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In 1963, W. Barthel [1] developed an elegant theory of holonomy

groups of homogeneous non-linear connections. He defined a homo-

geneous non-linear connection on  a  differentiable manifold M  as a
special distribution on the tangent bundle T (M ).

As is well-known (for example, see [9] ), a  linear connection
on M , however, can be defined as a  connection in  the bundle of
linear frames L (M )  over M , and then its holonomy group is a
subgroup of GL(n, R) acting on L (M ).

The purpose of the present paper is to give a concept of an F-
connection, a collection of special distributions on L (M ), and to
show that any homogeneous non-linear connection in  T (M )  is as-
sociated w ith a n  F-connection. For this purpose, a concept of
Finsier connections will be quite useful. The first section is devoted
to summarize basic concepts of Finsler connections, which have been
described in a series of our papers [2], •••, [8] . In the second sec-
tion, some properties o f  homogeneous Finsler connections will be
derived. Then, the main result will be given in Theorem 6 of the
third section.
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§ 1 .  Introduction

This section is  an introductory summary of basic concepts of
Finsler connections, needed for the later treatment. Throughout the

present paper, we denote by P, the tangent space to a differentiable
manifold P a t  a point p ,  and by B  the vertical distribution be B
--->B 'b on the total space B  of a fibre bund le , w here  B  is the ver-
tical subspace of the tangent space B ,, the kernel of the differential
of the projection of B .  It is further noted that the differential of a
differentiable mapping j will be denoted by tc  itself.

[1] We shall consider a differentiable n-manifold M  and the follow-
ing fibre bundles.

The bundle of non-zero tangent vectors T (M )(M , r ,  F, G) :

M ......  base space, r  projection T (M )--.M ,
......  standard fibre (real vector n-space),

G=GL (n, R ) ......  structural group.

The principal bundle o f linear frames L (M )(M , 7r, G):

M ......  base space, n  projection L(M)--->M,
G=GL (n, R ) ......  structural group.

The induced bundle r - 1 L (M )--- -- F(M )(T (M ), n i ,  G) :

F(M )= { (y , z ) T  (M ) x  L (M )Iry =nz } ......  total space,
T (M ) ......  base space,
n i  . . . . . . . . . . . .  projection F ( M ) — T ( M ) ,  [(y, z) — > Yl,
G=GL (n, R ) ......  structural group.

The bundle F ( M )  is called the Finsler bundle o f  M .  The opera-
tion r  of G  on F  is determined by

r: G x [(g= (gg), f= fe„)--->gf= RIP e,l,

with respect to a fixed base (e„), a=1, •••,n, o f F .  Next, the opera-
tion t  o f G on the total space L (M ) is given by

t: L (M )x G --->L (M ), [(z = (z ), g= (g))--..z g — (z bg)],

and then, the operation T  o f G  on the total space F ( M )  is induced
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from t  as follows.

T: F (M )xG --->F (M ), [((y , z ), g )--> (y , zg )].

Let us denote by I ?  the differentiable manifold composed o f all

the positive numbers, and let h  be a mapping

h : I?' x  T (M ) — > T (M ), [(a, y)---). ay ].

Then, the mapping

H : R+ x F(M) — F (M ) ,  [ (a ,  u= (y , z))-- > =  (tyy , z )]

is induced from h. A transformation a h  o f  T (M ) is obtained from

the above h  by becoming a E R ÷  fixed . Then, a distribution D: y
T (M ) — >D,c T (M ), on T (M ) is called h- invariant, i f  GAD, —  Da y

holds good at any y and for any a .  The notion of the H - invariance
will be similarly defined for distributions on F (M ).

The Finsler subbundle F(x) at a point xE M  is by definition

a subbundle o f F  (M ) over a fibre r - 1 X C  T (M ) .  It will be obvious
that the tangent space F(x )„ is the subspace o f  F (M )„  given by

{XE F (M)„ I r = 0}  , which is called the quasi vertical
subspace o f F (M )„.

[2] We shall present here concepts of some connections in T (M ),
L (M )  and F (M ).

Definition 1. A distribution N: yE T (M)—> N y c  T  (M ),  on
T (M )  is called a non-linear connection in  T (M ),  i f  N  is  a  com-
plement of the vertical distribution T ', that is,

T (M )y  =  AT, ,EDP ,, (direct sum),

at any point y E T ( M ) .  Further, N  is called homogeneous, i f  N
is h-invariant.

Definition 2. A n  F-connection r ,  in  L ( M )  i s  a collection

{F( f ) }  o f  distributions r ( , ) : zE L(M)--->r ( „ c  L (M )  ,  corresponding
to any f E  F ,  which satisfies
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(1) L (M )= r ( f ) L : ,  at any point z E L (M ),

(2) tg r ( f ) z  — r ( r i t z g ,  at any point z  and for any g EG.

The above mapping tg  i s  a right translation of L (M ) by gEG,
which is obtained from t by becoming g  fixed. It is remarked that
each Poo i s  not a connection in  L (M ) in the ordinary sense, because
(2) differs a  little from the t-invariance of an ordinary connection.

A s for a connection T ' in  L (M ),  th e  associated connection T*
w ill be obtained i n  T ( M ) .  In  fac t, th e  to ta l space T ( M )  is
identified with the quotient space (L (M ) x F ) / G  b y  th e  operation
(z , f ) E L (M ) x  g ,  g - 1  f ) , g E G , and hence the canonical pro-
jection L (M ) x  F--(L (M ) x  F)/ G  gives

a: L (M )x F-->T (M ), [(z ,f )— .-z f ],

where we denote by z f  the equivalence class containing ( z ,  f ) .  The
mapping d f : L (M )--->T (M ) obtained from a by becoming f E F  fixed
is called the associated m apping. Then, the associated connection
T* is defined by r .,,K= a ,r ,  y = z f .  In  th e  sam e w ay, a  non-linear
connection N  will be obtained from an F-connection rF as follows.

Proposition 1. L et rF= {T 'u )} be  an  F-connection in  L (M ),
and then by  the equation

N y =a f r o „,  y = z f ,

a distribution N : y E T (M )-- .N y  is w ell def ined. T h e n  N  i s  a
non-linear connection in  T (M ).

The proof is om itted, because it w ill be easily obtained. The
non-linear connection N  as above introduced is called the associated
non - linear connection with FF.

From now on, we shall treat the Finsler bundle F (M )  o f  M,
and first give the following definition.

D efin ition 3. A  vertical connection T " in  F ( M )  is  a distribu
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tion u  F (M  )--> c F(M )„, such that the restriction P'l F(x )  of
T" to each Finsler subbundle F(x )  is  a connection in  F (x).

Therefore, I "  i s  a vertical connection, if the following condi-
tions be satisfied :

(1) F ( M ) = T FL ', at any point u= F(M ),

(2) T-invariant : Tg i- ' = r , ,„  fo r  a n y  g  E G  and a t  a n y  u
E F(M ).

The above mapping T , is  a  right translation of F ( M )  b y  g,
which is obtained from T  by becoming g E G  fixed. W e  sh a ll g iv e
a differentiable base (B '(e ,)) , a=1 ,•••,n , of the vertical connection
T'. F o r  this purpose, we shall first introduce a parallel vector f ield
P (  f )  on F, corresponding to f E F .  P ( f )  is induced from  a 1-
parameter ( t )  group of transformations {s,1}  o f F, where the mapp-
in g  S ,  f E  F ,  i s  the summation f ,E F-> f1+ f . Then , a  v-basic
vector f ield B ' ( f ) on F ( M ) , corresponding to f  E  F, is defined by

By( z (P( f  ) 7 ( a ) )

a t a point u= (y , z ) , where 1: is the lift to u  w ith  respect to  P", z
the differential of the admissible mapping ,a: F - .T ( M )  obtained
from the mapping a  by becoming a  fram e z  fixed, and r  i s  the
characteristic field u= (y , z )E  ( , a ) - - l y  [2, p. 3 ] .  It will
be obvious that n  v-basic vector fields B '(e0 , a=1 ,•••,n , give a base
of r  at every point of F(M ).

Next, we shall introduce a special vertical connection F .  S ince
F ( M )  is  the induced bundle r'L ( M ) ,  there is the induced mapp-
ing 7r,: F(M )--->L (M ), [(y , z ) - - > z]. The characteristic field r ,  to-
gether with the induced mapping n 2 , gives the diffeomorphism

i= (7c2, r): F(M )--›L (M ) x  F, [(y , z- 1.3/)],

and its  inverse is

L (M ) F--->F(M ), [(z , f ) -* (z f , z )].

By means of this identification i ,  a parallel vector field P (  f )  on F,
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corresponding to fE  F , gives a vector field Y ( f ) = i - 1 (0, P ( f ) )  on

F  (M ), which is called the induced fundam ental v ector f ield, cor-
responding to f. It is obvious that any Y (f  )  is contained in the
induced vertical subspace FL= {X F(M).17r2X= 0 } of F (M ) .

Proposition 2. The induced vertical distribution F :  uE  F (M )
--->F'„ on F ( M )  i s  a v ertical connection, and the v-basic vector
f ield B "( f ) w ith respect to  F  is nothing but the above Y ( f).

The proof is omitted, because it will be easily obtained. It is
remarked that Y ( f )  is induced from the 1-parameter ( t )  group of

transformations {S 1 } o f  F (M ) ,  where S f  =  ( 1, S f )  i. Since the
equation [ Y (fi), Y (f2 )]= 0 ,  f1, f 2  F, will be derived in  virtue of

th e  identification i, the vertical connection F ' as  above obtained
should be called flat.
[3] W e are now in  a  pcsition to  intrcduce a concept of Finsler
connections.

Definition 4 .  A  Finsler connection (T', N )  o f M  is  a pair of
a connection I "  in  F  (M ) and a non-linear connection N  in  T (M ).

Given a Finsler connection (T', N ) ,  we obtain the distribution
,  defined by the equation

r.= L T ; , a t a point u,

where y = - 7 N U E  T ( M ) ,  and l„ is  th e  lift  to u  w ith  respect to  the
connection r .  It w ill be easy to show th at the above F ' i s  a  ver-
tical connection, which is called the subordinate vertical connection
to(r , N).

Definition 5 .  A  Finsler pair (r", r') in  F  (M ) i s  a pair of
two distributions rh: uE F (M )— > rcF (M )„  and r': m E
c  F (M )„ , both on F  (M ), which satisfies

( 1 )  F(M )„- - -- F E D F :e F : , for any uE  F (M ),
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(2) both o f T '  and r  are T-invariant,

(3) ni T:= y=niu, for any ue F(M ).

I t  is  c le a r  th a t  the second distribution T "  o f  a  Finsler pair

(rh, T " )  is  a vertical connection in F(M ).
The following theorem means that a Finsler connection can be

also defined as a Finsler pair.

Theorem 1. T h e r e  i s  a  natural one-to-one correspondence
between the set of  Finsler connections of M  and the set of  Finsler
pairs in  F(M ).

As will be easily verified, the correspondence (r, N ) — r )

is given by

r=1 „N y , y =

T" .........  subordinate vertical connection,

while the inverse correspondence (P h, T")--->-(r, N )  is

N , = n i r ,  u e 1y .

In  th e  follow ing, we shall often express ( r, N )= ( rh , r') ,  when
(P, N ) and

 ( p h ,
 P " )  correspond each other by the above rule.

W e shall give a differentiable base (Bh(ea)), a=1, • -•, n, of the

distribution P h . In order to do this, we first introduce an  h-basic
vector f ield B h( f  ), corresponding to f  E F , by the equation

B h (f )„=l.•l,(z f ) ,

a t a point u = ( y ,z ) ,  where /. and ly  are the respective lifts with
respect to r  and N .  It then  fo llow s that n  h-basic vector fields

Bh(e,), a=1, • • • , n, give a base of . As a consequence, 2n vector
fields 13"(e), ( e ” ) ,  a =1, • • • , n ,  give a base of the connection P.

Let us project a Finsler pair (P", P") o n  th e  bundle o f  linear
frames L (M ) by means of the induced mapping 7r2 F ( M ) —  L (M ).



32 Makoto Matsumoto

Then, corresponding to any f E  F, w e obtain tw o distributions P( f )
and r  on L (M ), such that

r c.f) = 7r2r , r ("f ) ,---nr,r„", u =i - 1 (z , f ).

We are not interested in the latter r ( f ) , because it is vertical, that
is , contained in  the vertical distribution D .  On the other hand, the
former r u , is very important, because it constitutes an F-connection
r,— {r(f)}, as w ill b e  easily  show n . T h is r ,  is  ca lled  th e  subor-
dinate F-connection to the Finsler connection (r, N ) =( rh ,r . ).

Definition 6. A  Finsler triad  (r,, N , T '') of M  i s  a  triad of
an F-connection r ,  in  L (M ), a  non-linear connection N  in  T  (M ),
and a vertical connection r  in  F (M ) .

Then, the following theorem means that a F insler connection
can be thought of as a Finsler triad.

Theorem 2. T here  is  a  natural one-to-one correspondence
between the set of Finsler connections of M  and the set of Finsler
triads on M.

The correspondence (r, N )= N , r)  is given by

r, ...... subordinate F-connection,

while the inverse correspondence (r,, N, N )= r-) is

r:= {X EF(M).IniX EN,, 7V 2xEr(f), =  n it t ,  f  r (u)}

[4] W e shall give a modern definition of tensor field appearing in
the classical theory of Finsler spaces, whose components are func-
tions not only of point, but also o f element o f support. L et V  be
a  vector space a n d  p : G - - G L ( V )  b e  a  representation o f  G
=G L (n ,R ) on V . Then, a Finsler tensor f ield K  of p-type is by
definition a V -valued function on  F ( M ) ,  satisfying th e  equation
K • Tg = p (g ')K  fo r  an y  g e G .  I f  V  i s  th e  tensorial product
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F 's = F 0. • • OF OF*0. • • OF* (space of linear mappings F* x • • • x F*

X F x••• x  F-*R ) and p  is the usual representation, then K  is called-s
o f  (r, s)-type.

For a typical example, the characteristic field y is  a Finsler
tensor field of (1, 0)-type. In order to show another example, we
shall consider the difference between a  general vertical connection
y  and the vertical flat connection F ' .  Then, a Finsler tensor field
C of the adjoint-type is introduced by the equation

(1.1)Y ( f ) = 1 3 ' ( f ) + Z ( C ( f ) ) ,

where Z (A ) , corresponding to A e  L (n , R )  (th e  L ie  algebra of
G L (n, R )), is  a  well-known fundamental vector field, defined by
Z  (A )„- „T A , „T  being the differential o f th e  mapping obtained
from T  by becoming u e  F (M ) fixed. C as thus defined is called
Cartan tensor f ield of ( r ,  N )  ( r h ,  y )  under consideration. In the
case of famous Finsler connection due to E. Cartan, C  is nothing
but the well-known tensor, components of which are C ;k .

While the equation

(1.2)B ( f ) 1 f+  C(2-, f ) , C(r, f ) = C ( f ) r ,

will be easily verified in virtue of (1. 1), the equation

(1.3)B h ( f ) r - - - - D ( f )

introduces a new Finsler tensor field D  of (1, 1)-type, which is called
the deflection tensor f ield o f ( r ,  N ) .  It will be observed that the
deflection tensor D  vanishes identically in the case of almost all of
classical Finsler connections.

Finally, le t u s consider two Finsler connections ( r ,  N )  and
( r ',  N ') , and let B h ( f ), B ' ( f  ) and B " (  f ) ,  B " (  f )  b e  respective

h- and v-basic vector fields. Then, the equations

(1. 4) B"( f)= Bh( f)+ B` (Dh( f)) + Z (A h( f ) ) ,

(1• 5)B " (  f ) 13' (
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will be easily derived, and thus we obtain three Fins ler tensor fields
,  A ' and A"; D" being of (1, 1)-type, A ', A ' being of the adjoint

type.

§ 2 . Homogeneous Finsler connections

Given a  Finsler connection (r, N ) ,  its  torsions T, C, 1?1 , P 1 , .51

and its curvatures 1?2 , .13 2 , S 2 a re  introduced by the equations

(2.1) [B "(f i), B h (f2)] =13 h (T  ( r. f 2 ) )  +B '( R '( 1-0)
+Z (R 2 ( f 1 , f z )),

(2.2)[ 1 3 h ( f 1 ) ,  B '( f 2 )] =11"(C(f 1 , f 2 ))+.13 '(P 1 ( f 1 , f 2 ))

+Z (P 2 (f1, f 2 ) ) ,

(2 .3)[ 1 3 " ( f 1 ) ,  B V 2 )]=.13°(S 1 ( f 1 , f 2 ))+ Z (S 2 ( f 1 , f 2 )).

C  as appearing in  (2. 2) is nothing but the C artan tensor. S 1 and
S ' are the torsion and curvature of the subordinate vertical connec-
tion r e s p e c t iv e ly , and expressed by C as follows.

f 2)=C (f 1, f 2) —  CC f2, f i ) ,

S 2 (f1, f2) = f2)— 2 C (f 2,A ) —  [C ( f i) , C ( f 2 )],

where the covariant differential operator A° is th e  differentiation by
Y ( f ) ,  that is , zI°C(A, f2) = Y ( f2)C(

Next, it follows from (1. 1) and (2. 2) that

(2 .4)[B h ( f i ) ,  Y ( f 2 ) ] = Y ( P l (f i, f 2))

+ Z (I3 2 ( f„ f2) + d"C(f2, f 2))),

where the h-covariant differential operator zlh i s  th e  differentiation
b y  B h ( f ) ,  th a t i s ,  zinC( f2, =B h ( f i)C ( f 2 ) . Further, it follows
from (2. 4) and (1. 3) that

(2. 5) [Bh(f ), (r)] — 13 '( P 1 (f , r) + D( f ) )
+Z  (13 2 (.1; r)+(z i h C ( r) ) f ) .

Now, we shall be concerned with the homogeneous property of
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some geometrical objects. A  function p  on F ( M )  is  ca lled  homo-
geneous o f degree r ,  if th e  equation it - j 1 = G e • / 2  holds good for
any a l ? + .  Next, a tangent vector field X  on F ( M )  is called
homogeneous of degree r ,  if th e  equation a l-IX—a' • X  holds good.
Finally, a distribution D  on F ( M )  is called homogeneous, i f  D is
H-invariant.

Definition 7. A Finsler connection (r, N )  is called homogene-
ous, if r and N  be homogeneous in the respective sense o f F(M )
and T (M ).

Proposition 3. A  necessary  and sufficient condition for a
Finsler connection (r, N )  to be hom ogeneous is that B h ( f )  and
B ( f )  be homogeneous o f degree 0 and 1  respectively.

The proof will be easily obtained.

Proposition 4. If a  function p  on F ( M )  is homogeneous of
degree r,  then B h (f )p  is homogeneous of the sam e degree, pro-
v ided that the Finsler connection under consideration be homogene-
ous.

The proof w ill be easily obtained from  Proposition 3. The
following is the well-known Euler's theorem on homogeneous func-
tions.

Proposition 5. If a  function p  on F ( M )  is homogeneous of
degree r,  then the equation Y  (r)p=r • p holds good.

P ro o f . Since the induced fundamental vector field Y ( f )  is
induced from the 1-parameter group of transformations { S tf } , it is
seen that, at a point u =  (y, z ) ,

Y ( r )„p 1=lim  {p(y +ty, z)—  p(y, z)}

1 = l im {p • (1+ t) H(u) — p(u)}
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=lim   1 { ( 1 +  p ( u )  ' (u)} = r • p(u).

T h e following theorem gives th e  interesting properties of a
homogeneous Finsler connection, although (2) will not need in future.

Theorem 3. The torsion 13 1  a n d  th e  curvature P 2 o f  a

homogeneous Finsler connection satisfy

Op (f , r)  —  D ( f ) ,

(2 ) P 2 (f , — zPC(r, f ) — C(D(f ))•

P ro o f. We first obtain from (2. 4) one of the Ricci's identities

(zi°  if )(f  f i) —  z i( o JeK )(f i, f2)

= 4° K(Pi ( f i , f 2 ))—  P 2 ( f i , f —  (2C( f 2 , f i ))K +C (Pl(f i, f 2 ))K

If we put fi = f  and f2 = r in the above, it follows that

J°K(13 '( f ,  r)) — P2 ( f, r) K— (2C(r, f ))K +C (.13 1 ( f , r ))K

= (2  K )  (r, f ) - A ° ( 2 K ) ( f ,  r)

= 4h ( 2 1 f ( r) ) ( f ) —  K ( 4 k r( f ) ) —  1 ( 2 )) (r).

If K  is supposed to be homogeneous o f  degree 1, it follows from

Propositions 4 and 5 that

2(A °K (r))(f .
)  =  ( 2 1 ) ( f ) ,  z r(J h K (f  )) (r) = z rK (f ) ,

and hence the above equation leads us to

zl°K (Pi( f , r) + D ( f ))  (2C (r, f  ))K  +C (1 3 1  ( f , r))K

= 1 3 2 (f , r)K

Therefore, the equation (1 ), together with the above equation, gives

( 2 ) .  In order to prove (1 ), it is sufficient to show th a t [B h(f ),
Y ( r ) ]  is vertical, because o f  (2. 5). L et p  be any homogeneous

function of degree 1  on T  (M ), and then p •  T C 1  is obviously homo-

geneous of degree 1 on F ( M ) .  It then follows from Propositions 4
and 5 that
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(7ri[B h ( f ) ,  1 7 (r)1)11

—B h (f)(Y (r)(12•7r1)) —  Y ( r) ( P ( f ) ( P • n i ) )  0 ,

from which the equation ni [B h ( f ) ,  Y(r)] =0 is derived.

Definition 8. The D-simple Fin sle r connection (r', N ')  of a
Finsler connection (r, N )  is defined by (1. 4) and (1. 5), where D"
— A .'=0 and A h(f )=— P 1 ( f ,  ) .

T h e  following proposition will be immediately shown from
(1. 3), (1. 4 ) and (1. 5).

Proposition 6. The D-simple Finsler connection (r ' N ')  of a
Finsler connection (r, N )  is such that

.  ( 1 )  N '= N , ( 2 )  D i( f ) =D ( f ) +1 3 1 ( f ,  ) .

Theorem 4. The deflection tensor D' of the D-simple Finsler
connection (r', N )  o f any homogeneous Finsler connection (r, N )
vanishes identically.

This important theorem is a direct result of Theorem 3-(1) and
Proposition 6- (2).

§ 3 .  Homogeneous non-linear connections

First o f a ll, we shall consider the differential o f th e  chara-
cteristic field r, the mapping F(M )--.F, [(y , z ) -->z - 1 y].

Proposition 7. The differential of the characteristic f ield r
is given by

z a • rX= a f  n2 X,

where X E F(M )„ and u =i - 1 (z , f ).

P ro o f . It follows from the identification i: F(M )- - .L (M )x F
and the mapping a: L (M ) X F -->T(M ) that

n1X =a•iX =a(n2X ,rX )=a1•7r2X +,a rX ,
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which proves the proposition.
Let us remember the definition o f  a  Finsler triad (T F , N, r ),

where there is not any interrelationship among T F , N  and r .  Now,

a special Finsler triad is required for our purpose.

D efin ition  9 . A  Finsler connection (r, N )  is called N -simple,
i f  N  is  the associated non-linear connection with the subordinate
F-connection r F .

A  geometrical meaning of the deflection tensor D  will be given
by the following.

T h eorem  5 . A necessary and sufficient condition for a Finsler
connection to be N-sim ple is that the deflection tensor D  vanishes
identically.

P ro o f. It  fo llow s  from  (1 .3 ) th a t 7- B h ( f ) =P ( D ( f ) ) ,  and

hence Proposition 7 leads us to

.,aP (D ( f i)) rriB h —  a f - 7c2B h (f  1 ) ,

for any f 1 E F .  The proof follows then immediately from the defini-

tion of the subordinate F-connection.
The m ain result o f th e  present paper is now stated as the

following theorem on a homogeneous non-linear connection.

T h eorem  6 . Any homogeneous non-linear connection in the
tangent bundle T (M )  is the associated one with an F-connection
in the bundle o f linear frames L (M ).

P ro o f. Let N  b e  a  given homogeneous non-linear connection

in  T (M ), and construct a homogeneous Finsler connection ( r, N ),
combining with N  an arbitrary homogeneous connection r  in  F (M ).
In order to do so, it is enough to observe that the induced connec-

tion P  from a linear connection P  in L ( M )  by the induced mapp-

ing 7r2 is surely homogeneous, where P  is given by
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{X e F(M )„ 7r2 X E ir214}

Next, let us construct the D-simple Finsler connection ( r , N ')  of
the above (r, N ) .  It then follows from Proposition 6 that N '
and from Theorem 4  th a t D'= O. Therefore, Theorem 5 leads us
to the conclusion th a t the connection (r", N ')  is  N-simple, that is,
the original non-linear connection N  is  the associated one w ith the
subordinate F-connection 1'F' o f (r', N ').

It should be remarked that a homogeneous non-linear connection
N  may be associated with two different F-connections. I t  is, how-
ever, observed that the above F-connection r,' satisfies r ( a . f ) = P f )  for
any a E R 1-. In general, we have

Proposition 8. T he subordinate F-connection r,= {roo}  o f  a
homogeneous Finsler connection (r, N ) satisf ies r ( Œ f ) =r ( f )  f or any
f  F  and any  a G R + .

P ro o f .  The distribution r ( a f )  is defined by P (, f ) =7r 2 P:,' ,  , where

a f ) =  (zaf , , z)= Œ H(zf, , z) = f ) .

Therefore we see

r ( c c f ) .  = 7r21 - i lZt„ = 7s2 • Œ Hn=n2r:----r( f ) .
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