) fo r the process X. T h en  w e
will piece out the path functions of X  by g  according to the previous
chapter to get a strong Markov process X on g, which will certainly
be the (X°, 70-branching Markov process. The other analytic ways
of construction will be discussed in  Chapter IV.

§3. 1. Direct products and symmetric direct products o f a
Markov process

Let S be a compact Hausdorff space with a countable open base;
and let S ( ") , S ", C.J' S "  and Î=  S U {J} be defined as in §0.2. L e t

X° = { W, e(w ), , P ,  x ES U { J}  , o?, C°} b e  a  right continuous
strong Markov process on S U 1) with J  as its terminal point such
that .0?=-R+0.

Definition 3. 1. (i) For each n=1, 2, •••, a  Markov process

= {x7, 9 , " ,  PP" )}  on S( ' ) U  {J } w ith  J  as the term inal point is
called the n-fold direct product of X° if  it satisfies

(3.1) EX* =f iE ? ; [ ( x ) ]=i
for every x= (x i , x2, • • •, x„), f, C (S ), i=  1, 2, •••, n, and t>0. 2 )

1) d  is attached to S  as an isolated point. is the life  time.

2) fiC).-C)fn is a continuous function on S (n )  defined by f i0 . - (1)M xi, x 2 , • -• , x ,,)

n  f i ( x i ) .  We set f  ( 4 ) = 0  for every function f .
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(ii) For each n=1, 2, •••, a  Markov process X- ,,= {gt, Ps'." ) } on
{d } with 4 as the terminal point is called the n-fold symmetric

direct product of X° if  it satisfies

(3.2) (P[ Rgt)] =HE?,[ f ]
i =1

for every x = [x 1 , x 2 ,  « ,  x j ,  f E C * (S ) , and t>0 .

The direct product and the symmetric direct product of X ° are
uniquely determined from X° up to equivalence because of the dense-
ness of the linear hull of { fieV20 - 0 f, ;  f  C ( S ) }  in C ( S )  and
the linear hull o f {/Is .; fE  C*(S )}  in  C(S"). 3 )

Now we shall construct a version of the direct product and the
symmetric direct product of X ° in  the following w a y . L e t  W ( ")  be
the n-fold product of W, whose elements will be denoted as  /Tv= (w1 ,

• • • , WO, where //), E  W, and put

(3. 3) (7)) = min {C(wk)}
1. k.Srs

(3.4)x 7  ( W )  
= {(x(tvi), •••, .x(vv„)), i f  t <C(T,0),

Li,i f  t >C(Tv),

(3. 5) k rv = (07w1, 01)w2, --, tfitv.),

(3.6)T ; K ( ") = 6( W ( ' ) , a(S ( n) U {4} ) ; xP (W), s< 0 , g lr ) = V Tr") ,
i> o

(g.', x • - x gp„[A ] , i f  x = (x „ • • ., x„) ES ( ") ,
1E? x • • • x P.,°[A], if x= 4 ,

for A G

By Theorem 3. 1 given below, one can see that the process

= {W ( ") , x7 (17)), -07 ( ") = 777 ) , xGS(")U {4}  , 0 , ,  C}

defined above is a strong Markov process and it satisfies clearly (3. 1).
Hence, it is a version of the n-fold direct product of X ° . We will
call this X„* the canonical realization of the n-fold direct product
o f X ° . Now le t p be the natural mapping S ( ") --->S" and set

3 )  C f. Lemma 0.2 .

(3. 7) P„*( ')[A ]=
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(3.8)± - , ( W )  =P[4' (W )], 4 )

(3.9)= a (  W ,  g ( S " U  { 4 } ) ; s < t ) ,  -12(: ) = Vt > 0

and d e fin e  {P }, xES"U {d} on -j -2(c'9 by

-1-5.,
{
P.'ix • • x [A] , i f  x= [x„ x2, ••., x„] ES",

(3. 10) „) [ A ]  =

x • • • x PY [A] , i f  x =4 .

.15; »  is well defined just as in Lemma 1. 1. We shall define the process
by{  W ( ") , i - t(f/ -0 , A”) =nVo, 13 ,(c  , x  S "U  { 4 } , 0 „ (7,7))) .

is  the process induced from by the mapping p  in the sense of
Dynkin ([6] Theorem 10. 13, p. 325), i.e., : k „ = p ( X : ) .  The process
.k„ is certainly a version of the n-fold symmetric direct product of
X ° .  W e will call this Y „ the canonical realization of the n-fold
sy m m etric direct product of X°.

Theorem. 3. 1. The canonical realization of the n-f old direct
product and the canonical realization of the n-f old symmetric
direct product 5se„ are right continuous strong M ark ov  processes
on S U {A} and S "U {J }, respectively . I f  X °  has lef t lim its, then

and hav e lef t lim its.

P ro o f .  We shall prove this theorem only fo r X : :  the proof
for Xn follows then from the Theorem 10. 13 of Dynkin [6]. First
we shall prove the following

Lemma 3. 1. ( i )  Let A E777 ( ") and A [ ; (,) ]  b e  the j-section of
A  def ined by  A [.7(.0]= fw .,; W =(w 1,•-•, w „)EA I fo r  fixed i ( i ) =
(w1, •••, • • • ,  w O .  T hen fo r  each t(i), A [T ,;(,)] belongs to
n ) .5 )
(ii) Let T (w ) be an I2 t*.4V-M arkov  tim e; then for each f ixed w (j) ,
the j-section T [ ,-;( ,) )  o f  T  def ined by  T b 0 ,i (w ,)=T (W ) i s  an
M arkov  time.
(iii) Let T  be an Yli*.,.(V -Markov tim e and A E. Tnno)  ; then for fixed

4) We extend p  as the mapping S ( ' ) Ut4}—>SnUt611 by setting pfz/} =4.
5) M = o - CW, 2 (S  U  { 4 } ); x :(w ) , s  < t)  and hence g l c g 3 ) .
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TO ( j ) ,  A [ -
( , ) ] belongs to gn[z (,)p.o."

P ro o f . ( i )  W e assume n 2,  the case of n = 1  being clear.

Fixing tiv ( j) , set g =  {A E T " ) ;  A N co i E g n ) .  Then clearly g  is  a

sub-Borel field of T r '  o v e r  W .  For T E g (S ( ' ) )  and

{iV;  X `  (W )  E =  {TV = (W1, • • ', w . ) ;  (X ? (W i) ,  •  •  •  ,  X ? (W „ ) )  E T',

s <C ° (w i ) , i = 1, 2, •-•, n},

and hence its j-section is given by
(

iv1; Xs W3) E r[4(.,), •••, .1(.•j-i), .2(..q,i), •••, .1)(w.)l )

{X,* (W ) E  PI Nu)] --= S < C °  (W ; )}  7 ) , i f  s<C°(w ;)  for all i * j ,
if otherwise.

Thus {xP (Tv) E  E  g .  Also we have for s t,

{x? (To) = M[won= IF
; 0 (w1) < s }  f f  of ot hr e  sr  owmi  see  k  j,  V (w k )< s ,

{Vu;

and hence {xP(tiv)=J} E g .  This proves {x:` E r }  E g  for a ll s < t
and rE_B (S ( ') U  { J} ); therefore

The proof o f ( i i )  and ( i i i )  is clear from ( i )  since

{w3; T [ ( ; ) ] ( t }  —  {T< t} [w(m

and

A[z(mn {w1; 71,-;(;), <t} -- {A n { T<t}}[,;(m•

Now we return to the proof of the theorem. We shall prove
only the strong Markov property o f X :, the other part of the theorem
being trivial. F o r  this it is sufficient to prove' )

6) g i ? = {A  E  g/1" ) ;  A r l  T < t }  V c n )  for every 0}

= {A E  Ult ( n) ; A { nT <t} E M V  for every t > 0}.

gn,o is defined similarly.

7) For r E _g(S ( 0 ) )  a n d  fo r  a  fixed  x ( j)= (x1, • • , xj,i, • • • , xn), r i x ( i ) ]  is
the j - s e c t io n  o f r:r[x(J)J= { X ) ;  ( X i ,  •  •  •  ,  X  j - i ,  x . 1 ,  X  j ,  1 ,  •  •  ,  X n )  e  r).

8 )  For convenience, we set x ot= 4 and we extend every function f  defined on
S tro  as a function defined on S ( " ) U (4) by setting f (4) =0.
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E n [ f ( x 7 .2 ) ;  A ]  EX*() [E  ;Kr  [ f ( x ) ] ; A]

fo r every fE C (S (n)) ,  an J7 *.ET-Markov tim e T  and A T ;-1̀.;."0) . We
m ay assume f =g 1 0 g 2 ® • • • O g „, g ,E C ( S )  since the linear hull of
such functions is dense in C(S (")). T h en , 9) i f  x =  (x1, x2, •••, xn),

E l (") [f (x 7,2-); A]

E?,x • • • x E!,,[flig ,(4 2 - (w i) ) ; A]

= • • • 13 .?i(dw i)P,(dw 2)•••„_,(dw ,,-1)
Wx••• xW

II -1LI3 13n ( d w „ )  g 1(4 .0 -i i,-,( „)3 (w 1))g „(x ?(0 6 ( , )3 w„)) • IA E,7,( 0 3 (w„)} .
i=2

x -1
Note that for fixed i-v (n )  , flg,(4,T riT,( „)3 (w , ) )  i s  T °71 ,7 ( „) ,,  measur-

able in w„ then by Lemma 3.1 and the strong Markov property of
X° the above integral is equal to

••• PIrli (d w i) .1 ) ?2,(dw 2)•••1'.'„_,(dv v ,, -1)
wx xw

n - 1

• (dw„) flg ,(4 .0 1 ; ( „) ] (w1))IA [ k „) ] (w„) • E h Ew(„)3 0 ,,,)[g„(x )]}
i =1

n -1

= E 1 x • • x g +2-(w i)) o [g „( x ) ]; A].i=2

Repeating this, we have

E r ) [f (x7.,.T); A]

=-EV " ) [FIE4,.( . ; ) [g1(x ?)]; A]

= E [ E [ f ( x ; ' ) ] ;  A].

Theorem 3.2. ( i )  I f  X °  { W, x ,  ÇB, P1) , x E S  U  {A} ,  e, Co)
is quasi-left continuous before C°, i.e.,

T <C°1-- --13 `.'[T <C1
m

for every x E S ,  and for every increasing sequence {T „}  o f A -

9 )  We extend each g i  a s  a  function defined o n  S  U {4) by setting g ( 4 )  =0 .
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M ark ov  times such that T„ f T , then and je.'„ are also quasi-
left continuous before e.
(ii) I f  X °  is  a Hunt process and C° is totally inaccessible (cf.

Meyer [31] p. 130), then X :` and _it  are Hunt processes.

P ro o f. It is clearly sufficient to consider the case of X : .  Let
T. f T  be an increasing sequence of 77*„.( V-Markov times; then by
Lemma 3. 1,

P ; ( ") [lrn x„—  x ,  T  <C]
m e a n

= P 1 x P°.,x x 13.?„[(1i {1imx°7-,„(w,)—  4.(ivi)}n {T(iT))<C.70 )} ]

=Ç • • • P , ( d w i )• • • P  , ( d w , )
x...xW

n -1

{P " ir° [n  { i ;  l im  x ( w i ) = x °7-(m) , T(77) (w i)}

n {w„; limx3„,,,, ( „) ,(w„)=4,,, ( „) ,(w„), 71,; ( „) ,<c(w„)} ])
n -1

• • • 1 3 . % ( d w i )  • • P._,(dtv„_i) {P1)„[n {1,7); ihrix%(w,)
w x • • • x w

=x3-(w1), To,-0<c-(xi)}[),n {w„; T,,,-( „) ,<c(tv„)}11
n -1

=r , )[n oimxvw,) =x0r(w 1)) n {T(R)<t - 0701].

Repeating this we have

[lim xP,„(&) = x ( ) ,(Fv), T < Z 1  P [  T < ] .

( i i )  can be proved quite similarly if we note that if C ° is totally
inaccessible and {T„,} is  an increasing sequence of 2?-Markov times
such that T„, t T , then

{{T<c°} U U {zA c°=c1) n {T <00}  = { T <0.1.
n=1 a.

§ 3 .  2 .  Direct sum o f  X : and 1"„

Given a right continuous strong Markov process X° on SU {J}
with 4 as the terminal point such that g,, o =g9 „ let X „* and
(n=1, 2, ••.) be the canonical realizations of the n-fold direct product



(3. 14) 0 t k

_

{

_ 0 0  defined by (3. 5), if  VT)G U W ( ") ,

/4)a ,

,,=1
i f  71) Wa
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and the n-fold symmetric direct product of X °, respectively, defined
-

in  th e  previous section. L e t US(") and  S*=S*U { 4}  b e  the
n=0

topological sum of S( ")  and its one-point compactification, respectively;
then the natural mapping p  from Sc") to S " can be extended from
S* to w h e r e  w e  set p(8) =8 and p ( 4 )  =4.

Now put
_  -

(3. 11) W(°)----- {wa} ,1
0

) 
-

(3. 12) x7 (71))
{x7(71)) defined by (3. 4), if  T v G  W ("),= 

if  rv = wa G  Wm,

(3. 13) { C (1 7
t Û W ,iT Udefined by (3. 3), if E  V ,

C(W) V n=1

if  TO= waG W(°),

(3.15)=  6(W  , g(SN*); (i-c) , s ,  Tct = V 377,
t>0

(3.16) P: [A ] P P " ) [A(1Wc" ) ], x ES ("), A GT :t," )

Pa* [A ] = i„, al (A) , A  E T : ,

and .P,7 is any probability measure on ( W, T'ot) such that

P; [x7 (k) .=- LI for a ll t>0] =1.

Definition 3. 2. The stochastic process

X = { W , x7 (W ), — 977,0, P.*, xE,'S*, , CI

on ,/. * defined above is called the direct sum  of  X :.")

Now let

(3. 17) (W) = p(x7 (tY )), u  W,

10) wa is  an extra point.
11) Note th a t  i f  A E ,  th e n  A (1 W ( n) E Ya ( n) .
1 2 )  W e consider 4  as the terminal point of x*, and hence T- i s  the life  time.
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and define 5:7„ and 7P„, x  S , fo r  “F v ) in  a  similar way as
(3.15) and (3.16).

Definition 3. 3. The stochastic process

2,070, 13:r, x F et, —c}
on is called the direct sum  of X„." )

Clearly .k is the process induced from X *  by the mapping

i.e., X = (X *).
The following theorem is a direct consequence o f Theorem 3. 1

and Theorem 3. 2.

Theorem 3 .  3 .  X* and :Y-  are right continuous strong Markov
processes on :SN*  and gN,  respectively, with and d  as t rap s .  I f
X ° has lef t lim its (is quasi-lef t continuous before C°, i s  a Hunt
process and C° is totally  inaccessible), then X* and X  have left
lim its (resp., are quasi-left continuous before  are Hunt pro-
cesses).

§3. 3. Construction of an instantaneous distribution

Let X ° = { W, 4(w), -B2, P ,  X E S  {J}, o , C° )  be a right conti-
nuous strong Markov process on S U {,61} w ith  d as the terminal
point such that .B ) = -R . 0 .  Further we shall assume

(3. 18) P.? [C° = t] =0 f o r  every t > 0  and x ES
and

(3. 19) P? [*_exists, C ° <00] = /3 (x) [ C ° < . ]  for every x ES.

Let je ( ") (n  1, 2, • • -) be the canonical realization of the n-fold sym-
metric direct product o f X °, and be the direct sum of Yoo (cf.
Definition 3. 3).

Now let 7r(x, dy) be a stochastic kernel on S x ,. 14) such that

13) We consider d as the terminal point of Y, and h e n c e  is  the life  time.
14) i.e.. it is a  kernel on (S, glt(S)) x (SN, .0 ( .Î ))  such that for each fixed x E S

it is  a  probability measure on (SN, 2 ( .Î)).
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(3.20)n ( x ,  S ) . 0  for every xES.

If we restrict this kernel on S  S, then  it is a  substochastk kernel
with the property (3. 20), and conversely, a  given substochastic kernel
n  on S x S  w ith  the property (3. 20) defines a  stochastic kernel on
S X w i t h  the property (3. 20) by setting

(3.21)7 r ( x ,  {4} ) =1-7r(X, S ), x E S .

Hence it is equivalent to give a  stochastic kernel on S X with the
property (3. 20) and  to  g iv e  a  substochastic kernel on S >< S  with
the property (3 . 20 ). It is also equivalent to give a  system  {q„(x),
i r , (x, dy)} , where q„(x), n=0, 2, 3, • • • are non-negative g(S)-measur-
able functions such that

-

Eq„(x)<1,„=0

and rc„(x , dy), n=0, 2, 3, • • • are stochastic kernels on S x S', by the
relation

-
(3.22)n ( X ,  E )= E q „ (x )z „ (x ,E rS " ),  E G g (S ),  x E S ,

0

1(3.23)q „ ( x ) = 7 r ( X ,  S ") , r„(X , E)—
q ( x )

 r (x ,  E )," ) E G g (S " ).„ 

Given a stochastic kernel on S x /S  with the property (3. 20), we shall
define a  kernel on ( W ' , x  ( " ) ,  g ( S N ( ") ) ) " )  by

(3. 24) ,c/(tiv, dx,, dx„)

' E (-T ) •  7L (4 00 ,0 _  (W i dx,)

if  O<C(Tv) < C X ) ,
d d }  (dx,, dx,, • «, dx.), if  -C7  (R. ) = 0  or C(k) =

where w= (w1, w2, • • •, w„).

15) L e t 7 ra(d y )  be a  probability measure o n  S n  and set zn(x , dy) —r„(d y )  i f
q,,(x)= 0.

/16) Sn)= SN X  x  •  x
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Let r  b e the mapping defined by (O. 19) and define a kernel p  on

( W ( ") , j-1!.7) ) x _B(Î)) by

(3.25) ti(i , d x) = 12' (rv ( d x ) ) .
-

We have in this way a stochastic kernel on ( U V ,  g2-) X  (SN , g ( ,§N))•
rt = 1

We set further

(3.26) p(wa, dx )= 8 ta) (d x ) .

Thus we have defined a stochastic kernel on ( W, §-7_) x (1 , g(./SN)),
and the following theorem is clear from the definition.

Theorem 3. 4. ,a(tv- ,  d x )  i s  an  instantaneous distribution for
the process

§ 3 . 4 . Construction of an (X°, r)-branching M arkov process

For a given X ' satisfying (3. 18) and (3. 19), and a given sto-
chastic kernel 7 r(x , d y )  on satisfyir g (3. 20), we construct the
direct su m  if  of the canonical realizations of the symmetric direct
prcducts o f X ° and the instantaneous distribution p  o f k -  as in the
previous sections. Now we apply Theorem 2. 2; w e  have a right
continuous strong Markov process X= {1-2, X,(6), P , , g o  8,,
on .4 with ô and zi as traps such that g,+0=gt. We will show that
X  i s  the (X °, 70-branching Markov process (c f. Definition (1. 6)).
F irst, it is  easy  to  see  that  r (ô )  defined by (2. 8) coincides with
that defined by (1. 7). A lso it is clear that X satisfies the conditions
(C. 1 ) and (C. 2 ) b y  the way of the construction and b y  (3. 18).
Next, we shall prove that X has the property B. III. In fact, if x=
x2 , •• • , x,,] , we have by Theorem 2.2 (i) and (ii) that, for fG /3'(S),
(3.27)E [  X , ) ;  t  <  r] =Éx [7(1,); t <

• l'''),(dw ,)•••13 1L (d tv )  {  (f (e (m ))If t<o(.,) ,)}
wx xw

=  E?, [ f ( 4 ( w ) ) ;  t  <V ]

= nE .„[A xt); t < r ] ,
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and for f E B * ( [0 ,  Do) x S ) ,

(3.28)E x [ R r ,  X r ) ;  r<  t]

dY )7(C(k ), y );  COTO< tl

• • i t ? ( ; ) = . 0 ( . , ) , , ) ( w )  •  n ( 4 . (w i)  dx i)

•11 aig ( „, )(u,i)1(dx,) • 111 C° (w1), x i ) ]i=

j i , ( d w 1 ) [ 4 , 0 „,),} •  ,..7r(40(.0_, dx1)7(C°(w1), x i )

• X x X  P ,  X • • • x P2,,[dw 1 , • ••
dw i _ „ d w 1 1 ,  ••• , dw i

•n [Î(C (w 1), x,o( w1) (w5)) • /,,o( 1 ) < ,0( „} ] 11

P?,[dw1](I(sp(x, 1) ,) 12(w 1, dx )î(C° (w i ) , x )w

•• • • - x P2,„x  • • • x  P2„[dw „ • •• ,
wx•••xw dwi+i, • • • , dw,]

•11
.154i 

[ RC° (w), xo(.1)(w1)) • iiço(.0<‹°(.>))]

P , [rE d s , X - E d y ] {Rs, y )  Ex ,[Rs, X ,); s < r]) .i=1

Therefore, by Theorem 1. 2 (d), X  is a branching Markov process.
Finally we shall show that X is the (X°, 70-branching Markov process.
In fact, {X „ t and X ° are equivalent and hence the non-
branching part of X  coincides with X ° . Next we have, for x E S ,

f  E B * ( S ) ,  g E B ( S )  and À> 0  that

(3. 29) Ere-A 'RX,-)g(X,_)]

=  E ie - À ° g(4._)L it(to, d y ) R y ) ]

d y ) R y ) 1

=E.,[e - A 'g ( X , ) s n(X ,-, d y ) f ? y ) 1
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and therefore r is the branching law of the process X.

Summarizing the above arguments, we have the following

Theorem 3. 5. For a given right continuous strong Markov
process X°=(4, _Y9) on SU {1}  with d as its  terminal point satis-
f y in g  (3. 18), (3. 19) and + 0 = 3), and a given stochastic kernel
77(x, dy) on Sx /S  satisf y ing (3.20), w e construct the direct sum

of the canonical realizations of the symmetric direct products
of X° and an instantaneous distribution g  as in §3. 2 and §3. 3.

N ext, apply ing Theorem  2. 2 for 2  and w e construct a right
continuous strong Markov process X = (X „ g  t )  on such that

f+0= 9 -  t . T hen X  i s  the (X °, 70-branching Markov Process.
Further if  X °  has lef t lim its, then X  has lef t lim its fo r  t < r - ,
a n d  if X ° is quasi-lef t continuous and C° is totally  inaccessible,
then X  is quasi-left continuous before r- .

The last assertion of the theorem follows immediately from
Theorem 3. 3, Theorem 2. 3 and Theorem 2. 4.

§3. 5. Examples

Example 3. 1. Branching process with a single type

Consider the simplest case when S= {a} then S  can be identi-

fied with Z = {0, 1, 2, • • • } and w ith  i+  Z+ U {± 00} .") Therefore

a  branching Markov process on is  a  Markov chain on i +  such

that its system of transition matrices {P„ (0, 0, j, j E } satisfies
f \,

P , , ( t )  P  ÇE P i, (O P  , <  f <1, i= 0 , 1, 2, • •
1 =0 1 =0

It is easy to see that P ( t )  defines a strongly continuous semi-group
on Co (Z+ ), and hence X is a Hunt process. This implies that X is
a minimal Markov chain. I f  we set

1 7 )  C f. Example 1.3.
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b, =E, [ r ] 7r,1 = P,[X ,= j ]

where r  i s  the first jumping time, the property B. III. of §1. 2  is
equivalent to

(3. 30) b, = ib i and 7 r  = , j =0, 1, 2, • • •.

Thus a  M ark ov chain on is  a branching M arkov process i f

and only i f  it is a (b ,, n„)-m inim al chain with the property (3. 30).

Fundamental equations which will be treated in  Chapter IV are
given as follows :  if we set, for 0 <f  < 1

u ( t , i ;  f )= 1 ' ,R i )= E '  P1 i ( t ) f 1 , i =1, 2, •••,
j = 0

u ( t ;  f )  = u ( t ,  1; f)
and

=E ,
j - 0

then

(3. 31) u ( t ;  f ) = f . e + bS  F (u (t — s; f))e - bi'ds, (S-equation),

(3. 32) au(t ; f ) b i f F ( u ( t ;  f ) ) — u ( t ;  f ) } ,at
u(0+, f ) = f , (backward equation)

and

(3  33) att(t, i ;  f )

b i ( F ( f ) —  f )  
 a u ( t ,  i ;  f )  . Ot Of '

u (0 + , i;  f )— f',  i=  0,1, 2, • • • , (forward equation).

Now assume
7ri3O = P i  [X ,=6] =0

and
P i [X -  zil =O.

We shall prove an intimate relation between the uniqueness of the

solution of S-equation (3. 31) and the occurence of no explosion in

a  Corollary o f Theorem 4 . 7 , i.e., P 1 [e4= + c o ]  = 1  if and on ly if

u(t) --=. 1 is  the unique solution of (3. 31) with the initial value f
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As is well known (and it can be proved easily) u ( t)=- 1 is  the unique
solution of (3. 31) o r (3. 32) if and only if

r i —o d l—  +

(cf. H arris [8] ). Here we shall give another probabilistic proof of
this fact. T h e  proof is based on the following

Lemma 3.2. E 1 [e4 ] =c>0 if  an d  only  i f  P i [es= cc] =1.

P ro o f .  "If" part is  trivial and hence we shall prove "only if"
part. Assume Pi[es= Go] <1. Then P 1[e s > t ]= T 3 (1 )< 1  for every
t >  0 .  In fact, if for some t, T,1(1) =1, th en  T ,î(1 )  =  T h _i ) ,( 6 .) (1 )

7-'( 1 ) (1)=••• = T,1(1) = 1  and hence lim T„,1 (1) = [ez =  ]  = 1 .

B ut th is  is  a contradiction. Therefore 7' ( 1 ) < 1  fo r every t > 0 .

Next we shall show that for fixed t o > 0

T„,3(1)<(T„T(1))".

In fact, since T ,Î( i)  =  ( 6 ( 1 ) ) i< T 7 .( 1 ) ,  i=1 ,  2, •••,

T h j(1 )= T h (T „ -i)j)(1 )< T 1 3 (1 )T h _ i):1 (1 )< *••< (T ioT (1 ))".
Hence T t1 (1 )< e 't  for some constant K > O. Therefore

.0
E 1 [e4 ] T,1(1)dt<00.

0

N ow  it is c lear that e s  r -  a .s .  under the above assumptions.
Hence E i [e s ] =E, [z-] . Since

=  (r, — rk _i ) = r (0
k

, _ co),
k= 1 

E l  [r.,] = E [Ex, k _i [r]i •
k = 1

On the other hand

1 1 E i[E x , =  . . E •
"  nh+1n i = 1  '4 = 1

and noting that, for 0 <  E <1,
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co co co ( 1 Oncln2-1--,-kolk-1-1

E  E • • • E np+1 < ° ° ,
k =1 121=1 nk = in 1 + n 2 + • • • + n 8 + 1

we see that E j r - ]  Do is equivalent to
1 co co

1 — E  8 =1  , , i=1 . • . ni,--1771'"'-11...11-1,ck-ll "2" r+ +—

F ( ) 8 61, $' 4
utE — o o

k -1 F($)

Therefore by the above Lemma, P j e i  + Do] = 1  if and  only if
ci-o

c / E —  + o 0 .  The conclusion is  still va lid  w hen  ri,o> 0 :e— F(e)
the proof is reduced to the case ni,o = 0  by the transformation of §5.5.

Example 3. 2. Branching process with finite number of types

Let S = •••, a2} ; then  S  can be identified with

(Z+)k=Z+ x  Z + x •• •  X  Z + { i =  { i l ,  i 2 ,  • • • ,  i k }  ;  i l E Z
+ }

and S  w ith  (Z + )*--- --  (Z + )" U { + 00} . Therefore a  branching Markov

process on S  i s  a right-continuous Markov chain on Z+( k) such that

its system of transition matrices { P , ( 0 ,  j E Z + ( k ) }  satisfies

. P(oico=f1,(13.,..i(t).,î(D)ri 2 8 ) ,

where f  = ( f , f2 ,  •  •  f k ) ,  0  <  f l < 1 , i =  ( i l ,  i 2 ,  • ,  i k )  and ei= (0, ...,
1-th

1, •••, 0). From  this it is easy to see that P i d ( t )  defines a strongly

continuous semi-group on Co (Z+ ( k) ) ,  and hence X  is  a Hunt process.
This implies X  is  a minimal Markov chain. By Theorem 1. 4, it is
given as an (X°, 70-branching Markov process. In this way every
branching Markov process on SN  is determined by a Markov chain X°
on SU {A}, with {J } as its  terminal point, and a substochastic kernel
n (e  , d y )  on S x S  such that 7r(ei , S ) =0, 1=1, 2, • ••, k. But every
such X ° is  g iv en  in the following way : given 0 < n o  < 1 ,  7 r ,  = 0 ,

1 8 ) .P i ) = f i f i 2 2 . . . f , ' .

"k de



Branching Markov processes I I 397

En,,=1, j=1, 2, •••, k  and 0 < b 1 < + 0 0 ,  0 < c < + 0 0  i= 1 ,  2 ,  • • - ,  k,
X° is  the c r f ( '.' d s-subprocess" )  o f  (g o ,  b,)-M arkov chain X, on S =
(e i ,e 2 , • ••, ek ) ." ) T hus there is a one-to-one correspondence between
the set of all branching M arkov process on ,§j  and the set of all
sy stem s { b„c,r i f ,  n(e„ dy )}  i ,  j =1 , 2, •••, k  satisf y ing the above
conditions.

Given such a system  {b, c„ 7r,„ r(e ,, dy )}  , define a  sub-stochas-
tic kernel n '(e ,, d y )  on S x  S  and b:, i=1 , 2, •••, k , by

bi 
r ' ( e ' '  { e 1 } ) —  b i +c i

n{ , i, j =1, 2, •••, k,

7 V (e ` ' { y } ) —  b ,+c,n(e ,, { y } ) ,  i=1 ,  2, •••, k , y S —S,

and

Set
i=1, 2, k,

F , ( f ) = 7 E 1 ( e i ,  { y } ) P y ) ,

then the fundamental equations which will be discussed in Chapter IV
are now given as  follows: if  we set, for f •••, f k ) ,  0  < f: <1 ,

L ( t ,  i ;  f ) = E P ( t ) i ( i ) ,

I t ( t ;  f ) = ( t t i ( t ;  f ) ,  l i 2 ( t ;  f ) ,  • • • , U k ( t ;  f ) ) ,
where

then

(3 .34 )

(3 .35 )

u i ( t; f )n =u ( t , e ,; f ) ,

ui ( t ; f ) = f i e- bi+biF,(u(t— s; f ) ) e - qsds,

i=1, 2, •••, k, (S-equation)

a
a
u
t i ( t; f )=b ;{ F i (u(t; f ) )— u i (t; f )}  ,

u ,(0 +, f )=f ; ,  i = 1 ,  2, •••, k, (backward equation)

19) c  is a  function on S  defined by c(ei)— ci, 1 =1, 2, ••-, k.
20) That is, ;cc is a Markov chain on S  such that Ee,(o - ) =b;- ' and 13 ..,[x ,,=e ; -=7"CiJ,

where o- is the first jumping time.
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and

(3.36)6 u ( t ,  i ;  f ) { FI 
( f ) — f 1 }   Ou(t, i; f )  

Ot 1=1 Of, '

u(0 + ,i; i E S = Z + (k ) ,  (forward equation).

Example 3. 3. Age dependent branching process

Let S = [0, c o i ,  k (x )  be a non-negative locally integrable function
on [0, co) and { q(x )1 0 b e  a  sequence o f non-negative measurable-
functions on  [0, 00) such  that E q ( x ) 1  and q 1 (x) 0.2 °O.")  D efine

n=0

a  probability kernel ir (X , d y )  on S x S  by

(3. 37) F(x ; f )-=. L .?(y )n(x , dy )

{E q ,(x ) f ' (0 )  , x E  [0 , 0 0 ),

Let X ° be the e- Ek( '' -subprocess o f  th e  uniform motion x , on S.
By Theorem 3. 5 w e have the (X °, 70-branching Markov process X,
and w e  sh a ll c a ll  it  a n  age dependent branching process. The
fundamental system of X  is given a s  (T% K, 7 r), where

T? f ( x + t ) ,  XG [0, 00),

=f ( ° .) , X = c o ,

I f (x ; d sd y ) f (y )=r(k . f ) (x )d s

and n  is defined by (3. 37). Hence u(t, T,:f>(x)= Ex[RX0)].,
f E B *[0 , 0 0 ] + ,  satisfies the S-equation :

(3. 38) u(t, x) = f(x + t)e - l'»(s)"

+  sk(x+ r)e - E - k( s) dsiq„(x +r)u"(t— r, 0 )dr.

Now let
H= { f E  B (S ) ; f  I C[0, o0)}.

Then for the semi-group T , of the uniform motion," )  H o and Flo are

   

21) We extend k (x )  and qn (x) as functions on [0, Do] by setting them Oat x=  co.
f ( x + t ) ,  x E [0, co),22) i.e., the semi-group T t  defined by T tf  (x )

f f  (0 0 ), x

f ( c ,o ) , x = + 00.
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given by

Ho = f f E B (S ); fl(o ,— ) is uniformly continuous on [0, co)}

(cf. Chapter IV) and

In the following we shall use the results which will be developed in
Chapter IV . It is easy to see that the fundamental system is H-regular
(weakly H-regular) if  k  and q„ are in  Ho (resp. in  H ) .  The infini-
tesimal generator A y  and  the weak infinitesimal generator X I I  are
given by

A Hf(x)= 217, f  f (x )= f '(x )
with domains

D(A H )= {  fE Ho ; f ' exists and f ' E Ho}
and

D(X H)= { f  H ;  f '  exists and f 'E H}  .

By a  corollary of Theorem 4. 10, we see that

(i) i f  k  and q , a re  in  Ho a n d  f E  B *(S )nD (A „), then u(t, x)
= T  if rZ x )=E[R X :)] is in  D(AH) for all t strongly differenti-
able in  t  and satisfies

(3.39)

(ii) i f  k  and q„ are in  H  and fE B*(S)n D(.:4;), then u(t, x )  is
in D(AH) for all t has right-hand derivatives D;Fu(t, x) in  t  and
satisfies

(3. 40)
{D;'-u(t, x)—  au (

a
t
;  x )   + k (x ) Eio q„(x)te(t, 0)—u(t, x)} ,

u (0 + , x )= f (x ).

Next set

G ( x ; f ) = a nq„(x). f (0).

{

Ou(t, x) au(t, x)  + k(x) liq„(x )u"(t, 0) —u(t, x)}at ax n=0

u (0 + , x)= f(x),
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Then v (t, x )=M tf (x )=E x [7(70] satisfies

(3. 41) v (t, x ) =f(x+ t)e - i: • tk(s)ds

k(x+ r)e - E - k( ' )dsG(x+ r)v(t —r, 0)dr,

where

G(x)—  inq„(x).
11 = 0

Further if G (x ) H0 (G (x ) E  H ) and feD (AH ) (resp. D (X )), then
v(t, x )  is  in  D(A H )  fo r a ll t >0, strongly differentiable in  t  and
satisfies

(3.42)
ay(t, x) ay(t, x)  +k (x )[G (x )v (t, 0)— v(t, x )],{ at ax
v(0+, x) = f(x),

(resp. v(t, x ) is in  D (A H )  for all t has right-hand derivatives in
avt  and satisfies (3. 42), where is now replaced by the right-handOt

derivative).

Example 3. 4. Branching diffusion processes

By a branching diffusion process we mean a branching Markov
process whose non-branching part X ° is given as  an  CA , -subprocess

o f  a  conservative diffusion process X = {x,, Px} o n  a  m an ifo ld  S,
where A, is a  non-negative continuous additive functional of x,. In
the following we shall consider some of typical examples.

( A )  Branching Brownian motions

Let S = f?'=/?"U {0Q} be one-point compactification of N-dimen-

sional Euclidean space R N  and X = {x„ P,} be a  standard Brownian
motion on S." )  L e t  kEC(S)+ and define A , by

A,=:k(x,)ds.

L et X °  be the e ' ' -subprocess o f  X .  L et q„eC(S)+, n=0, 2 ,  • • • ,

such that E q„ (x) 1  and define n(x, dy) by
.=0

2 3 ) 0 0  is attached to R N  as a tr a p :  P . [ x t = o 0 ,  for a l l  t 0] =1.
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-
(3. 43) n(x , dy )= E q„(x)sc,...,,,(dy). 2 4 )

n =0

Then we have the ( X°, r)-branching Markov process X, and we shall
call it a branching B row nian m otion.") The fundamental system
(Z 1, K, 7 r )  of X  is given by

f (x ) 13°(t, x, y)f(y)dy, xERN,

K (x ; dsdy )= P°(s, x , y )k (y )dy ds, x ER ",
where P°(s, x, y )  is the fundamental solution of

au1— Ju k • u.at 2
It is easy to see that the fundamental system is regular. Hence we
can apply all the results in Chapter IV, and we see that

u(t, x )= T Î(x ) = .E[r(X f ) ]  ,  f E C *(S )+ , x  RN ,

satisfies S-equation;

(3.44)u ( t ,  x )  =  TrI(x) +:r(kF( • ; u(t —  s, • )))ds ,

where

(3. 45) F(x; :* „ (x )fn (x ).

If further fED(Z1) nc*(s),") then u(t, x) belongs to D (Z )nc*(s),
is strongly differentiable in t  and satisfies

(3.46)

au 4
at —  2 u+ k • {F(- ; u) —u} ,

ilu (t, -)— f (t 0) .

24) 867.7;1 (d  y ) is a unit measure on [x, • • x ]
25) It is clear that i f  x -- [xi, • • •, xn], xi E R N  for a ll i  then with Px-probabillity

0.,- - -
one Xe U  C R Y  x x • • • x ijv )/ — U  {4 . W e  are interested in  the part o f process

n=0
X  on this space.

2 6 )  D (A )  = f E Î (1 2 2`7 ), 4 f , w here e(RN )= f f - C(1219 ; lim  f  (x )  exists}.

-Thus C (R N ) and C ( S )  are essentially the same space. D (4 ) co incides w ith  the

domain (in Hille-Yosida sense) of the infinitesimal generator 21( =+) of the semi-
group of the standard Brownian motion x i  on 'e(R iv).
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I f  G(x) e e(RN)+, where
-

G (x )= n q „(x ) ,
-O

then v(t, x) = 111, f(x) = E,[f(X ,)] , xE defines a  strongly conti-
nuous semi-group on C(RN) with the infinitesimal generator L  given
by

(3.47)L u — u +k (x )(G (x )-1 )•u ,
2

(3.48)D ( L ) = D ( 4 ) .

Hence we see that M , is represented as

M , f (x ) E ,[eEk ( ' " ( '''" f (x ,)]

in terms of the standard Brownian motion x,.
If, in particular, a(x )E 6 R N ) and we define k  and q„ by k(x)—

i al (x ) , q0(x )=1{ . -(,)>0), q 2  (x )  =  fa- W=01 2 7 ) and q, (x) =0  (n=3 , 4, • • .),

then M , is  the semi-group corresponding to the infinitesimal generator

2 +a, or

114 j( x )  = f (x,)] •

Many arguments can be carried over to the case of unbounded
k :  we can construct the (X °, 70-branching M a r k o v  process X  by
Theorem 3. 5  and if, e.g., 7r(x, dy) = 8 [ ] ( d y ) ,  then u(t, x )=Z [R X ,)]
is  a solution in a weak sense of the equation

au 
= 2u + k ( u 2

— u ), u (0+,Ot 

The case of k(x) x  was considered in Ito-McKean [19] .

( B )  Branching A-diffusion processes

L et D  b e  a  bounded domain in  RN with sufficiently smooth
boundary 8D  and e ( x ) ,  b ( x )  ( i ,  j  =1 ,  2, • • •, N )  be sufficiently
smooth functions on -15=DUOD su ch  th a t E a" (x)e  0 1 2  for

,,J=1

2 7 )  / (  is the indicator function of the set {  } .  / 2 - - ( — a ) V O .
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every E2 • • • I  EN) .
2 8 )  S e t

N ) +  1±r bj( x )  I   ( x ) ,A u(x) = 1E   a (a''(x )1/ a(x )
a(x )  ax ' ax'ax' =1

where a(x ) = [det(a" (x ))] - 1 . It is known that for given c  C (D )
and  i3E C(aD ) such that c and there exists a unique
diffusion process X° — (4, PI') on U {4 } with AI as the terminal
point such that if f  is sufficiently smooth, u(t, x ) E?[ f (x 2)] defines
the solution of

(3.49)

au = Au— c • u,{  at
(au u )1  =0 ." )

On aD

If c(x) (x)-.=0, the corresponding process is conservative: we shall
denote it by X=  (x „ P,) and call it the reflecting A-diffusion process

on S Then X ° is the CAt-subprocess of X, where A t = t c(x.,)ds
-

+ ( x , ) 4 s .") L et q„(x )EC(S )+, q 1 (x )=.0  a n d  E q(x )m 1, and
n 0

define r(x, d y )  by (3 .43 ). W e sha ll ca ll th e  (X°, r)-branching
Markov process X a  branching A-diffusion process.

The fundamental system (r, K, 7r) is given by

r f ( x ) = 5 P°(t, x , y )f (y )m (dy ),

K (x; dsdy)= P° (s, x , y )c(y)m (dy)ds+ P° (s, x , y )f3(y)i -n' (dy)ds, 3 1 )

where P° (s, x , y ) is  the fundamental solution of (3. 49) (cf. Naga-
sawa-Sato [37] , Ikeda-Nagasawa-Sato [17] ). In  this case maps
B (S )  into C (S ), and from this we see that the semi-group T of X

28) I I .

29) a  is  the derivative in the direction of the inner normal at aD determinedan
by the metric tensor aii(x).

30) çoc is the local time on aD o f x t :  the precise definition and the above facts
we refer to Sato-Ueno [39].

31) m(dx)=1/ a(x) dx 1dx 2 .-dxn, and Fii(dx) is the surface element on OD.



404 N . Ik eda, M . Nagasawa, S . Watanabe

maps Co (S ) into C o (S )  and is strongly continuous. Hence X  is  a
Hunt process. u(t, x )= T ,R x ),  fE  C* (S ) ,  Xe S, satisfies

(3. 50) u(t, x )  =  f ( x ) + s K(x; dsdy)F(y; u(t— s, •)),

(S-equation)
where F (x ;  f )  is  g iven  by (3 . 4 5 ) . Hence u(t, x )  can be regarded
as a solution (in a weak sense) of

au at =A u+ c(F (- ; u )— u),

(3. 51) au +13 {F(• ; u) —u}=  0 ,an
u (0 + , • )= f. (backward equation).

Rem ark 3. 1. I f  c=0, (3. 51) is  a parabolic differential equation
with a non-linear boundary condition.

Now assume nq„(x)==a(X)E C (D ); then v(t, x) = M,f (x) —=
x-=1)

E ,I Nf X i ) ]  fE C (D )  satisfies

(3. 52) v(t, x ) = 7 ' f ( x ) + U 5 K(x; dsdy)a(y)v(t—s, y),

and hence v(t, x )  can be regarded as a solution in a weak sense of

/  av =A v+c(ty -1 )v ,at
(3.53) / ay [3(a-1)v ia D =0,an

\V(0+, .)=-- f .

The expectation semi-group M , can be represented in terms of the
reflecting A-diffusion X = (x t , PO as

M t f(x) = E„[ef ( OE- 1 ) 0 . , , dAs]

where A t — t
o c(x s )ds+ (x s )dç.9„ .

( C )  Branching A-diffusion processes with absorbing boundaries

Let (x„  PO b e  an absorbing barrier A-diffusion process, i.e . a
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diffusion process on S = DU {ô} 3 2  w ith  ô  a s  a  trap such that v(t, x)
= E ,[f (x t ) ],  for sufficiently regular fE  C,(D)," )  i s  a solution of

au =A u , limu(t, x) =0 ,at
where A  i s  th e  same differential operator a s  in  (B ) .  For given

-
c(x ) C(S ) + and q ( x ) C ( S ) + such  that q1 (x )=- 0  an d  E q (x )

let X °= {4, 13 ,} be the e- i- s-subprocess of X  and r c  be de-
fined by (3. 43). W e shall call the (X°, 70-branching Markov process
X a branching A-diffusion process with absorbing boundary. In this
case it  is  e a sy  to  se e  th a t i f  w e set T =  {a, 8, [8, 8],[6, 8, 8],
then, with probability one for a ll Px , X 1 T  implies X ,E  T  for all
s >  t .  It is natural to set

(3.54) Et = YD( X t )

and c a l l  i t  the number o f particles, that is ,  w e a re  interested in
only those particles which are in  D .  Then the extinction time and
the explosion time are defined respectively by

ea = inf {t ; = 0 }  = inf { t; X, E  T}
and

e =lim  e„ , where e„=inf { t; $1 >  n} .

1T he case when A— LI and c(x)--=-- c  (constant) was studied by2
Sevast'yanov [41] and Watanabe [46] .

( D )  One-dimensional branching diffusion processes
Let X =  (x,, Px) be a  regular conservative one-dimensional diffu-

sion process on  S = [r 1 ,  rd  with appropriate boundary conditions.
Suppose the local infinitesimal generator of X  is given as

Au(x) —  u+(dx) m(dx) •

32) D  is  a domain in  R N  with sufficiently smooth boundary and D U {a} is its
one-point compactification.

33) C o(D )= ( f ;  continuous on D  and limf (x ) = 0} .
s—>b

3 4 ) t t '( d x )  is the Stieltjes measure o f u+(x).=  d
d

+
:  ( i f  u+ is of bounded variation).

Cf. Ito-McKean [19].
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Let k(dx) be a  non-negative Radon measure on  S  and A , be the
coiresponding additive functional." )  G iven  q„(x )EC (S )+  such that

-
qi (x )= - 0 and E q„(x) ----1, define n(x, dy) by (3. 43). Let X °= ,

x  0

.13 1 be the e- A‘-subprocess of X .  We shall call the (X °, 70-branching
Markov process X a  one-dimensional branching diffusion process.
If P° (t , x, y)m(dy) is the transition probability of 4 ,  then the kernel
K(x; dsdy) is given by

K(x; dsdy)— P° (s, x, y)k(dy)ds,

and hence u(t, x) = T,7(x)= E.r [RX,) , xES, satisfies

(3. 55) u(t, x)= P° (t, x, y )f(y )m (dy)

+ t c1.5 P° (s, x, y)F(y,u(t— s, •))k(dy)s
(S-equation)

where F (x ; f ) is given by (3. 45). If r, ( j =1  or 2) is regular and
the boundary condition of 4  is given by

p;1 ) u(r ,)+ (— i)ip ;') 'aux (r ,)+ lim A° u (x) = 0," )

X. . r

(p .> o ,  i =1, 2, 3),

u(t, x )  can be regarded as a solution in a weak sense of

/  au u+  (d  x ) +  k (dx)(F (x; u )— u) 
at m(dx)

(3. 56) (r ,) — F(r ) ; u)] + (-1)i p"  au (r i )ax
+ p  A'u (x) =0,

X - 9 , j

\u (0+, •)—f.

If a (X ) =  E nq„(x) E  C (S ), then v(t, x )=  M ,f(x )=  E.,[iN tX,)] satisfies
f1 =

35) ilt= s cp(t, x )k (dx ) where 4)(1- , x )  is the local time at x E S .  cf. [19].

36) A°u(x)—  u+ (dx)— u(x)k (dx) 
m (dx)
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(3. 57) v(t, x ) = P°(t x , y )f (y )m (dy )

± t d s P0( s , x , y )ct(y )v (t—  s, y )k (dy),0 s

and hence v(t, x) can be regarded as a solution in a weak sense of

av v +(d x )+(r -1)v (x )k (dx ) 
Ot m (dx )

p '( 1  a(r ,))v (r ,) + (-1)i p (i 2 ) 6 1 )  (a- ) + A°v(x) = 0 ,ax x-or j

, v (0 + , -)= f (x ).

is expressed in  terms of the original diffusion process
X = (x„ PO as

M t f (x) = E,[e.f‘0( OE- 1 ) ( 's)"  f ( x ,) ].

Example 3. 5. Electron-Photon cascades

These branching processes are discussed in detail in Harris [8]
Chapter VII. Unfortunately a cascade process with infinite cross
section can not be put into our formulation and so we shall formulate
only a cascade process with finite cross section.

Let S = [0, 00] x {1, 2, 3} and T  and K  be defined by

(3. 59) f (a, j)= f (a, j)e - Y ,

(3.60)K ( ( a ,  j ) ;  d s d y ) f ( y )  c ,  f ( a ,  j ) e - Y ds,
s 0  < c ,  < 0 0  ,  j =  1, 2, 3, a E [0, 00).

Let n(x , dy ) be a substochastic kernel on S x S  such that n(X, S) =0
and satisfies the following conditions :

(3.61) n ( ( a , 1 ) ,  { y = [(au,2), (a(1— u),3)] E S 2 ; 0 u 11) =1,

(3. 62) rjr((a, k ), { y = [(au, 1), (a(1— u), k )] S 2 ; 0 <  u <11) =1,
k =2, 3.

Let X ° be a Markov process on S U {4 } with {4} as its terminal
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point such that its sem i-group is given by (3. 59). We shall call
the ( X°, 70-branching Markov process X  an electron-photon cascade
process with f inite cross section. Physical meanings are the follow-
in g ; the number a in (a, 1)E  [0, co] x {1} , (a, 2)E [0, 00] x {2} and
(a, 3)E [0, 00] x {3} represent the energy of a photon, of a positive
electron an d  o f a  negative electron, respectively. (3. 61) describes
the law of pair production of positive and negative electrons, and so
on.

We set further the following assumptions;

(3.63) C2 — c3,

(3. 64) there exist measurable functions M u), k 2 ( u )  on [0, 1]
such that k1(u)=k1(1— u) and for every EE.g [0, 1],

((a, 1), { y =[(au ,2 ) ,(a(1 — u), 3)] ; E } ) = k 1 (u)du,

((a, k), { y =  [(au ,1 ) ,(a(1 — u ) ,k )]; u E E 1 )= E lz ,(u)du,

k =2, 3•" )

In the sequel we do not distinguish positive and negative electrons
and therefore consider only  such f E C * ( S )  th at f (a, 2) — f(a, 3).
It is clear from  (3. 63) and (3. 64) that E(..2)[R X :)] =  [ i Z - X , ) ]
for every f E C * ( S )  with f (a, 2) =f(a, 3).

Now u,(t, a )  E ( ,,, ) [?(X ,)] , ( j =1, 2 ) satisfy

u,(t, a) = f (a, 1)e - 1t + u2(t — s, au)u 2 (t — s, a(1 — u))0 0

k 1 (u)dule — eds

,,(t, a) = f (a,2)e - 2̀ + c2 t T ui(t— s, au)u,(t—  s, a(1 — u))0 0

k 2 (u)dule— eds,

(S-equation),
and hence they satisfy the backward equations:

37) By (3.61) and (3.62) it follows that S e (u)d u =1, i=1, 2.
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(3.66)

au, (t, a) = — ciu i (t, a) + u2(t, au)u,(t, a(1— u))k 1 (u)du,at
au ' (t, a) = — c 2 u 2 (t, a) + u i (t, au)u,(t, a(1—  u))k2(u)du.

\  at 0

v ,(t , a) = M t f ( a, j)= E G ) [1(X 1) ], ( j  =1 , 2 ) , satisfy

v i(t, a) = f (a,l)e - cit+ c2 t[v 2 (t —  s , au)0 0

  

+ v 2 (t —  s, a(1 —  u))]ki(u)du}e — iscls

= f (a,1)e — i' v2(t —  s, au)ki(u)du}e - co ds,0 0

1.12 (t, a) = f ( a, 2)e - c2i + c2 t

0

( t  — s ,  au) 0

+ v 2 (t—  s, a(1— u))]k2(u)dule — Y ds,

(3.67) K

    

and hence they satisfy

ay, (t, a) = —  civi(t, a) +2c 1 \ v 2(t , au)k i (u)du,at 0
(3.68)

av, ( t  a) = — c,v 2 (t, a) + [v i (t, au)at ' 0

+  v2 (t, a(1— u))1k 2 (u)du.

Consider, for instance, the number N t ( E )  of electrons at time t
whose energy is greater than E .  If we set

gE(x) =
11, x = (a, 2 )  and a E  or x = (a, 3 )  and
10, otherwise,

then clearly A t ( E ) = '.‘rE(X t). For 0  <  < 1 ,  set
 f ( x ) = E ;

 then
E „[ f(X ,)] =E.r[2"‘ ( ], x E  S .  I t  is easy to verify that

(3. 69) E(.,,)[/.;(X /)] =

and hence if we set

(3. 70) ço,(t, E)= E ( l,, ) [AN, ( E) ] ( j =1, 2),

we have from (3. 66) that
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(3 .7 1 )

(t,E)—  — c,(0,(t,E)-1-cT  ço2(t, E )02(t,  E  ) k 1(u)du,at u 1—u

k 2 (t ,E )= = , __c2v2(t,E)-pc2Çog,i(t, )Ç,92(t,  1
E

u )k2(u)du.at

 

Sim ilarly i f  w e  s e t  m , (t, E) =E 0 ,,,[N ,(E )], ( j= 1 , 2 ) ,  th en  w e  have

fr o m  (3 . 6 8 )  that

(3 .7 2 )

a
 a
i n

t i (t, E)—  — cdni(t,E)+2cT  m 2(t ,  Eu )k i (u)du,0

a
a
r n

t
2 (t,E)—  — c,m 2(t, E ) +4 1 7 n i ( t ,  E

u )

+m 2(t,  i
E

 u )} k 2(u)du.
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