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Introduction

In the original version [4] of the real periodicity theorem Bott
introduces an operator into the structure of the homotopy groups of
certain Lie groups. Following Harris [6] w e refer to  the operator
as the Bott suspension! )  In  § 1  below we give a  definition of the
operator which is slightly different from Bott's and clarifies its relation
with the Samelson product and other constructions. Our main purpose,
however, is to introduce a relative version of the Bott suspension and
to study its properties.

After some consideration o f th e  general situation in which
operators of this type arise we go on to make a detailed investigation
of a particular example which operates on the homotopy groups of
the Stiefel manifolds

V 2 n ,2 k  S 0 (2n) / SO (2n— 2k) (k< n)

In this case the relative Bott suspension constitutes a homomorphism

F : 7r,( V2,1,20 V 2 n ,2 k ) •

We fibre V 2 , , . 2 ,  over V 2 n ,  2 /  ( i < k )  with fibre V 2 „ - 2 1 , 2 k - 2 1 ,  in the usual
way, and show that F  commutes' )  w ith  the homomorphisms in the

1) The precise usage of Harris is somewhat different from m ine. However, the
name seems to be an appropriate one for any operator of the type.

2) As usual, in  this kind o f situation, there will be sign changes in some cases.
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homotopy exact sequence of the fibration.
There is a  strong link between the Bott suspension and the

homotopy theory of symmetric spaces. This enables us to calculate

F : V 2 ” , 2 ) ,

and hence obtain some information about F  in the general case.
For example, we show that the iterated Bott suspension

Fq : 7 r (  V 2 ,1 ,2 0 n r-F q  V 2 n ,2 k )

is trivial if q>6 k ; in particular

Fq : n r (S0(2n))----> n r + ,(S0 (2n ))

is  trivial for q > 6 n . The actual results proved in  §5  below are
rather stronger than this.

The Bott suspension acts as a derivation with respect to  the
Samelson product, in a way we shall describe. Hence the calculations
mentioned above enable us, in §7, to compute a certain relative
Samelson product which is the obstruction to  the existence of a
cross-section for a certain sphere-bundle (see [9] for details).

1. The ordinary Bott suspension

Let G be a Lie group. Let X  be a 1-parameter subgroup of G
and let X, c X  denote the cyclic subgroup given by integral values
of the parameter. We describe X  as intercentral in  G  i f  X ° is
contained in the centre of G .  When this condition is satisfied the
Bott suspension

X 1$ : ( G )  7r,+ 1 (G) (r> 1 )

can be defined as follows, beginning with a special case.
Given an element 0E r i (G) we denote by

: r,(G)--.7r, Fi(G)

the homomorphism defined by taking the Samelson product with 0,
thus
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o # a=<a,B> (a E ir ,(G )).

When X  is such that X 0 i s  trivial we take 0  to be the class of the
loop determined by X  as the parameter runs from 0 to 1 and define

In the general case, where X  is intercentral in G, we form the
factor group G'=G/X o . The homomorphism p * : nr(G ')
induced by the natural projection is  an isomorphism for r > 2 .  Now
X o' is  trivial, where X'= X/ X0, and so X t; is defined as above. The
Bott suspension associated with X  is defined by

(1. 1) -X#---PVX;P*,

as shown in the following diagram.

n r ( u ) 7r,di(G)

P*I 1P*
7tr  (GI ) 7t,+1 (GI )

X -;

The usual definition o f th e Bott suspension involves a  map
f :  G--.12G, which we shall refer to as the Bott map associated with
X .  This map is defined by

(1.2)( f a )  (t)=ax,a - lxï' (a E G , tE I),

where x , denotes the element o f X  given by parameter t. It is
important to note that f  can be factored through G/K, where K
denotes the centralizer of X  in G .  The Bott suspension is usually
defined to be the composition

(G) --> 7r„(s2G)--* c,+ ,(G ),
f*

where E denotes the Hurewicz isomorphism. Then

(1.3) - $ f *

by definition of the Samelson product when X o i s  trivial, and by
naturality in the general case.
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Since f  is  constant on K , the centralizer of X  in G, we obtain
from (1. 3) that

(1.4) 6*--=

where i : ) —>-7r,(G ) denotes the injection. To see this from
our definition (1. 1), consider the special case when G =K . Then X;
is trivial, since elem ents of the factor group K/ X 0 commute with
elements of X ', and so X $ i s  trivial in th is  case. By naturality,
therefore, X# 6*: = 6* X#= 0  in the general case, as asserted.

The standard example o f th e  B o tt suspension arises when
G  SO (2n) , the group of rotations of euclidean 2n-space. Take
an orthonormal basis so that elem ents o f SO (2n) are represented
by matrices. We denote by

F : n,(S0(2n))---). 7r,+ ,(S0 (2n))

th e B o tt suspension associated  w ith  th e  1-parameter subgroup
exp(unt), where u  denotes the matrix

-  1 \
O 1\

o) e  e  - 1  o) (n  blocks).

Note that the centralizer of the subgroup is the unitary group U(n) ,
embedded in the standard way. The factor group o f  SO (2n) by
the central subgroup {e, —e} is the projective group PSO (2n) . The
element BE ni (PSO (2n)) determined by exp (unt) is  of order 2 or 4
according as n  is even or odd. Hence it follows by linearity that

(1.5)
2 F  0

14F-0
(n  even),
(n  odd).

When n  is  odd  20  p ,“ ,, where g e n e ra te s  n1 (S0 (2n )), and so

(1. 6) 2F= q, (n  odd).

After this example we return to the general situation where G
i s  a Lie group and X  i s  an intercentral 1-parameter subgroup. I
assert that X 0 satisfies the derivation law

(1.7) X,s<a, >= <X ,  
19 > +

 ( - 1 ) ' < a ,  X#(3>,
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where a E n; (G ) , fiEn i ( G ) .  To see this, notice that

p * : 7r* (G)--. 7r* (G ')

respects the Samelson product, since p  is a homomorphism of topolo-
gical groups. Now X I; acts as a derivation on 7r* (G ') , by the Jacobi
identity for Samelson products. Since p * is  an isomorphism of the
higher homotopy groups it follows at once from (1. 1) that X lt acts
as a derivation on 7r* (G ) ,  as asserted.

Next I assert that

(1. 8) Xi 0 =  —  Y 0 X # ,

where X , Y are intercentral 1-parameter subgroups o f  G .  Notice
first that this relation holds when X 0 and Yo a re triv ia l. For if
0, yo r i  (G) then <0, ço> 7r, (G) = 0, and so

<<a, 0>, <<tr, 0, O>=0,

by the Jacobi identity, where aEir * ( G ) .  By taking 0, ço to be the
elements determined by X , Y  we obtain (1. 8) in the special case.
To deal with the general case, consider the diagram of factor groups
and natural projections shown below, where G" denotes the factor
group of G by X0 • Yo .

p  G  q

G G
Yo

p /

Now Xo is defined through .2G, where X'=PX, and 17
# is defined

through Y, where Y '= q  Y. Write X " = p 'x ' ,  Y " —q' Y '.  Then
and Yô' are trivial and so

X ;proY '=

as shown above. We have p * x -$ --- x ;p * ,  by definition of the Bott
suspension, and p'* x - s;= x ; 'p ,  by naturality of the Samelson product.
Hence p',, p * x „ -p '* x;,p * --)G'p'* p * , and similarly q q * Y-#= Y 'q ',4 * .

Now f p = q l q = r ,  say, the natural projection of G  onto G " . The
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higher homotopy groups are mapped isomorphically by r * . Hence
the anticommutativity of the operators X # , 17

# follows from the anti-
commutativity of the operators X ;', Y s;'.

When X  and Y commute, we can construct the 1-parameter sub-
group Z c G  such that z,=x,•y„ where x„ y e , z e are the elements
of X, Y, Z  given by parameter t. I assert that

(1.9) X$+Y#=- Z#,

when X , Y, Z  are so  related . W hen X 0 and Yo are trivial this
follow s at once from the linearity of the Samelson product, since
the element o f r i (G )  determined by Z  is  the sum of the elements
determined by X  and Y. To establish (1. 9) in the general case we
reduce it to  the special case by an argument very sim ilar to that
used for (1. 8). The details are omitted.

Of course (1. 8) is almost obvious, when X 0 =  Y0 . F o r  example,
suppose that X  and A X  commule, where A is an automorphism of
G  which leaves X 0 f ix e d . Suppose that X  and A X  commute. As t
runs from 0 to  1  we obtain from X , A X  two paths from e  to  a
central element of G . By composing the first with the reverse of the
second we obtain a loop in G, and it follows from (1 .9 ) that

(1. 10) (AX)#=cptp ,

where q)E ri (G ) denotes the class of the loop. Now A determines
an automorphism A' o f G'=G/Xo, and we have a commutative dia-
gram as shown below, from the definition of the Samelson product.

X ;
7r,(C )  7 r,,i(C )

A's,1
7r,.(G')

(A' X ') #

Hence it follows at once from (1. 1) that A X =  (A X ) it 2* . Combining
this w ith (1. 10) we obtain the relation

X — A* X A * 1 ---- .
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As an example take G= S O(4) with A the automorphism which

changes the sign of the first row and column. This leaves {e, —e)
fixed and so (1. 11) shows that

(1.12)
 

F — 2* F2* -- --y)0 ,

where ço generates n1 ( S 0 ( 4 ) ) .  We can use this relation to calculate

F :  n,(S0(4))— . 7c 4 (S 0(4)),

as follows. Choose generators a', 13' of the cycle infinite groups

7r3(S0(3)), n 3 (U (2 ))  and let a, 7r3 (SO (4 ) ) denote their images

under the injections. Then 2 9= a —  0 , by (22. 7) o f [16] , assuming

that our choice o f  generators is as in [16] . Also qr#19'= 13/ 072, by' )

Th. 1 o f [5] , where ,t/r generates ni(U (2)) and 72 generates 74(S 3 ).

Hence §9#0= (3072, by naturality, and since F = O, by (1. 4), we obtain
from (1. 12) that

(1 .13 ) —  Fa =2 * (0011) -0 ,072-0v.

This can also be established by the methods of §3.

2 .  The relative B o tt suspension

Before introducing the relative operator a further definition is
required. Let H be a closed subgroup of the Lie group G. We say
that a 1-parameter subgroup Yc H  is subordinate to  a  1-parameter
subgroup X  cG  if

(2. 1) x , hx 7 i = y, hy71 ( h E  H),

where x „ y , denote the elements of X, Y  given by the parameter t.
Let this condition be satisfied and let X  be intercentral in G . Then
Y  is  intercentral in H .  Write H . X= H . Then H  is  a subgroup
of G, and H  is a normal subgroup of H .  Also H / H  is isomorphic
to a factor group of X  and so its higher homotopy groups are trivial.

3) In the proof given  in  [5 ] there is a restriction imposed which appears to
exclude this particular case. However, the restriction is not essential.
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Since x ,y ;- 1  lies in the centralizer of H , b y  (2. 1), it follows from
(1. 4 ) and (1. 9) that

(2. 2) = 17
# : g r(H ) - -->

After making this observation we define the relative Bott suspension

: 7r„(G, H)— > 7r, ,(G, H) ( r> 2 )

as follows. Write IT= H/X0, regarded as a subgroup of G '=G /X o .
T h en  X  is  trivial, where X7 = X/Xo and so determines an element
OE 7ri (H ' ) .  Consider the homomorphism

: 7r„(G', H')—> H')
defined by taking the relative Samelson product with 0, thus

0#a = <a, 0> (a E 7r, (G', H ') ) .

By the five lemma the induced homomorphism

Tr r (G, 7r,(G', H')

is  an isomorphism for r > 2 .  We define the relative Bott suspension
X # t o  b e  the homomorphism which makes the following diagram
commutative.

.X#
7V,(G, H) n-, , ( G ,  H)
p. 1 IP.

7r,(G ', H ')---> H ')

It is often convenient to identify the relative homotopy groups
of the pair (G, H) with the ordinary homotopy groups of the factor
space GI H  under the isomorphism induced by the natural projection.
Thus the (relative) Bott suspension can be regarded as a homomor-
phism of n r ( G / H )  into 7V ,,(G / H ).

We recall from §1 of [10] that Ho c an  b e  made to operate on
every term of the homotopy exact sequence

• • • - - ) . 7 rr (1.1-9 - >  ( C ) - - - ) »  7V ,(G', H') , ...,

raising dimension by 1. On 7r,,,(H ')  w e take the Samelson product



On the Bott Suspension 169

with 0, on 7r, (G') we take the Samelson product with the image of
o in 7r )  ,  and on 7 r * (G', H ') we take the relative Samelson product,
as above. By means o f p *  we transfer this to an operation of X i,
on every term of the homotopy exact sequence

• • 7r, (H)— ). 7r,(G)--> 7r,(G, H)--> • • • .

Here 7r (G) is mapped by the ordinary Bott suspension and 7r*  (G , H)
by the relative. If we choose a  subordinate subgroup Yc H  then

the action of X * o n  7r* ( H )  agrees with that of the ordinary Bott
suspension Y .  T h is  follows at once from (2 . 2 ) since the injection

,(11 ) — > 7r, (H)

is an isomorphism for r> 2 .
Consider the Bott map f  :G - -S 2 G  associated with X  as in (1. 2).

By (2. 1) f  maps H  into 12H .  Moreover f i H  agrees with the Bott
map associated with Y , where Yc H  is subordinate to X .  By a
similar argument to  the one used to prove (1 . 3 ) it can be shown
that the following diagram is commutative, where E denotes the

relative Hurewicz isomorphism.

f  *  Ir (S 2G  s2H ),

7r,.(G , H)
x i$  7r,..0 (G , H)

Suppose, however, that we carry out the identification of 7r* (G , H)
with 7r* ( G I  H ) .  It might be conjectured that there exists a map of
G/ H into ..(2(G/H) such that X* i s  the composite of the induced
homomorphism and the Hurewicz isomorphism. In general this con-
jecture is false, as we shall see in §4  below.

If K  is the centralizer o f X  in G then Hf 1K is the centralizer
o f Y  in  H, where Y  is subordinate to X, and it follows as in the
ordinary case that

(2.3) X # a * =  0,

as shown below, where a denotes the natural embedding of K / ( H n K )

in G IH .

IE
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7r,(K1(HCIK))- ,---* 7r,(G/ H)  n,,,(G/ H)
(1*

Now suppose that H  contains a closed subgroup J of G and that
J  contains a 1-parameter subgroup subordinate to Y and hence to X.
Then the relative Bott suspension operates on the homotopy exact
sequence of the triple (G, H, J ),  mapping 74(G, H )  and 74(G, J)
according to Xi! and 7r,,,(H, J) according to Y. Th is follows at once
from the characterization of the relative Bott suspension in terms of
the Bott map.

An important example of the relative Bott suspension is when

(G , H )  (S0(2n), SO(2n —2k)),

where k < n .  Here we identify SO(2n-2k) with the stability sub-
group o f th e last 2k basis vectors and identify the factor space
SO(2n)1S0(2n-2k) with the (oriented) Stiefel manifold of ortho-
normal 2k-frames in  2n-space. We take X  to  be the 1-parameter
subgroup exp(unt), as defined in §1, and Y to be the corresponding
1-parameter subgroup o f SO(2n —2k), which satisfies the subordin-
ation condition (2. 1). We denote by

F : rr,( 17
2n ,2k ) 7r, -F1 ( V 217,2k )

the Bott suspension thus defined. In this case (K,11f1K)-- (U(n),

U(n— k)) and the factor space U(n)/ U(n— k) can be identified with
the complex Stiefel manifold W , , , regarded as a subspace o f V 2„,2k •
By (2. 3), therefore, F  annihilates the image of the injection

: 7 t , ( V 2 n ,2 k )  •

Consider the homotopy exact sequence of the fibration of SO(2n)
over V 2 n ,2 k  with fibre SO(2n — 2 k ). W e have defined F  on each
term of the associated exact sequence so that F  constitutes a map
of the exact sequence into itself. The same applies in the case of
the fibration of V 2 2 1, over V 2n , 2 /  (1<k), with fibre V 2 n -2 /  ,2 k -2 1  •

Returning to the general situation we remark that the properties
of the ordinary Bott suspension established in §1 can be extended
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to the relative Bott suspension, with appropriate modifications, using
similar arguments. For example, consider the derivation law (1. 7),
which depends on the Jacobi identity for the Samelson product.
The Jacobi identity for the relative Samelson product, as proved in
[141, gives rise to the derivation law

(2. 4) X$1<a, <X#a, 19> + ( - 1) 1<, X

where a E 7r ;  (G, H ) ,  f3En 3 (H ) .  I f  YE H  is subordinate to X cG
then X 0  can be changed to Y.

We recall from [13] that the Whitehead product in  n* (G/H)
can be expressed in terms of the relative Samelson product. Speci-
fically, if a E 7r ; (G/H), T E  (G / H ) then [ r ]  <a, dr>, where

: ni(H)

denotes the transgression operator in the homotopy sequence of the
fibration. Since X o commutes with J it follows from (2. 4) that

(2.5)r a ,  T ] [X #a, y ] + ( - 1)i ra, X# r ].

One further derivation law is worth mentioning, although it is
not convenient to give the proof in the present paper. The intrinsic
join operation, as defined in  [7] , constitutes a pairing o f 7r* (  V2m,21e)

With 7r* (  V 2 1 1 ,2 0  to  7 r *  ( V 2m-F2n,2k) • It can be shown that F  acts as a
derivation with respect to this pairing.

3 .  T he Bott maps

Let G be a Lie group and let X  be an intercentral 1-parameter
subgroup o f  G .  Let A  be an automorphism o f G  such that the
elements o f X  commute with the elements o f Y=2 - 1 X .  Then Y
forms an intercentral 1-parameter subgroup of K , the centralizer of
X  in  G .  Let L  denote the centralizer o f Y  in  K .  Consider the
diagram shown below, where A ' is induced by Aj K  and tt is given
by composition with A K.
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K/L '±->s2K .

A' 1 112
,QG

In the diagram f  is given by the Bott map associated with X , as
defined in (1. 2), and g  by the Bott map associated with Y. I assert
that

(3. 1)

For let x , denote the element of X  given by parameter t , and write
y, — 2- i x , .  I f  a K  then

2(ay i a-
1y7 1 ) —(2a)x1(20 - 1 x7 1,

since 2 is an automorphism. Hence our assertion follows at once.
It is important to notice that A' is also induced by the map
where

oa= (2a)• a- 1 ( a  E K ).

Let M  denote the subgroup of K  whose elements are left fixed by A.
Then

(3. 2) q= po',

as shown below, where 64' is induced by 0 and p , q denote the natural
projections.

K 1M — ›K /L
0'1
G  > G/K

For the background to these constructions see Harris [6].

For example, take G— SO(2n), and take X  to be the 1-parameter
subgroup exp(unt) with centralizer U ( n ) .  Choose A to be the in-
volution which changes the sign of the first row and column. Then
Y  is the 1-parameter subgroup exp(vgt), where y is the matrix
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(0  l e (  0 1) (  0  i )
0 - 1  0  o  \ - 1  0 ) .

The centralizer o f  this subgroup o f U (n ) is  U(1) x U (n -1 ),  and
the factor space can be identified with C P (n -1 ), the complex pro-
jective (n-1)-space. Moreover M=0'(1) x U (n -1 ),  where 0'(1)
denotes the subgroup o f real matrices in U(1), and so K/M  can
be identified with R P (2 n -1 ), the real projective (2n-1)-space.
Thus we have a commutative diagram as follows, where W(n)
—S0(2n)/U(n).

R P (2 n -1 )-->  C P (n -1 )---->  U (n )

10 ' 1 1 1
S O (2 n ) — >  W (n ) - ->  2 S 0 (2 n )

Here 0 ' is  the usual embedding (see [17] ) o f real projective space
in the rotation group and g  is  the adjoint (in the function-space
sense) of the usual embedding (see [18] ) of the suspension of com-
plex projective space in the unitary group. The algebraic topology
o f W (n) plays a central role in the theory of almost-complex struc-
tures. I remark in passing that the use of A' considerably facilitates
the study of this manifold.

It can easily be checked that the maps in the above diagram
are compatible, for various values of n , if the usual embeddings
are made. Thus the restriction of A ' to  CP(n — 2) has values in
W(n —1) and agrees with the map obtained by our construction with
n -1  in place of n .  To avoid trivialities, take n>2, from now on.

Consider the commutative diagram shown below, where the
vertical maps are inclusions, 0 "  is determined by 0 ', and p '  denotes
the natural projection.
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o"
RP(2n— 2) ---> SO (2n-1 )--->  SO (2n-1 )/U (n-1 )

RP(2n-1)—v -> SO (2n) SO (2n) / U(n)

By (3. 2) we have

(3. 3) Z qi=pe'i= pp" —  kp'e".

Let r' : W(n)--> S 2 "- - 2  denote the usual fibration, with fibre W(n— 1),
as in §41 o f [ 1 6 ] .  We recall that r'kp' the standard fibration
of SO (2n -1 ) over S 2 - 2 , and hence r'À'qi= re, by (3 . 3 ) . Now re
determines a relative homeomorphism

(RP(2n— 2), RP(2n— 3 ) )  (S 2 "- - 2 , e),

where e denotes the basepoint, and q  determines a relative homeo-
morphism

(RP(2n— 2), RP(2n- 3)) —> (CP(n— 1), CP(n —2)).

Hence we obtain

Lemma 3. 4. The composition r' A' determines a relative homeo-
morphism

(CP(n-1),CP(n-2))— > (S 2 2
,
e).

In the present work the main purpose of (3. 4) is to prove (3. 5)
below. Choose generators z, 0", of the infinite cyclic groups

r2 n -2  (S0(2n— 1), S0(2n —  2)), n2„-1(U(n), U(n— 1)),

where n > 2 . Consider the elements

E ( S O  (2n) , SO (2 n  2)) , 8„E 7t2 „-1 ( S 0  (2n), SO (2n —2))

which correspond to W„, fl under the injections. When these gene-
rators are suitably chosen I assert that

(3. 5) ,14,3„ (n>2 ),

where F  denotes the relative Bott suspension and 2* th e  automor-
phism of Ir,,,(S0 (2n), SO(2n— 2 ) )  induced by A.
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By (3. 2) we have a commutative diagram as shown below, where
w e have identified n ,(S2X , S2A) with n,,,(X , A )  by the Hurewicz
isomorphism.

,(CP(n — 1) , CP(n — 2)) ---> n ,(W (n ), W (n — 1))

g*I I f *
n,,(U(n), U(n —  1)) ,,,(S0 (2n), SO(2n — 2))

it*

Take r =2n —  2. Then g * i s  an isomorphism, as shown in [18] , and
A. is  an isomorphism, by (3. 4). Write r„ g :, ',1 ( '„ ) .  Then

f  * Z * (n )  te * g * (n )  i *  ( f l )  = 2* (On).

However p* (a ,,) = ± A, (r„), since

p * :  g,(SO (2n), SO(2n W (n — 1))

is an isomorphism when r =2n —  2 .  We choose et„ so as to make the
sign positive and then obtain

fa *  (r.) *P*(an)= F(an),

from the characterization of the Bott suspension in terms of the Bott
map. Putting these relations together we obtain (3. 5).

So far we have been working in terms o f relative groups, but
now we carry into effect our identification of n,(SO (2n) , SO(2n —  2))
with 7 r , (  V 2 , 2 ) .  We extend the meaning of 2 to include the induced
automorphism o f V2„,2. It is shown' )  in  §6 o f [9 ]  that

43.= an°7 2 —  On ,

where 72 denotes the appropriate generator of the 1-stem. Therefore
(3 . 5) implies that

(3.6)a „ 0 7 2 —  (3„ .

In this way we have determined the value of F  on the first non-
vanishing homotopy group of V 2 , , , 2 .  B y  natu ra lity  we can deduce

4) Note that x*, an, en, in  the present notation, correspond to p*, a 2 .. /32 . , in
the notation of [9].
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the value of F  on the first non-vanishing homotopy group of V 2 , 2 , .

for k > 1 .  In  a ll cases 7r 21:-2k( V 2 r s , 2 0  is infinite cyclic. When k =1
the image under F  has infinite order. When k > 2  the image under

F  has order 2  or 4  according as n— k  is even or odd. This follows
easily from (3 . 6 ) and elementary results on the hom otopy groups

of Stiefel manifolds (see [15 ] ,  for example).
To conclude this section we consider the problem o f whether

there exists a map
h :172„,2-->S2V2,1,2

such that the following diagram is commutative, where denotes the

Hurewicz isomorphism.
h

* (S2 V2 2)

r  ( V 2 ,1 ,2 ) IE
F  n ' + 1 ( 1 7 2 ", 2 )

By (1.9) F  acts as a derivation on n * (  V 2 „, 2 ) ,  with respect to the

Whitehead product. Since Fj9„ = 0, by (1 . 3), we obtain

13,] — [K G , i3n] [2443., On],

by (3 . 5), and hence

3„] = [r * A* 13„, r* 3„],

by naturality, where r : V2„,2- - ).S 2- 1  denotes the usual fib ra tion . Now
r * O„ and r *À* 3 „ are both generators o f  7 r 2 „ - - 1 ( . 5 2 - 1 ) •  L e t  2, 4.

By Adams' theorem [1 ]  the Whitehead product o f these generators
is non-zero, in n , (S 2 "- 1 ) ,  and so F[a„, (3„] is non-zero, in n * ( V2,,,2).

But if F=E h * ,  for some map h, then

i3„1 =E[h * (v „, hj„] =0,

since n * (S2V2„, 2 )  has trivial Whitehead products, and so we have a
contradiction.

Since SO (2) =  U (1) c  U (2 ) there is a natural map o f V4,2 into
W ( 2 ) .  Hence it follows easily that h  exists when n = 2 .  I  do not
know what the situation is when n =4 .
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4 .  The composition theorem

It follows at once from our definition that the composition laws
for the Bott suspension are the same as those for the corresponding
Samelson product. Thus if ,t/E 7 r,( S ')  then the ordinary Bott suspen-
sion satisfies the relation

(4.1)F ( 0 0 FO0E,e2,

where E  denotes the Freudenthal suspension. Th is re la tion  also
holds in the relative case, prov ided , a  i s  a suspension element.
These composition laws will be applied without further comment in
what follows. Our main purpose in this section is to obtain an ex-
pression for the composition law in the relative case which is valid
without restriction, and use this to compute

F : nr(V 2n,2) - - * n r+ 1 ( V 2 n , 2 )

in all dimensions. Not enough is known of the structure of 7r,,, ( V  )2 n ,2 k ,

with k > 1  fo r any systematic result to be obtained but to some
extent the same type of argument is applicable.

Let an 7 4 (  V 2 , 2 )  mean the same as in § 3 .  Since 8 „ is the
class of a cross-section to the fibration o f V 2 „ , 2  over S 2 - 1  it follows
a t once that every element o f 7r,( V2,„2) can be expressed uniquely
in the form

(4.2)t r , , o ç o -F 8 .° * , (soE nr(S 2 - 2 ),11 , E n . , ( S 2 - 1 ) ) •

Since F ( , , 0 1 / p ) =  0 , by (1 . 4 ), the problem is to compute F ( a „o ça) ,

using the expression for F a „ obtained in  (3. 6).

We begin with some observations on the Whitehead product
structure of n * ( V 2„,,), where n > 2 . We have p , , , =  O, where

: n , ( V2„,2)---> n,,,(S 2 "- 1 )

is induced by the fibration, and hence p,,,[a„, Fa„1 0  by naturality.
Therefore

(4. 3) [a,,, FM/
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by exactness, for some (unique) element $' E  7r4 ,_4 (S 2 ' 2 ). We shall
prove that

(4. 4) [a„, [a„, Fa„]] =0.

We recall from §3 o f  [10] that the composition law o f Barcus and
Barratt [3], originally proved for the Whitehead product, can be
extended to the Samelson product as used in the definition of F.
Thus we obtain an expression for F(cv„oy9) as a sum of terms beginn-
ing with Fa„..Eço. Each of the subsequent terms is the composite
of a Whitehead product of the form

La„, F a d .  [a„, [a„ , F a ] ] ,  • •

and some higher Hopf invariant of Assuming (4. 4) all these
composite terms vanish, after the first, and so we obtain

Theorem 4. 5. I f  çoEn r (S 2 "- 2 )  then

F (a ,.ço )= (F a „ ).(E ço )+ a „ ..E .H ço ,

w h ere  14,9Er r (S 4 ' 5 )  d en o te s  the gen era liz ed  H o P f invariant and E
i s  as in (4. 3).

The proof o f (4. 4) depends on some information concerning
which is also useful for the applications of (4 . 5 ) in  §5  below.
In the homotopy sequence of the standard fibration o f  U (n )  over
S 2 - 1 ,  with fibre U ( n - 1 ) ,  the transgression carries a generator of

7r2,-1(S 2 ' )  into an element d , say, of 7r2„-2( U(n— 1 ) ) .  We denote by

pE n2„--2 (S0(2n— 2 ) )  the image of p ' under the injection. It is
proved in (24. 3) o f [16] that ,0 =-77 or 0 according as n  is odd or
even, where now

7r2 ._2 (S0 (2n -2 )) - --). n2„-2(S 2 "- a)

is induced by the standard fibration of SO(2n— 2 ) over S " ' .  It is

proved in (3. 7) o f [11 ] that [ey„, =  a„. Li, where JP denotes the
element of 4 _4 (S 2 " 2 ) given by the Hopf construction. By (3. 6),

therefore
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[an Fan] — an 072] [ a n ,  13 n]

=a.° (P72 —  h t ) ,

where P72 denotes the Whitehead product o f  72E 7r2 „_1 (S 2 - 2 )  with a

generator o f nz„- 2(S 2 ' 2 ) .  Thus

(4.6)I t t .

We recall that HP)2=0 and HJp , ---, E 2 "- 2 p,,p. Hence it follows from
(4 . 6) that

(4. 7)
( n  even),
( n  odd).

By exactness p ' lies in the kernel of the injection

Tr,(U (n — 1 )  )  Tr* (U (n )) ,

and so p  lies in the kernel of the injection

n* (S 0 (n — 2))--> n* (S 0 (2 n ).

Hence it follows that E 2 J,e2= 0  and so, since E P =  O, we obtain the

relation

(4.8)E 2 E =  O.

Hence, and from the composition law for the Whitehead product, we
obtain that PE = or E20,-2H- ,$  where 1E7r6,,-8(S 2 "- 2 )  denotes the triple

Whitehead product of the generator o f n2,1-2
 (52=2) w ith  itself. But

31-= 0, 21i$ = 0,

in all cases, and so PE= O. Since

,  Fa.] ] ]ci'n cv.°E] — an° FE

this proves (4. 4), and completes the proof o f  (4. 5).

When n = 2  w e have $= 0  and so (4 . 5 ) shows that (4 . 1) is
valid without restriction in the case of 17 4,2. This also follows from
the existence of

h : V4,2 V 4 , 2  ,

as described at the end of the previous section.
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5. The iterated Bott suspension

We begin by considering the operator

F 7.t r (  V 2n,2) r r+9( V 2 2 )

for q =1, 2, • • •. It follows easily from (3.6)  and the composition
law that

(5.1)F 4 a  „  0 ,  F 5a„ = 0,

for n > 2 .  In the other direction we prove that

(5. 2)
fF571-*(V2„.2)

1P7r,:( V2„,2)

(n  even),
(n  odd).

I  do not know of any example where F 5 i s  non-zero.
We deduce (5. 2) from the composition theorem (4. 5). Let n

be even. Then HE= 0, b y  (4. 7), and so i s  a suspension element.
Hence and from (4. 1) we obtain

(5. 3) F2 (a„oço) = F 2c40.E 2yo Fa„0EE0E 2 Hy),

by applying F  to both sides of the relation in (4 . 5 ). Now E 2 0 ,

b y  (4. 8), and so when we apply F  again the second term  on the
right drops out and we are left with

F 3 (a„.v) =- Faa„0E 3 .

Applying F 2 to both sides of this relation we obtain

F 5 (ce,oço) = F 5a„0E 5 ço= 0,

b y  (5 . 1 ). This proves (5. 2) when n  is even.
Now let n  be odd. From (4. 5) with v--- E we obtain

F (a „ .E )  Fa„.EE E HE.

Applying F  again we obtain

F 2 (a„ 0E) = F(to) 0 E 2 HE,

since E 2 E= 0. However, HE belongs to the 1-stem and so by iteration
we deduce from the above relation that F 5 (a„0$)= 0. Consequently
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w hen w e apply F 5 to  b o th  s id e s  of the relation in (4 . 5), with
arbitrary ça, the second term drops out and we are left with

F 6 (a„(y ) F fla ,0EG E = 0,

b y  (5 . 1 ). This completes the proof o f (5. 2).

We return to the case when n  is even, and consider the injection

i * : n* (V2,2)--> n * ( V2,1-2k-2,21,)

where k > 2 .  I t is  an elementary result (see [15] ) in the homotopy

theory of Stiefel manifolds that

2i * ( )= ( i * oz„)072=i * (oz„072).

Hence i ( 0 , ) = i F ( ) ,  b y  (3 . 6 ). Since FOn = 0 this implies that

i * F 2 (cG) = F i * F ( c r , ) =  F i ( j )  =  i * F (0 „ ) = 0 .

Using this in  (5. 3) we obtain

i * F 2 (a „ .(p )=- i * Fa„0EE0E 2 Hço.

We apply F  once more and obtain

i * F 8 (a„oço)= i * F 2 tv„.E 2 E .E 3 Hyo= 0.

We change n  into n— k+ 1, for greater convenience at the next stage.
Then the conclusion of the above argument is that

(5.4)i * F 5 n * ( V 2 „ -2k+2,2) —0 (n — k odd),

where i *  now denotes the injection

7r* ( V 2 n - 2 k + 2 ,2 ) n*(V2n,2k) •

With this in hand we are now ready to prove

Theorem 5. 5. L et k > 2 .  Then

Fq rc,(V2„,2k)

is  triv ial f or q >9 k /2 +a k ,  where

a„,k=0 (n  odd, k  even),
=1/2( n  e v e n ,  k  o d d ) ,
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=3/2 (n  odd, k odd),
=2 (n  even, k even).

We proceed by induction on k, beginning with
Consider the exact sequence

• • 7 4 (  V 2 „ - - 2 , 2 )  " 7 ->  n* (V .2.,4) 7C*( V 2 2 ) -

1*. 1 *

the case k =2.

associated with the standard fibration of

V - 2 , 2  •  Let B En * ( V 2„,4 ) .  Let n be even,

/ P O= P M - 0 ,

by (5. 2), and so F 5 0=i,w , by exactness,
naturality

V2„,4 over V 2 „ , 2  with fibre

first o f a ll. By naturality

where ( V  ) BY7r* , 2 n - 2 ,2 ,  • -

 

by (5. 2), and so F 11 o=0, as asserted. Now let n be odd. In this
case a similar argument shows that F'8=i * * , where Aff,  7 r *  (  V 2 „ - 2 , 2 ) .

By naturality

Pti**=ti*F31p,=0,

by (5. 4), and so PO= 0, as asserted. This completes the proof of

(5. 5) when k =2.

Now let k>2 and make the inductive hypothesis that (5. 5) is
true with k - 1 in place of k. Consider the exact sequence

• 7r *  (  V 2 ” -2 k + 2 ,2 ) - - > n*(V 2,,,v,)-->n*(

associated with the standard fibration of V 2 2 k  over V 2„,2k-2 with fibre

V 2n-21 ,1 -2 ,2  •  We argue in the same way as in the special case, using
the inductive hypothesis on the right, and (5. 2) or (5. 4) on the

left. T h e  reader will easily check that th e result is (5 . 5 ) as

asserted.
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6. Stable and non-stable results

We begin with a  result which is well-known, although there
does not appear to be any suitable reference. Consider the ordinary
B ott suspension

F :  7r,.(S0(2n))----> gr,,(S0 (2n)).

I f  0 belongs to the domain then

(6. 1) F0=0072 (r<2n— 2),

where 72 generates the 1-stem, as before. The basis for the proof is
a result of B ott 14] that the kernel o f F, in the stable range, coin-
cides with the image of the injection

7 r ,  (  U(n))---> 7-c,(S0 (2n)).

Standard results on the stable hom otopy groups o f th e  classical
groups show that this image coincides with the kernel of the homo-

morphism

72* : 7r,.(S0(2n))---> n,+1(S0(2n))

given by composition with 72 . Consequently F=72*, in the stable
range. This proves (6 . 1 ) provided r< 2 n —  3 . When r  = 2 n -2  we
consider the following natura lity  diagram, where i * denotes the in-
jection.

7r2„-2  (SO (2n))----> 7r2„-2  (SO (2n + 2))
F l

7 r2 „ - 1 (SO (2n))
4

> 7r2„-1 (SO (2n + 2))

On the right we are within the stable range and so F = v * , as we
have seen. By na tu ra lity , therefore, FO - 72*0 lies in the kernel of

on the bottom line of the diagram. However, the kernel is
infinite cyclic while 7r2-2(S0(2n)) is  a  finite group. Consequently
Fe =77* 0, which completes the proof o f (6. 1).
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It is already clear from (1. 13) that (6. 1) breaks down outside
the stable range. Let us examine the situation in the next two
dimensions, using the results obtained by Kervaire [12] .

Recall that a„ +1, 8„,], in §3, are derived from generators

7r2„ (SO (2n + 2), SO (2n)), 4F1E  n2+ ] ( U (n + 1) , U (n)) •

Let A. E  r 2„,  (SO (2n)) , tc,', E ir e. ( U (n)) denote the images of a 1 , R41,
respectively, under the boundary operator in the homotopy exact
sequence of the pair. Then

(6.2) dce,,+i— An ,  L ig ,F 1  t i n  ,

by naturality, where i t „ 7r2„ (SO (2 n ))  and where

A : 7r,.+ 1( V2,,+2,2) 7r, (SO (2n))

denotes the boundary operator in the homotopy sequence associated
with the standard fibration of S O (2n  +2) over V 2 ,1 - 2 ,2  with fibre
SO (2n) . By (3. 6) and naturality we have

FZIoe„+1= dFa„., = tlan+1° .79—  d13.+1
and so

(6. 3) F A>, = „ 0 — ti” •

It is noteworthy that p „ , and hence FA,,, has order 4 when n  is odd.
Similarly, by using the composition law, we can calculate the

value of F  on any element in  the image of A. Since F  is trivial
on the image of

a* :  n, (U (n))— > (SO (2n))

by (1. 4), it follows at once that F  can be calculated on the sub-
group n; (S  0 (2n)) which is generated by the images of A  and a* .

When n 0 mod 4 we find that

i r  (SO ( 2 n ) )  n, (SO (2n))

for r = 2n — 1, 2n, and so these cases present no difficulty.
Let n=. 0 mod 4. Then the co-domain of
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F :  7 7 , (S 0 (2 n ) ) - - ->  7 r ,  ,,(S 0 (2n))

is isomorphic to Z2 + Z2+ Z2 for r =2n-1, 2n. By combining the
arguments indicated above with (6. 1) it can be shown that the
image of F  is o f order 4, for both these values of r. The details
of the calculation are omitted.

7. Sphere-bundles with A-structure

Let X  be a (2n+1)-sphere bundle with group SO(2n+ 2 ). B y
an A-structure on X  we mean a fibre-preserving map f X — .X  such
that f x  is  orthogonal t o  x  for a ll xe X .  By an almost-complex
structure on X  we mean a  reduction of the group o f th e bundle
from SO (2n + 2) to  U (n + 1) . Then the centre of U (n + 1 ) acts on
X  and by defining fx—ux, where u is central and u2 =—e, we obtain
an A-structure from the almost-complex structure. As we have shown
in [8], there exist bundles, even in the stable range, which admit
an A-structure but not an almost-complex structure. T h e  purpose
of this section is to give an alternative proof of another result of [8]
concerning the case when X  is stable and the base space is a sphere.

Theorem 7. 1. L e t  X  be a (2n+1)-sphere-bundle over Sr'
with group SO(2n+2). Suppose that r<2n — 2 . Then X admits
an almost-complex structure if X admits an A-structure.

We have shown in  [9 ] how the condition for the existence of
an A-structure can be expressed in terms of the Samelson product.
In the following lemma we compute the relevant product, using the
Bott suspension. Then we shall complete the proof of the theorem
by appealing to the results of Adams [2] on the J-homomorphism.

The (relative) Samelson product determines a  pairing of
7  , ( S  ( 2 n ) )  with 7 r ( V2n -1 2,2) tO (  V, • 2 ,,+z,2 ) • Consider the homomor-
phism

: 7r* (  V2,1-2,2) n *  ( S 2  n 1 - 1 )

induced by the usual fibration. We recall (see [13] ) that
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(7. 2) P*<0, E

where OE n , ( S 0 ( 2 n ) )  and where

J :  n r (S 0(2n))---> 27, 2„(S 2 ")

is given by the Hopf construction. Write

(7.3)< 0 ,  t/-fl> = an-Fl ° g° ± On+1 °11P

as in (4 . 2 ) , where çoE nr+2”-Fi (S 2 " ) ,  , kE nr+2.+ 1(S 2 ' ) .  It follows at
once from (7.2) that E J O . I assert that

(7.4)ç 9 1 (O 0 ) (r<2n — 2).

W e have Ft/ —00v, b y  (6 . 1 ) , and FO„,,, 0 ,  by (1. 4). Thus the
derivation law yields

F<0, 0„+1> =<0°72, (3.+1> =0, 0,-Fi>2,

by (4 .  1 ) .  Substituting from (7 . 3 ) at both ends of this relation we
obtain

F(cr.+1°q)) --- -- a,H-1°So°77+ n +1 " k  ° 7  2 •

By (3 . 6 ) and (4 . 1 ), however, we have

F(a,,ioço)=a,, + 10720E49+6',,+10Eso.

Comparing coefficients of X + 1 we obtain Eço---kkov, and hence so = Toov
=J(0072), as asserted, since we are in the stable range. This proves
(7. 4).

In  (7 . 1 )  le t 0/ E  (S0(2n +  2 ))  be the element corresponding
to X  in the standard classification. Since r<2 n  — 2 there exists a
unique element OE n ,(S 0 (2 n )) such that O '= iO , where i *  denotes
the injection. Moreover X  admits an almost-complex structure if
and only if 61 lies in the image of a* ,  as shown in  the following
diagram.

nr ( U(n) ) 7r,(S 0(2n)) 7r,+1(S 0(2n))

I
nr+2.+1(S 2 4 )
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B y (4. 4) and (5. 1) o f [9] , the necessary and sufficient condition
for the existence of an A-structure on X  is that

<0, ■9„44>=„+10EJ0.

This relation holds, by (7. 4), if and only if f r i *O= O. I t  is  e a s y  to
show, from the periodicity tables and the results of Adams [2] , that
the image of a *  coincides with the kernel o f J71*  ( a s  w e ll  as the
kernel of 72*) in the stable range. Hence (7. 1) follows at once.

It is not difficult to extend (7. 1) to include the case r = 2n — 1

but at present too little is known about the behaviour o f Samelson

products for us to  m ake a  substantial penetration into the non-
stable range.
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