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Let E be a bounded open set in n-dimensional Euclidean space.
The real L?-spaces with bounded Borel measure m over E are denoted
by L’(E, m). L4}, (E, m) are defined as usual. Suppose we are given

an elliptic operator L defined on E as

0 < 0 ) 0
. L= -"—(a; .-~ b —--.
(O 1) Z ax,' i 0x,- +Z (”)'x,-
Here, a;; is bounded measurable, symmetric in i and j, uniformly posi-
tive definite and b;€ L™(E, dx) with some po>n, where dx is the
Lebesgue measure. A function u on E is called a (weak) solution of
0

Lu=f for a given f € L},.(E, dx) if weak derivatives 03‘, 1=1,2,..,n

belongs to L{y.(E, dx) (qo is the conjugate of p,) and

02 { Zey 20 2% gx{ o(mb 2% )de= —gvfdx

Ox; 0 i

is fulfilled for all » € Cy(E)= {the space of infinitely differentiable func-
tions with compact supports in E}. The formal adjoint of (0.1) is

defined as

0.3) =50 (ay 2 Y-z 0,

namely, v is a weak solution of L*»=f, if (0.2) is fulfilled for all
u € C7(E), replacing Svfa’.x by Sufdx.
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Now let R,, >0 be a family of linear transformations from
L°(E, dx) to C(E)={the space of continuous functions in E}, satisfying
the resolvent equation: R,—Rz+(a—p3)R.R3=0 for «, (>0 and
sub-Markov property: 0=ZaR,f =<1 if 0==f=1. If u=R,[ satisfies

(0.4) (a—Lyu=f for all /'€ L*(E, dx),

R, is called an L-diffusion resolvent. Set D(A)={R.f|f€L*(E, dx)}
and define Au=(a— Rz )u(=Lu). A with the domain D(A) is called
the generator of the resolvent.

What we will concern in this paper is to determine all L-diffusion
resolvents satisfying (R.1) and (R.2) (stated in §1), or equivalently,
to derive the most general boundary condition which prescribes the
function family D(A). The L-diffusion resolvent we are going to in-
vestigate are very general in the two points; neither the smoothness
(or ordinal differentiability) of u € D(A) nor the smoothness of the
boundary is assumed. So it is not our aim that we derive the boundary
condition in an explicit form such as Wentzell [22]; our expression of
the boundary condition is more like the one for Markov chain such as
Feller's and Dynkin’s [4].

The problem of boundary condition for diffusion process (or resol-
vent) has been proposed by W. Feller and has been studied in full
details by Feller, Dynkin and Ito-Mckean, in case of one dimensional
diffusion process. For the multi-dimensional diffusion process in a
bounded domain with smooth boundary, Wentzell [227] has obtained
the boundary condition of the function R, f belonging to C2%(E). Then
Ueno has introduced the notion of the Markov process on the boundary
associated with Wentzell's boundary condition, and Sato-Ueno [197],
Courrege and others have investigated the existence of the diffusion
process satisfying Wentzell's boundary condition, making use of Ueno’s
Markov process on the boundary.

All of these works are based, at least analytically, on the semigroup
opervating in the Banach space consisting of continuous functions. How-

ever, in our situation, it is natural and powerful to discuss the problem
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in L%setting. Actually, Fukushima [6] has determined all symmetric
Brownian processes over an arbitrary bounded domain, making use of
the theory of the Dirichlet space introduced by Beurling-Deny [1] and
Doob’s representation of the Dirichlet integral of harmonic functions
[2].

In this article, the symmetric assumption which Fukushima’s work
is based on is removed, and his results [ 6] are extended to arbitrary
L-diffusion processes. Especially, our emphasis lies in characterizing the
generator () of the Ueno's Markovian semigroup on the boundary
associated with a given L-diffusion resolvent.

The approach of this article would be applied to the Markov
chain, too. It is interesting to compare this with Dynkin [4] and
Shiga-Watanabe [ 20 ].

§1. Outlines and main results.

1.1. Among L-diffusion resolvents, one of the fundamental is so
called the minimal L-diffusion resolvent. Let H}(E) be the completion
of C5(E) by the norm ||u||;11(E)=|:g[Z<——g£. >2+uz}dx];~li. A diffusion
resolvent is called minimal if the domain b(A) is included in H}(E).
The existence and the uniqueness of the minimal L-diffusion resolvent
(except possibly the sub-Markov property) are due to Stampacchia [ 217].
Let us denote the minimal L-diffusion resolvent by G,. Then the
adjoint G% of G, in L*(E, dx) maps L™(E, dx) into C(E) ([21]). We

have further,

Theorem 1Y. There exists a unique standard diffusion process®
(x4, & P.), x €F such that

(1.1) Ga,f(x)=Ex<gze"“’f(x,)¢M> for all f€L~(E, dx).

1) In the case b,=0 and 0FE is regular, this theorem has been proved by
Kanda [9].

2) For the definition of the standard process, see Dynkin’s book or [11]. We
use the same notation as [11]. But the o-field § associated with the standard
process is omitted. It should be noted that the minimal L-diffusion process satisfies
Meyer’s Hypothesis (L), by the property (i).
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Furthermore,

(i) Gu.f(x), =0 (defined by the right hand of (1.1) if a=0)
and its adjoint G¥, a« =0 maps L~(E, dx) into C(E).

(i) Both of aG.f and aG¥f converge to [ as aw—>oo, if fe€C(E).

The above (x;, &, P,) is called the minimnal L-diffusion process.

Theorem 1 will be proved in Section 2.

Now, since our expression of the boundary condition is made in
the Martin boundary of the minimal L-diffusion process, we will discuss
several problems concerned with it. Here we introduce the definition
following [14] to fix the notation. Let g(x, y) be Green's function
of the minimal L-diffusion such that Gof(x)zgg(x, Wf(y)dy. We
fix a finite measure 7 so that both of rg(y)-——gr(d;v) g(x, ) and
g)’(x)zgg(x, y)7(dy) are continuous and strictly positive on E. The

Martin exit and entrance kernels K(x, y) and K*(x, y) are defined by

K(x, =800 | k(e y :ﬁéf;(’x? .

set fK()={f)K(x, y)dv and K*f(0)={K*Ce, f () dy. The
completion of E relative to the weakest uniform topology in which the
function family {fK|f € Co(E)} (or {K*f|f € Co(E)}) are all uniformly
continuous, is denoted by M(or M*). Here Cy(E) denotes the function
family consisting of f&€ C(E) with compact supports in E. The sets
OM=M—F and OM*=M*—FE are called the Martin exit boundary
and . the Martin entrance boundary, respectively, Let fk and k*f be
continuous extensions of fK and K*f to M and M*, respectively. Then

there exist kernels K(x, %) and K*(&, x) such that Sf(x) K(x,7)dx

=fK () and SK*(S, %) f(x) dx=K*f(2) hold for all [€ Co(E). They
are Martin exit and entrance kernels. Then we have the following

Martin representation: Let © be a nonnegative function such that
Sr(dx)u(x)<+oo, gngL%ac(E, dx) and Lu=0 (or L*u=0) hold.

Then u has a unique representation
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12) w={ K putdn, o u@={ K@ o)

making use of the measure #(or u#*) concentrated in the extremal
points of M (or O0M*). We shall call x(or x#*) as the canonical

measure of u.

1.2. On the Martin spaces M and M*, let us define new kernels.
For a>0, set

(1.3 Ko, D =K(x, D= {Galx, d2)K(z, ),

K3, 0=K*@, 0—a|K*@ 964, da).

Since K(+, ) and K*(&, +) are excessive and co-excessive functions
respectively, K.(x, ) and K%(¢, x) are nonnegative. Furthermore, it
can be proved that the sets M,,={6€M*|K¥%(, -)=0} and M,,
={peM|K,(+, 7)>=0} are independent of >0 and include E.

Let us now define linear transformations S, and S% on M,, and

M., as follows;
(1.4) Sof @ = K2 » gr(0 f) dx,

Stfo={ 180 f ) Kal, 7) d.

Then it turns out that both of S, and S¥ are sub-Markov resolvents.
The weakest topology in which all S,-excessive (or S¥-excessive) func-
tions are continuous is called the fine topology of the space M,,(or M,,).

Now if & is a point of E, S,f(£) coincides with g7(&) 'G.[ grf (&),
so that the resolvent S, restricted to the set E is the so called g7-
transform of the original resolvent G,. Thus if u is an excessive
function of G,., u/ g7 is an excessive function of the resolvent S,
restricted to E. This fact permits us to define the finely continuous
extension of u/ g7 to the space M,,. In particular if u is a potential,

it is natural to regard the fine limit of u/gr to the boundary oM.,
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=M,,—FE as the normal derivative of u, which we denote as %;—

A similar observation enable us to define Naim’s ®-kernel. For

x, yE€E, we define

. g(x, v)
1... X = . s .
(1.5) 00, grx)re(y)

Then this kernel ® has a uniquely fine continuous extension to
M, <xM,,.
These facts will be proved in §4.2 and §4.3.

1.3. In order to state the boundary condition, it is necessary to
identify the exit and extrance boundary points. Let y€0M,,=M,,—FE
and €€0M,,=M,,—E. If the restriction of each fine neighbourhood
of 7 to the set E is the restriction of a suitable fine neighbourhood of
&, and vice versa, the two points % and ¢ are identified. Then every
7 €0M,, is identified at most with one point £€0M,,, and vice versa.

Now let hy be a bounded and uniformly positive function such that
L*he=0 and let u¥ (concentrated in @M*) be the canonical measure
of hy. The canonical measure of the constant function 1 is denoted by
o (concentrated in dM). It can be proved that u,(0M—0M,,)=0 and
U¥OM—0M,,)=0. Moreover we have

Theorem 2. pg-almost all points of 0M,, are identified with -
almost all points of OM,,. Furthermore, j, and p§ are mutually
absolutely continuous after this identification.

The above identified set is denoted by O0FE. Then if u and h are

represented as
(1.6) u(x) =SaEK(-\‘, 1) @(n) 1o(dn),  h(x)= SaEK*(c’, x) h(§) 15 (d$),

u and —:— have the (fine) limits #(£&) and A(§) at xo-almost all point
0
as x tends to ¢ along with the fine topologies of M,, and M,,. We

shall call this # (or %) as the boundary value of u<0r }?->
0
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By virtue of Theorem 2, we are able to generalize the Doob
representation of the Dirichlet integral of harmonic functions. Let A

be a strictly positive function represented as (1.6). We define the

bilinear form D" as
(L7 D'g, ¢
1 -
=5 |Joc nw@—sane@ - s i@ riEn man.

The following theorem is a generalization of Doob's [2].

Theorem 3. Let h be a strictly positive function represented as
(1.6) with boundary value h. Then every bounded function u such that
ou

Lu=0 and SZa;,- Ou Ou h dx<oo has the boundary value @ belong-
Ox; Ox;

ing to L™(OF, n,y) and

..J?A".,A,a" .=”lx [
gZa,, oxi o, hdx=D"(i, u).

Theorem 2 and 3 will be proved in Section 4.

1.4. Let us now return to our main subject. Let R, be an
L-diffusion resolvent. We will assume that this R, satisfies the follow-

ing two conditions.
(R.1) The adjoint R¥ in L*(E, dx) satisfies (a—L*)R%f=F.

. ” . oh
(R.2) There exists a strictly positive function h such that B
1

€ LA(E, dx) and k() Rof(o) dw={h(x) [ d hotds for all f.
The measure m(dx)=hdx is called an invariant measure of R,.

It can be proved that the above /h is represented as (1.6) with
he LY(OF, n¥). Define dy= é— (hdp¥+ duy) and denote by B’ the least
o-field in which the family of functions {@|u=R.f, f€L~(E, dx)}¥

3) u is written as u=G, f+H,i1 with bounded measurable function . It can
be shown that the fine limit of u to the houndary exists and equals @ a.e. y, See
footnote 16).
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are measurable and by L*(0E, W', v) the subspace of L*(0F, v) consist-
ing of all W'-measurable functions. We denote the orthogonal projection

from L%(AE, v) to L*(OE, ¥, v) as P. Then we have

Theorem 4. Let R, be a conservative® L-diffusion resolvent with
(R.1) and (R.2). Then therc exists a unique linear operator () of
L2(OE, W, v) admitting the following properties:

(Q.1) Q is a generator of a strongly continuous and conservative

Markovian semigroup in L*(OF, W', v) with v as its invariant measure.

(Q.2) D@Q)CD(D") and

g¢+0¢ dyv+D"(¢, ¢)

—S@(E, et (&) () h(E) 110(dE) po(dn) <0

holds for all ¢ € D(Q), where ¢"=max{¢, 0}, ¢ =¢—¢* and D(D")
={¢ EL*OE, v)| D"(¢, ) <oo}.

(Q.3) The generator’s domain of the resolvent R, is characterized as

D(A)=4{ue CE)|LueL=(E, dx), i€ DQ)
and Qi+ P -2 (u—Hn)=0}
0g ’

where Hii is the harmonic function taking value i at the boundary.

Conversely we have the following assertion.

Theorem 5. Let h be « strictly positive function rvepresented as
(1.6) and h, its boundary value. Let X' be a sub o-field of the Borel
field of OE. Suppose we are given a linear operator () of L*(0E, ¥, v)
which fulfills (Q.1) and (Q.2). Then there is a unique conservative
L-diffusion resolvent R, whose boundary condition is (Q.3). Furthermore,
this R, satisfies (R.1) and (R.2).

4) R, is called conservative if «R,1=1 holds for all a.



General boundary conditions 281

Theorems 4 and 5 will be proved at Section 6.

1.5. Theorems 4 and 5 show that there is a one to one corre-
spondence between conservative L-diffusion resolvent satisfying (R.1)
and (R.2), and linear operator () on the boundary OFE satisfying (Q.1)
and (Q.2) through the relation (Q.3).

Condition (R.1) means, roughly, that the sample paths of the
Markov process associated with the resolvent R, has no jumps from
the boundary OF to the inside E. However, we do not investigate the
property of the sample paths in this paper.

The operator () is the generator of the Ueno's Markov process on
the boundary. But in case that W' is not equal to the topological Borel
field of AF, the Markov process (semigroup) on the boundary is defined
not on the boundary #F, but on a suitable identification (or partition)
of OF subject to the o-field B,

Let us investigate the meaning of (Q.2) and (Q.3) in some special
cases. In what follows we assume that the coefficients b; of the
operator L are identically 0. Let us denote by D(D) the set of all
@ € L*(OF, po) such that D(g, ¢)<oo®. Then (D(D), D) is a Dirichlet
space in the sense of Beurling-Deny [17], namely D(D) is a vector
lattice and D(Ugp, Up) < D(¢, ¢) holds for ¢ € D(D), where Up=¢" AL.

For the Dirichlet space (D(D), D), there corresponds a unique generat-
oH

or denoted by fgé— of a strongly continuous Markovian semigroup in
L*(DE, /1) such that —D(g, ¢)=S%§ @+ dpy holds for ¢ € D<ﬁa’; )
oH

and ¢ € D(D). 27" ¢ is an analogue of the normal derivative of the
g

0

harmonic function H¢ taking the value ¢ on the boundary. We

define the normal derivative analogue for the function © such that

Lue L”(E, dx) and FLED< (?Ij) as follows.
0g
ou oH _ 0 _ _ <8H>
L = it — Hu e D(—-—).
dg dg i+ o (u i), e og

5) When h=1, we omit superfix & in D" etc.
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Now let R, be an L-diffusion resolvent satisfying (R.2) with A=1.
Suppose in addition that the ¢-field B’ on the boundary associated with
R, coincides with the topological Borel field. Then the boundary con-

dition stated in (Q.3) is rewritten as

i, Ou _ (0[{7> .
Qi+ dg =0 for i €D oz D),
. o0H
where Q'=Q— - .
0g

The above operator () has an interesting property. It can be

shown that (Q.2) is equivalent to

Q.2) S(¢~c)"’()¢ dry+D(p—¢)", ¢) =0
Ye..:0, Yoe D(D),
where ¢ are constant functions. Obviously the above inequality implies

fo-orepdm—o o genrn( 9.
&

Generally, the operator satisfying the above inequality is called com-
pletely dispersive. It is known that the generator of a contraction and
sub-Markov semigroup is completely dispersive and conversely if a
completely dispersive operator hecomes a generator of a semigroup, the
semigroup has to be sub-Markov (See [12]).

Keeping this in mind, we have

Corollary to Theorem 3. Lect (' be a generator of a conservative

Markovian scmigroup in L=(OF, ny) with sy as its invariant measure.

Suppose that D(Q)") ("\l)< QH) and range I\’(Z—Q/— 0[!—> are both dense
0g 0g ,
in LXOF, yt0). Then the smallest closed extension of Q/+—a-g— denoted

0g
by Q exists and this Q posesses all properties (Q.1) and (Q.2).
It is possible to have the similar explanation of the generator ()

even in the case b;2¢0. These problems are discussed in Section 7.
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§2. The minimal L-diffusion process.

Let us first introduce several notations. C'(E) stands for the set
of all continuously differentiable functions in E. We introduce norms

Il aveEy, p=1 to CY(E) as

i =([(§] 3 [ +1007)

and denote the completion of C'(E) by these norms as HV?(E). wu is
said to belong to H}2(E) if u€ H"?(U) for any open set U such
that UCE. H}?(E) stands for the closure of C;(E) in HV?(E). The
dual space of H}'*(E) is denoted by H "““(E), where ¢ is the number
such that p~'4+¢ '=1. The norm of H "“(E) is denoted as || ||z 1 ).

When p=2, the super-index p is often dropped and written as HY(E)
etc. The space of continuous functions vanishing at oo is denoted by
C.(E) and the space of bounded continuous functions is denoted as
C,(E). The norm of C.(E) or Cy(E) is defined as the spremum of

the absolute value of the function.

2.1. Let us define a bilinear form in H}(E)x H{(E) as

L ] )

B(u, U)ISE<;.JZ=1(1U gﬁ— % —uiglb; g%:) dx
and B.(u, v) as B(u, v)+a(u, v), where (,) is the inner product of
L%(E, dx). Then B is continuous, i.e. there exists a positive constant
K such that |B(u, v)| ZK||lu|lzsllvllgik). Further, B.(u,v) is co-
ercive for sufficiently large «, i.e. there exists positive constants 3,
and k such that Bg(u, u)=k|lull3rgE. (See [21]). Suppose now
a>{Bo. Then for each T€ H '(E) there exists a unique u of HL(E)

which satisfies
(2.1) B,(v, u)=<T, v> for all ve H}(E),

by the Lax-Milgram theorem ([237], p. 92). Conversely for a given
u € HY(E) there exists a unique T€ H '(E) which satisfies the above
equality. Write the mapping TE€EH (E)>u€HM)E) as u=G,T.
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Then G, is a continuous, one-one and onto linear mapping from H~'(E)

to H}(E). We prove this fact for arbitrary a >0, namely,

Lemma 2.1. For each a>0, there exists a unique one-one, onto
and continuous linear operator G, from H'(E) to HY(E) which satisfies

(2.1).  Furthermore, G, restricted to L=(E, dx) is sub-Markov.

Proof. It is well known that HI(E) is a vector lattice and is

easily seen to satisfies
Bl(u—c)*, uNc)=0 for all u € H}(E) and ¢=>0.

Hence there exists a strongly continuous sub-Markov semigroup 7; with

[| To]|=<e”’ such that So""" Tifdt=G.f for a>3, (See [12]). Then

the Laplace transform Se“”T,_/‘({t is well defined and is in L~(E, dx)
for all Bo=a>0 if f€ L°(E, dx). We shall again write this as G,.f.
Clearly it satisfies the resolvent equation G, f—Ggsf+(a—3)GzG,.f=0
for 3>F,=a>0. Hence the range of I+ (a—p)G; is dense in
L*(E, dx). On the other hand, since Gg, 3>, is a compact operator
in L*(E, dx)®, the range of [+(a—[3)Gs is closed. This and the
above argument show that the range of I+ (a—3)Ggs coincides with
the whole space L*(E, dx). Consequently, the equation u+(a—RB)Gzu
=Gz T has a unique solution « for any Te H'YE) by the Riesz-
Schauder theorem. It is easily seen that this u is the unique solution
of (2.1). We denote this u as G,T. The “one-one and onto” property
is immediate from the resolvent equation G, T—Gz T+ (a—£)G,GsT=0
for 3> Bo=a>0.

The following Stampacchia’s result is fundamental in our later

discussion.

Theorem (Stampacchia [217]). (1) Let u be a solution of

6) By the coersiveness of B,(u,v), we have

KNG, flinun SBAG. £, G, f)=G. L HSIfUG flar
which process |G, flui () =K t|f]. The compactness of G, follows from
Rellich’s theorem.
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(a—L)u=T belonging to Hi,(E). If T€H “*E) with some p>n,
then u is (Holder) continuous in E. (2) G, is a continuous linear
operator from H VP(E) into Cy(E). In particular, if the boundary OE
is regular”, G, T (T€ H “?)e C.(E).

Appealing the above theorem, we have

Proposition 2.1. Suppose that OFE is regular. Then G, is a

sub-Markov resolvent in C.(E) whose range is dense in C.(E).

Proof. The assertions except the denseness of the range are
immediate from Lemma 2.1 and Stampacchia’s theorem. Let u be
of C;(E). Then Lu belongs to H "?(E) because a;; are bounded
and b;€ L?(E, dx). Therefore u=G.,(a—L)u belongs to the range
G (H “?(E)). This proves that the range G.(H '?(E)) is dense in
C.(E). On the other hand since C.(FE) is dense in H "?(E) and since
G, is a continuous mapping from H “?(E) into C.(E), the range
G.(C.(E)) has to be dense in C.(E).

The above G, is called the minimal L-diffusion resolvent.

2.2, We shall prove Theorem 1 in the case where 0F is regular.
By virtue of Proposition 2.1 and the Hille-Yosida theorem, there exists
a positive, contraction and strongly continuous semigroup of linear
operators Ty, t>0 in C.(E) whose Laplace transform is the minimal
L-diffusion resolvent. Thus there exists a Hunt process (x4, &, P,),
x € F associated with the above semigroup. In order to prove the

continuity of the sample paths x;, we require

Lemma 2.2. Let TE€EM(E), p>n, and u=G,T. Let U be
an open set such that < T, p>=0 for all ¢ € C5(U). Then u(x)
=E,(e"“"Vu(x,,)) holds for all x, where t, is the hitting time for the
set U°.

Proof. Let us choose T, €L?(E, dx) converging to T in H V*(E)
such that < T,, ¢ > =0 for all p€Cy(U). Then for u,(x)=G,T, we

7) OE is of C'-class, for example.
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have u,(x)=E.(¢”“"u,(x,,)) by Dynkin's formula. Making n tend to
oo, u,(x) converges to wu(x) uniformly by Stampacchia's theorem and
hence the assertion holds.

We now prove the continuity of the sample paths .; following
Kanda [9]. Let U be an open set such that UCE and ¥, an open
set such that ¥ CE and V\U=¢. Then there exists u=G,T€ C;(E)
CH V?(E) such that u(x)=0 in U and u(x)>0 in V. Then since
T=(a—L)u=0 in U, we have u(x)=F. (e “"u(x,,)). This proves

P.(x.,€V, ty<oo)=0. Since V is arbitrary, we see
P(x,,€ E—U,ty<o0)=0 or P(x,. € E—-0U, ty<oo)=0.

This concludes that the sample paths are continuous.

The following proposition asserts that the minimal L-diffusion

process is transient.

Proposition 2.2. Gf(.c)zE,,(Y f(x,)dt) is well defined and be-
0
longs to C.(E) if f€L’(E, dx), p>n.

Proof. Suppose for a moment that for each >0,
(2.2) u—aG.u=G6G,f

has a unique solution u € L*(E, dx) for a given fe&L’(E, dx), f=0.
Then u belongs to H (E) and satisfies —Lu=f. (Hence u does not
depend on «). Since u is bounded and continuous by Stampacchia's
theorem, aG,u is bounded in «. Making « tend to 0 in (2.2), we see
that Gf(x) is bounded and hence it coincides with u.

The existence of the solution of (2.2) is equivalent to the unique-
ness of the solution of the homogeneous equation u—aG.,u=0 (i.e.,
u=0), by the Riesz-Schauder theorem. Let u be a solution of the ho-
mogeneous equation. Then Lu=0 is satisfied, so that u(x)=FE,(u(x.,))

holds for all compact set K®. Letting K1 E, we see u=0 because

8) The condition u=aG u is equivalent to u(x)=E_(u(x,)) holds. On the other
hand, it is known that u(x) 2 E(u(x,.,)) = E(u(x,)). Making ¢ tend to infinity, we
have u(x)=E (u(x.)).
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ueC.(E).

2.3. Before we proceed to the proof of the existence of the
minimal L-diffusion process in arbitrary open set, we develope some
potential theory in case where 0F is regular.

Let us define the adjoint operator G% of G, as <G, T, S>=<T,
GES>, where T, SE H'(E). Then G% is one-one and onto mapping
from H'(E) to HYE) and u=GXT is a unique solution of (& —L*)u

= T. Furthermore, we have

Proposition 2.3. (1) G, is a continuous mapping from H **(E)
into C.(E) if p>n. (2) The range GE(C.(E)) is dense in C.(E).

The first half of the above proposition is again due to [21]. The
latter half can be proved similarly as that of Proposition 2.1.

We have thus shown that the minimal L-diffusion process satisfies
Hypothesis (B) of [[14] and hence all discussions of [14] is applicable
to the minimal L-diffusion. We state here some of them. A nonnega-
tive function u defined on E is called a-excessive if 3G, zu(x) < u(x)
holds for all #>0 and BG,,z converges to u as 3—oo. The function
u is called a-co-excessive if G, is replaced by G% in the above defini-
tion. In case a=0, a-(co)-excessive function is called (co)-excessive.

a) Existence of the potential kernels. For each «=0, there

exists a unique kernel g.(x, y) which satisfies

O Gaf=\galr, NS D dy. 61/ @={aulr 0 f (D dy

(i) ga(x is a-excessive function of x for each y and, a-co-excessive
8al%, . § >

Sfunction of y for each x.

In case that =0, g.(x, y) is written as g(x, y).

We next define harmonic and superharmonic functions. Let A be
a Borel set and let 04 be the hitting time for the set 4. The «-
distribution of x, . H3(x, dy)=E.(e “"*; x,,€ dy) is called a-harmonic
measure for the set 4. A function u defined in E is called a-
superharmonic in V if it is lower semi-continuous, finite from below,

finite a.e. dx and satisfies
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23) W@ ZHg ) (=(HE G, dyul)

for all open sets U such that UC V. If the inequality (2.3) holds for
a=0, u is called superharmonic in V. When the equality holds in
(2.3) for all such U, u is called «-harmonic (or harmonic if a=0).
It is well known that a nonnegative function u is «-superharmonic if
and only if it is a-excessive.

Let # be a positive measure with finite mass on each compact set.
The function Ga(,a)=gga(x, y)u(dy) is called an a-potential if it is
finite almost everywhere. «-potential is «-superharmonic.

b) Riesz decomposition ([14]). Let u be an «-superharmonic
function. Then u is decomposed to the sum of an «-harmonic function
and an a-potential if and only if there exists an «-harmonic function
dominated by u. Furthermore such decomposition is unique.

c) Direct decomposition of H'(E). Let H, or H% be the set of
all u of H'(E) such that (L—a)u=0 or (L¥—a)u=0, respectively.
Then

HY(E)=H.BH{(E)=H{DH{E).

Furthermore, B.,(u, v)=0 is satisfied for u€HY%¥ and ve HY(E), or
vEH, and ue H{(E). In fact, let u€ H'(E) and v=G.(a—L)u
((a—L)ue H'(E)), then v€ HY{(E) and u—ve H, as is easily seen.
It is also obvious that HoH}(E)=0. The latter direct decomposition
can be proven similarly. The orthogonality relation B,(u, v)=0 is

immediate from the definition of H, and HZ%.

2.4. A function u € H}L(E) is called an a-subsolution if B,(v, u)
=0 holds for all v& Cy(E) such that v=>0.

Theorem 2.1. (cf. [8]). 1) Every a-potential is an «-subsolution

belonging to [N\ L H LA(E)D. Conversely every a-subsolution belonging
1<g<-2—
n—1

to N ) H1A(E) is decomposed to the sum of an «-potential and a
1<q<n—_i

9) n is the dimension of the space FE.
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solution of (L—a)v=0. 2) A function u is a-harmonic if and only
if it is a solution of (L—a)u=0 belonging to H}, (E).

Proof. We divide the proof into several steps.

1°. Suppose u is an a-potential represented as Sga(x, y) u(dy)

with finite measure 2. We prove that u€ [\ ., H"4(E) and B,(v, u)
1<g<=- ..

n—1
zgvd,a holds for v€&€ C7(E). Choose f,=0 in L<(E, dx) such that

Un=f, dx converges weakely to x. Then

Ga(1ty) (%) g(x) dx | = |\GE g (%) uy(dx) | <sup|GE g 1a(E).
§ =

Since G¥ is a continuous linear operator from H “?(E) into C,(E) by
Proposition 2.3, there exists K>0 such that sup |G% g| < K||glla-1»
where p=(1—¢ ")"'>n. This proves that ||Ga(#,)||# ¢y is bounded
in n. Consequently a subsequence of G.(ux,) converges weakly to u’
in H“9(E). It is easy to see that u’ coincides with u. Making n
tend to +oo in B,(v, G,,(/l,,))=gvd,a,,, we obtain B,(v, u)=gvd,a.
2% Let us prove that the assertion of 1° is valid for any «-
potential u=G.(x), if we replace ue [\ H"YE) by ue
1<g< 2 1<g< 2
H}A(E). Tt is known in [147] that the potential measure x# has finite
mass on each compact set. Decompose the potential as uw=u;+ u,,

where u,(x)zgvga(x, y)#(dy) and V is an open set such that ¥V CE.

It suffices to verify that u, is in H}A(E) for q<—7-z—?_~1. Notice that

H%, us coincides with uy in V' and that it is an «-potential with finite
mass in 0V ([(14]). Then H3,u,(x) is of H"Y(E) by 1°. This shows
that u € H"9(V). Since V is arbitrary, we obtain the assertion.

3% Suppose now u is a-harmonic. We may assume without loss
of generality that u is nonnegative. Notice that u(x)=HSE, u(x) holds

in ¥V and H§,u is an «-potential. Then we have
Baw, 0)=Ba(o, H§yw ={ vdu=0 it ve GG,

where /¢ is the potential measure of H§5,u. Since this holds for arbi-
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trary ¥V with ¥ CE, we see that u€ H}:2(E) and satisfies (L —a) u=0.
The fact that u € H},.(E) follows from H5,u € H} (V) (See [21, §9]).

4°. Let u be a solution of (L—a)u=0 belonging to Hi,.(E).
We first assume that u is nonnegative and belongs to H'(E). Since
B.(v,8G..su)=(,u—{8G,. gu) and B,(v,u)=0 holds for v € H}(E),

we have
Bo(v, Gy . gu—u)=(, u—pBG,.gu).

Set w=f3G,,s3u—u. Notice that w* belongs to H}(E). Then the
above equality implies B.(w*, w)=—B||w*||2. On the other hand, since
B.(w*, w)=B,(w*, w*) = (a—BRy)|lw*]|>, we have w"=0 or equiva-
lently, u <BGy, pu if a+3>Bo. This proves that u is «-excessive

or a-superharmonic.

Assume now that the above u« is not a-harmonic. Then it has a
nontrivial potential in the Riesz decomposition. Then B,(v, u)=Svd,a
hold by 1° and 2° where x is the potential measure. This contradicts
(L—a)u=0.

Let us consider the general case. Let U be an open set with
regular boundary in E and let GY be the minimal diffusion resolvent in
U. Then u belongs to H'(E) and is bounded from below. Set c=xrgziar[}
u(x) and define v=u—cH$S,1. Then v satisfies (@—L)v=0 in U and
is nonnegative in U. Then the argument of the above can be applied
to v and we see that v is «-harmonic in U, proving that u is «-
harmonic relative to the minimal L-diffusion in U. Then Proposition
2.4 of the next small section shows that u is a-superharmonic relative

to the diffusion considered.

5°. Let u be an a-subsolution belonging to [\ ., HIA(E). We
1<g<-"~

, i
may assume without loss of generality that we [\ H"“(E). We
1<g<-"—
n—1
prove that u is decomposed into the sum of an «-potential and a solu-

tion of (L—a@)v=0. Let py>n be a number such that b; € L*(E, dx)
and gqo, the conjugate of po. Choose ¢ so that g,<g and q/qo
<n(n—1)7', and let p be the conjugate of gq. Then
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|Ba(va u)l§]|vl|111,,.(5)||u|]111,.,(E)
+2 HbiHL”"(E.dx)Hu||11'<"<E)||v||H'-7'(E> = k||v||H""<E)Hu||H1-'1(E)°

Hence F(v)=B,(v, u) is a positive linear functional on H“?(E). On
the other hand, H"“?(E) is included in C.(E) densely and the norm
|| |lz1.» is dominated by the supremum norm up to constant multiple, by
Sobolev’s lemma. Hence F(v) is extended to a continuous linear func-

tional on C.(E). Then there exists a unique positive measure # such

that F(v):Svd/t holds for all ve& C..(F).
The function Ga(/z)zgg“(x, y) ¢(dy) is finite almost everywhere,

because SG“(/{) gdx-——gGﬁg(y),u(dy) holds for g€ L”(E, dx) and the
right hand is finite. Hence G.(x) is a potential. Since Ba(v, Ga(t))
:Svdﬂ holds by 1° u—G.(u) satisfies (L—ca)(u—G4(#))=0. This

completes the proof.

Corollary. «-harmonic function is (Holder) continuous.
Proof is obvious since the solution of (L—a)u=0 belonging to

H},.(E) is Holder continuous by Stampacchia’s theorem.

2.5. Let ¥ be an open set of E such that ¥ CE. We denote by
ty the hitting time for the set ¥°. Then the process terminated at
Ty, denoted by (x4, v, P:), x €V is again a standard diffusion process.
On the other hand, to the operator L restricted to V' CE, we can as-
sociate . the minimal L-diffusion resolvent GY%. That is, u=GKf is

defined as a unique solution of («¢—L)u=f in V belonging to H}(V).

Proposition 2.4. GY coinsides with the resolvent of (& tv, P,),
RS V )

Ty
0

Proof. Set G,’,f(x)-——Ex(S e“”f(x,)dt). We have to prove GY%
=G,. Since Gof(x)=GCGqf(x)—E. (e “ "G, f(x,.)) holds and the latter
term of the right hand is a-harmonic in V, G¢f and G,f are both
solutions of (L—a)u=—f in V. Consequently, w=G,f—G.f satisfies

(L—a)w=0 in V, i.e, w is a-harmonic in ¥, Furthermore, if 0V is
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regular, w=0 on OV because both of G,f and Gif are 0 on OV.
Therefore w is identically 0 in V.

In case that 0V is not regular, some modification is necessary.
Let U be an open set with regular boundary such that UCV and let
GY be the corresponding minimal L-diffusion resolvent. Then it is
easily seen that GYf<GLf if f=0. Choose U, so that \J U,=V.
Then GY"f increase to G;f because ty, increase to ry. On ,;he other
hand, it is easy to see that GY»f, n=1 are bounded set in H§(V).
Therefore G4 f coincides with a weak limit of a subsequence of Gi~f
in HY(V). This proves that G, f=G\f€ H}(V). The proof is com-
pleted.

We shall now give the

Proof of Theorem 1. Let £ be a bounded domain with regular
boundary such that £CE. We shall extend the given operator L to
the operator L in £ by setting a;;=0;;, b;=0 on E—E, for example.
Let (x4, &, P,) be the minimal L-diffusion process on E. Then (x;, Tk, P,)
is the desired diffusion process by Proposition 2.4. Other assertions of

the theorem is obvious.

Remark. Theorem 2.1. is valid for arbitrary minimal diffusion

process.

2.6. At the end of this section, let us consider the adjoint diffu-
sion process. Let h be a strictly positive co-excessive function such that
L*h=0. We define the h-transform of G¥ as G¥"f(x) =h(x) 'GE¥hf(x).
Then G%" is a sub-Markov resolvent and it is the adjoint of G, rela-
tive to the measure A(x)dx. It has been shown in [15, Theorem 6.1 ]
that there exists a diffusion process (x,, &, P*"), x € E having G¥" as

its resolvent. Set

0 ( 0 Ologh\ 0
*h_5$5_Y e ) — J— .. -
L Z 6x; % x,-> Z‘(bx 2;(1’,] axj ) 6’x,~ ’
Then,

Proposition 2.5. u=G¥"f is « solution of (@—L*"u=f.
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Further, if h is bounded and uniformly positive, (x;, &, P¥") is the

minimal L*"-diffusion process.

Proof. Set 1L=G’§"’f, fEL™(E, dx). Then
(2.4) Buh, )+ afubvds=hfodx  veCim),

where B is the bilinear form defined by (2.1). We have on the other
hand,

(2.5) B(uh, v)

ou 0v , Ologh 0vi|
S[Z U g By hz{ Ry }ax,- %,

(?x, j

(2.6) . B(h, uv)

_Ologh 0v  Ologh 6u]
S[Uth 0x; 0x,-+uh,-z,'_‘ja” 0x; 0x; dx

gl:thb Bx th 00:|

Since h satisfies L*h=0 and since uv€ HI(E), B(h, uv)=0 holds.
Subtract the right hand of (2.6) from the right hand of (2.5). Then,

(2.7) B(uh, v)

. ou Ov Ologh Ou}
_S[Z @4 Ox; 0x; Z,:{ ;‘ 0x; }ax, hdx

6u ovh { 0logh} ou :I
Wij-—p o — 2a; dx.
SI:Z i axj Z Z @i ax,- 0x,~ .
Combining this with (2.4), we see that u=G§"’f is a solution of
(a—L*"u= f. In case that h is bounded and uniformly positive, it
is obvious that u € H}(E). This completes the proof.
The following is the counterpart of Theorem 2.1 and can be

proved similarly, making use of Proposition 2.5.
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Theorem 2.1'. (i) If u is an «-co-potential, it is (L*—q)-
subsolution belonging to [\ HVL(E). Conversely if u is a (L*—«)-
1<g<- 1~

n=1
subsolution of [N\ L HIGW(E), it is the sum of a-co-potential and a
9<
n—1

solution of (L*—a)v=0.

(i) u is a solution of (L*—a)u=0 belonging to H},.(E) if and

only if u/h is an a-harmonic function of the L*"-diffusion.

§3. Additive and multiplicative functionals of the minimal L-

diffusion processes.

In the paper [ 11], we have discussed the relation of the generators
of two Markov processes whose Markovian measures are mutually
absolutely continuous. We shall apply these results to the present case
in a slightly modified form. The results of this section will be applied

to the proof of Theorem 2.

3.1. Let (x,, & P,) be the minimal L-diffusion process. Let us
recall the class of additive functionals YR and . defined in [18j or
[13]. 9N stands for the set of all continuous additive functional
(AF) X; such that E,(X?)<oo and E.(X,)=0 for 0<t<oo and
x€E. A stands for the set of all continuous AF ¢; which is written
as the difference of two nonnegative (=increasing) AF ¢i(i=1, 2)
such that E,(¢i)<oo for 0<t<eo and x € E.

It is convenient to extend the classes 9 and L in the following
manner. We shall write “quasi everywhere” for “except for a polar
set”. N is defined as the set nf all AF X, such that for all 0<t< oo,
E.(X%)<oo and E,(X;)=0 holds quasi-everywhere. (The excepted set
may depend on each AF X,). The class of AF 9 is defined similarly.

Similarly as is the case of W¢, it can be shown that for each X, Y

of M, there exists a unique <X, Y> of I such that
E. (X, Y)=E.(<X, Y>) 0 t<o0

holds quasi-everywhere. Now let L2(< X, X>) be the set of all nearly
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Borel measurable functions f such that Ex<gt‘f'(.\'s)2d<X, A>))
0

<eo holds for all (<co quasi-everywhere. Then for X &Y and
— t

f€L:(<X, X>), the stochastic integral Y,:g S (x)dX, is defined as
0

an element of YN satisfying
t —
<Y, 2> =\'fd<x, 2> for an zeW,

<0

The existence and the uniqueness of the stochastic integral is proved
similarly as Motoo-Watanabe [187].

3.2. Let us define AY for u€ D(A) as
t
(3.1) x;f:u,(x,)—u,(xo‘)—g Lu(xy) ds.
0

Then X*eWt ([18]).

Lemma 3.1. For each u, v€ D(A), we have

« xos —of!(s,  Ou 0v
(3.2) <X X >t—2SO<Za,J o, M_)ds
Proof. Notice
¢ ¢
A”:e:—u(xo)—g Lu,(xs) dS, llr(x):_E;'(S Lu’(xs) dS)
0 0

etc., we have

E(XvXL)=E, ((giLu,(x.c) ds)(SiLv(xs) ds))— u(x)v(x)
:E,(SzLu(.m)Qin () di )ds)+ Ex<SZLv (xs)<giLu(x,) dt )ds)
—u(x)v(x)

= —E,,(SiLu(.m) v(x,) ds)—E(SZLv(x_q) u(x,) ds)—u(x) v(x)

=G(Luv)(x)—G(vLu)(x)—G6(ulv)(x).
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On the other hand, it is easy to see

Luv=ulLv+vLu+2%; auglf‘g:" :
Xy A

Therefore we get

(3.3) E (X% Y1) =2Ex<g’ Sy 04 Ov d.s) ,
0 axi Oxj
which implies
N ! ~Ou Ov
(3.4) E,‘.(‘\,‘X,)—2E1<SO a gt ot (ls>

if we notice the additivety of X% and that of the integrand of the
right hand of (3.4) and use the Markov property. The equality (3.4)

proves the lemma.

Remark. Lemma 3.1 shows, in particular, that all <Z, Z>
(Z€I) are absolutely continuous with respect of t A, because X%
u € D(A) generates Y (See [187)).

We shall extend the above lemma to arbitrary uw€ H'(E). But
before doing this let us introduce the following function family. L(E)
stands for the set of all measurable functions f in E such that
SG(.\:, WIf(¥)|"dy is finite quasi-everywhere. HY(E) stands for the

set of all w€ L*(E) such that Sg(x, ;y)iZa;,-'g*:. %—
x; 0x;

dy is finite

quasi-everywhere. Then L?(E)D L?(E, dx) and H'(E)D> H'(E) holds.
In fact, let g€ L™(E, dx); then

GlflPdx|=|\|fI?G*gdx|=<sup|G*g|\|f|"dx
g . & 8

if feL’(E, dx). This shows that G|f|” is finite almost everywhere,

which implies that G|f|? is finite quasi-everywhere. The latter assertion

HY(E)D> H(E) is proved similarly.
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Proposition 3.1. Let {fi}, (=1,2, ..., n be a set of functions
in L*(E). Then there exists a unique AF X, of WU which satisfies

t .
(3.5) <X, X”>,=S 2<Zui,~/',~ —al’—)a’s for all ve D(A).
0 * (’?x,»

Proof. Suppose there is a linear mapping from N into L2(E)
which satisfies the following (F.1)~ (F.3).

(F.1) F(Sde)sz(Z) for all feIX(<Z, Z>),
(F.2) F(2)=Q@Xaifif)(Z,Z), where (Z, Z) is a function such
that <Z, Z>;=S;(Z, Z)(xs)ds.

Yy — .. ._@).A - )
(F.3) F(X )—2<§a,,f, axj> for all ve D(A).

¢
Then, since Ex<g Xaiififi ds><oo holds quasi-everywhere, there exists
0

a unique X, of YN such that <X, Z>,=StF(Z) (xs) ds holds for all Z
by virtue of Proposition 2.4 of [11]. T}zis X is the desired one by
(F.3).

The existence of F satisfying (F.1)~ (F.3) is proved as follows.
Let 9 be the set of X€IN which is written as szilggkdX”", &€ L?

(KX, X7>). We define F: R LI(E) as F(O =T gaSayfi 20

B i 7
for such X. Then this F' satisfies (F.1)~ (F.3). It is known, on the
other hand, that the space W is dense in YN ([18]). Thus F' is

extended uniquely to a linear mapping from YR into LT(E_) The proof

is complete.

Corollary. For each ue H'(E) there exists a unique X* of M
which satisfies (3.2) for all ve D(A).

Remark. If {f;} belongs to L’(E, dx) with a suitable p>n, the
¢
AF X, of Proposition 3.1 belongs to 9, because Ex<g Za,-jfffjds> is
0 .
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finite for all x by Proposition 2.2.

Theorem 3.1. There exists X', ...0 X" of W such that
AP ! ov

<N XS, = S Say; O ds  for all ve D(A).
07 7 0x;

— n .
Furthermore, every Xy of W is represented as XN,= ), S fi(xs)d XL where
i=1J"

fi€ L*(E).

Proof. The existence of such X}, ..., X% is obvious from Pro-
position 3.1 and Remark after that. The latter assertion follows from
ul S ou

that X'% is represented as \%=}; ¢
1) Oy

(X% and {XY% ue€ D(A)} gener-
ates Y.

3.3. It is desirable to get the expression of X* for arbitrary
u€ HY (E), similarly as (3.1) of the case u € D(A).

Proposition 3.2. Let u be a function of HYE) such that
Lue L*E). Then

1= s 20

holds for ¢<{. In particular, if Lu=0, X% is of M.

Proof. We first consider the case u€ HY(E). Set u,=—GLu
and u;=u—u, The both of u; and u. belong to H'(E) by c) of

§2.3. It is sufficient to prove the assertion for u; and w.. Set
t
‘\),:llrg(.'\ft)"'llfg(.'\'o)—g Lu(xg)ds.
0

Then the proof of Lemma 3.1 is applicable with no essential change
and we see that X, =X,

For the proof of the case u,, let us assume for the moment that
u; is bounded. Then since u,(x;) is a martingale relative to (&, P.),

VaeE, i(w)=lm u,(x;) exists and the AF defined by
110
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(3.6) Xi=uy(xp) —ui(xg) if +t<¢g,
=it1(w) —u,(xo) if 1=¢,

has mean 0 relative to P,, v€E. Hence X, belongs to YN as is

easily seen. Furthermore, for v € D(A) we have

) — d L. aﬁf, aii
3.7) EX(X,XW)_zExGOZa,, e d.s>

In fact,
E(X.X%)=E((&:(0) — ur(x0))(—v(x0)— Ssz(xs) ds))
¢
=u,(x)GLv(x) —E(ﬁ,lgoLv(;xS)ds).

Notice that E.(%;|®i ) =ui(x,), then the last expression of the above

is equal to

ul(x)GLv(x)—G(ulL'v)(x)ZZEx<SZZ Ouy _Ov ds)

Y ox; 0
for all ve D(A).

Therefore we get X;=X% by the uniqueness of X*%.

Let us consider the case that u; is unbounded. Choose a sequence
of open sets E, with regular boundary such that £,CE,,,CE and
\JE,=E. Let T, be the hitting time for the set E:. Then X;n7 €N,
where X, is the AF defined by (3.6). Furthermore, we have

(3.8) E.(Xin1,XinT,)

= E(urCoinr) — 1a(x0) @Ceinr) =)= Lo(w)ds))

_ AT aul v )
=2£{’ Tay Gt 0 ds

by the argument of the preceding paragraph. On the other hand,
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since u; is harmonic we have

) N N INT, 0 0

(3.9) Ex(X?/\T,,)ZEX(IM(M/\T,,)")—lt1(-V)':2Ex<SO i au—l——a%]l—ds>
— aul au,l )
ﬁz&‘(& Za,, (')x, ds

Since the last term of the above is finite quasi-everywhere, E.(X?ar,)
is bounded in n quasi-everywhere. This proves X,Eﬁ. Making n
tend to infinity in (3.8), we see X;=X%

We shall next consider the case uEH‘fE). Let us notice that
HTE) C Hi,o(E). In fact if u€ H(E) the function g 2 (x, y)za,.j%

g dy is locally integrable, i.e. for any open set U such that UCE,
Xj
we have

) Ou 0u f:g . [ ou Ou]
SUdeg(x, y)[Zau 7%][1" GC*Iy(y)| Zaij Des 0 dy<oo.

Since we can choose U so that G*I; is strictly positive in E, u must
belong to H},.(F). Consequently, the above argument applied to the

stopped process (x,, Ty, P:) can conclude that
INT
X‘;‘/\ru=u(-\‘m,-,')—It(xo)_go Lu(xg)ds

holds. Since U is arbitrary, we obtain the first assertion.

It remains to prove the latter assertion. Let u« be a harmonic
function of H(E). Then
T'VI
Ex((X%")z)=Ex(u(xrn)2)—u(x)2=2Er<S Tay 0L 0u ds)
0 Ox; Ox;
by (3.9). Hence w(x)=lim E,(u(x7 )?) is finite quasi-everywhere. On
n— + o0
the other hand, it is easy to see that w is a harmonic function, which
implies w(x) is continuous and, in particular, is finite everywhere. This
proves E,(X?2)<oo for all 0<t<oo and x € E. The proof is completed.
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Corollary. Under the same assumption as Proposition 3.2,
{u(xr )} are uniformly integrable relative to P, for x except a polar
set. In particular, if u is harmonic, Ex(u(xfn)z) is bounded in n for
all x€E.

3.4. It is possible to obtain similar results as the aboves for the
adjoint diffusion process. L?(E)* is defined as the set of all f such
thatgg(y, x)|f(y)|"dy is finite quasi-everywhere. HY(E)* is defined
similarly. Now let & be a bounded and uniformly positive co-excessive
function such that L*h=0. The existence of such A will be proved at
§7. Let (x;, &, P*") be the minimal L*".diffusion. Then Lemma 3.1,
Proposition 3.1 and Theorem 3.1 are valid for the minimal L**.diffusion
with the obvious modification. However as to Proposition 3.2, we have

only a slightly weaker result, namely,

Proposition 3.2'. Let u be a locally bounded function of H'(E)*
such that L*ue L'(E)*. Then

Xt=u(x;)—ulxg)— Sth_‘L*(hu)ds

0
belongs to Wt and

ou Ov

oxs oy P

t
< x5 =
with respect to the minimal L*"-diffusion.
We omit the proof.

Corollary. Under the same condition as Proposition 3.2, {u(xr,)}

is uniformly integrable with respect to P¥'" except x of a polar set.

3.5. Let {c;}, i=1, ..., n be functions of L*(E, dx). Set
L=L+X{Zaje} 2.
i 7 0x;

A method of constructing a diffusion process corresponding to the

operator L’ is the transformation of the minimal L-diffusion by multi-
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plicative functional. Set

t t
(3.10) M,zexp[zg ci(v)dXi— ; SOZai,-c;cjds] if t<¢g,
7)o i

=0 if t=>¢.

Then it is a multiplicative functional (MF) such that E.(M;) <1 holds
quasi-everywhere (See [13]). Set E'={x; P.(My=1)=1}. It is well
known that there is a standard diffusion process (x,, &, PM), x € E’ such
that

PY(BN{1<Z})=E.(M;; BN{t<&}), VYBEG,

holds if we define (x;, &, P¥) on the same basic space (2, %) as that
of (x4, & P.). We shall denote the semigroup of (v, &, P,) as TM.
Then Theorem 4.1 of [11] asserts

Proposition 3.3. Let v be a function of H{(E)NL*(E, dx) such
that Lue LY(E, dx) and L'u€ L*(E, dx). Then we have

(3.11) Tf,”u(.r)—u(x):S;Tﬂ”(L’u,)(x)ds.

However, we do not know in general whether such (T¥, t=>0) is
the unique semigroup satisfying (3.10). A sufficient condition for this
is that each ¢; belongs to L’(E, dx) with some p>n. In this case,
the transformed process coincides with the minimal L’-diffusion process.
In fact, under this condition there exists the minimal L’-diffusion

semigroup 7T} by Theorem 1. Obviously, T; satisfies
t
(3.12) T;u—u=g0T;L’uds we DA,

where D(A’) is the domain of the generator of the semigroup T).
Taking the Laplace transform in the equalities (3.11) and (3.12), we

obtain

u=6Gu(a—L)u=GC¥a—L)u ueD(A).
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Since {(a—L)ulue D(A)}=L"(E, dx) holds, G'=G¥. This proves
that (x,, &, PY) is the minimal L’-diffusion process. Furthermore we

have

Theorem 3.2. Let (x, §, P)) be the minimal L’'-diffusion with
c;€ L*(E, dx), p>n. Then there exists a strictly positive §-measurable
Sfunction &(w) such that ¢=M,£(0,), E.(§)=1 and

P(B)=E(¢; B), BeW

holds quasi-everywhere.

Proof. By virtue of Dynkin [3, Chapt. X] and Kunita [10], it
is enough to verify that M; defined by (3.10) is of the class (D), that
is, for arbitrary family of stopping times {7}, the family {My} is
P.-uniformly integrable quasi-everywhere. ‘

Apply the formula on stochastic integral of [15] to F(x)=xe”

1

t t
and Atzigoc;(xs)d)(i——z—go 2.aiicic;ds. Then we obtain
i=1 i

1 ¢
F(4)~ F (o) =M, log Mi=Z+ 5| M(Tayyesepds
i

where Z, is a local martingale with mean 0.!® Therefore if T is a

stopping time such that Z;,r is a martingale, we have
— ]- / T e 1 7
EI(MT log MT)—TE,, N Za;j CicCj ds __}—Z—G (Zaij C; Cj)(x).
17

Since the last expression of the above is finite quasi-everywhere, we
see that E.(Mrlog Mr) is uniformly bounded in {7} quasi-everywhere,
which proves that M, is of the class (D).

The condition ¢;€ L*(E, dx), p>n is not always necessary for
Theorem 3.2. Actually we have only used that G’('Zja,-jc,' ¢;) is finite

quasi-everywhere. Consequently, we can prove, similarly as the above,

10) Precisely, there is a sequence of stopping times such that T,-—+ oo and
Z,.," is a martingale with mean 0. :
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the following

Theorem 3.2'. Let h be a bounded and uniformly positive co-
excessive function such that L*h=0. Let (x;, %, P¥") be the minimal
L** diffusion process. Then there exists a MF M, and a strictly
positive F-measurable function & such that E=M,&(0,), E.(&)=1 and

P¥(B)=E.&;B) VBe

holds quasi-everywhere.

Proof is obvious because ﬁglvgfh- € L%E, dx) and hence
Y dlogh dlogh
G* h [Za,-j<b,~—22k;a;k— axk —><bj_2£?a'jk axk——>:|

is finite quasi-everywhere.

§4. Martin boundary

4.1. The minimal L-diffusion process satisfies Hypothesis (B) of
[147], by virtue of Theorem 1. Hence the discussions concerning
Martin boundary in [ 14, 157] are applicable in our situation. We have
also shown in Theorem 2.1 that a solution of Lu=0 belonging to
H},.(E) is harmonic. Hence if the function wu is nonnegative and

r-integrable, it has the unique Martin representation
@1 w)={  Kex, ) uan),

where OM, is the set of all % such that K( -, %) is minimal harmonic
and SK(x, 7)7(dx)=1 holds. In particular, the constant function 1
satisfies L1=0, so that it has the representation, making use of the
canonical measure /.

It is interesting to know under which condition the harmonic

function u is represented as

(4.2 w = K, ) mldn)
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with @ of L?(@M,. 1o). The following is due to T. Watanabe'V,

Proposition 4.1. Let u(x) be a harmonic function.
1) u is represented as (4.2) with @€ LY0OM,, ny) if and only if
{u(xr,)} is wuniformly integrable relative to the measure Pyng, r(dx).
2) w is represented as (4.2) with € L?(0My, 1y), p>1 if and only
if sup E,(Ju(xr,)|?)<oo.
Here, T, is the hitting time for ES, where {E,} is a sequence of open
sets such that E,CE,.,CE and \UE,=E.

Proof. We follows the proof of T. Watanabe for the com-
pleteness. It is known ([147]) that ,v;_——‘lin} x¢ exists and P,(x;_ € B)
¢

=SBK(x, 7) #o(dn) holds. Hence if u is represented as (4.2) with
@€ L'(0OM,, 1), we have u(x)=E.(i(x,.)) and P,(|a(xs_)])<oo.
Since u(xr,)=FE,(u(x;_)|%r,) holds, {u(xr )} are uniformly integrable
with respect to P,.

Conversely assume that {u(x7,)} are uniformly integrable relative
to P,. Then vzlirz E.(Ju(x7,)|) exists, integrable relative to the

measure 7 and hence it is harmonic'?.

As a consequence of this, both
of wui(x)=lim E.(x" (x7,)) and ug(x)=’llim E.(u"(x7,)) are harmonic
functions ir:‘;eu;grable relative to 7 and d—zul—ug. This proves that
both of u and v have Martin representation, and the canonical measure
of v is the absolute value of the canonical measure of u.

It is now sufficient to prove that the canonical measure of v,
denoted by s/, is absolutely continuous with respect to #, Let f(w)
be the limit of u(xz ). Set v'=FE,(|f|). Then v=v" holds. In fact,
it is easy to see that v —v' is nonnegative harmonic function such that

S(v—v’)r(dx)zo. Hence v—v’ is identically 0. Now consider the
reduced function Hgv for the Borel set B of 9M. Then

11) T. Watanabe, “Some topics related to Martin boundaries induced by con-
table Markov processes”, Proc. of 32nd Section of ISU (1960).

12) If an excessive function u is integrable relative to the measure, it is finite
quasi-everywhere. See [16].
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Hyo(0) =E(| 15 xc- € B)={ KGx, ) an)

holds ([14]). Consequently, P,(x,_ € B)=0 implies SHB u(x)r(dx)=0
or #'(B)=0. This proves that x' is absolutely continuous with respect
to Uo.

The second assertion can be proved similarly.

Corollary 1. u is represented as (4.2) with @€ L*(0My, uo) if

and only if gu(x)zr(dx)<°° and Srg(y)[Za;j—(?i' Ou }(y) dy<eo
Ox; 0x;

Proof is immediate from the above proposition, Proposition 3.2 and

its corollary.

Corollary 2. (Doob [2]) Suppose that the reference measure y
is concentrated in a single point. Then every harmonic function of
HY(E) is represented as (4.2) with i€ L*(0M,, uo).

Proof is immediate because Ex(u(xrn)z) is bounded in n for all

by Proposition 3.2 and its corollary.

4.2, Let hy, be a bounded and uniformly positive co-excessive
function with L*h,=0. We fix the function A, hereafter. Let
(%, &, P¥™) be the minimal L*".diffusion process. It has the potential
kernel g%(x, ¥)=ga(y, ¥)ho(y) 'ho(x). If we take ho(x)7(dx) as its
reference measure, the Martin kernel of the L*".diffusion is defined as

hoiy = 8 X K*(y, %)
K = 3 er( — hox)

This proves that the Martin (exit) boundary of L**.diffusion
coincides with (homeomorphic to) the Martin (entrance) boundary of L-
diffusion. Furthermore, the associated Martin kernel K" (x, &), ¢ €oM*
coincides with Ao(x) ' K*(¢&, x). Then any nonnegative harmonic func-
tion u of L*™.diffusion, integrable with respect to ho(x)7(dx), is

represented as

w() = o) TKAE, ) uds),
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where OM¥ is the set of all £€AM* such that K*(&, +) is minimal

harmonic. Consequently, if © is a nonnegative solution of L*u =0 such

that Su(.v) 7(dx)<oo and u€ H},(E), it is represented as

(4.3) w={ K@ 0udd

by virtue of Theorem 2.1 The measure # is called the canonical
measure of u. We shall denote the canonical measure of hy as u§ and

fix it.

Let us investigate the condition that u© is represented as
(4.4) u(x)=SK*($, o) (@) i (de).

Proposition 4.1'. Let u be a solution of L¥u=0 belonging to
Hi, (E). The assertion of Proposition 4.1 is valid if we replace P,,
L¥0M, 1) and formula (4.2) by PEio, L*(OM¥, pf) and formula (4.4),

respectively.

Proof. Since hy is bounded and uniformly positive, the uniform
integrability of u(xr,)/h(xr,) etc. are equivalent to that of u(xr).
Hence if we notice u/ho is harmonic with respect to L*%.diffusion,

the assertion is the consequence of Proposition 4.1.

Corollary 1. Let u be a solution of L¥u=0. Suppose

S?’(tlx)u(_\-,)?<°° and Sgr(x)[zaﬁ—a“ du

S [ORE

Then u is represented as (4.4) with @€ L'"(OM¥, u¥).

Corollary 2. Suppose that y is concentrated in a single point.
Then every solution of L*u=0 belonging to H'(E) is represented as
(4.4) with @€ L*(OM¥, u¥).

Corollary 3. Let u be a nonnegative solution of L*¥u=0 such

that Su(x) 7(dx)<oo and u€ HYE)*. Then it is represented as (4.4)
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with @€ L'(OF, u¥).

"4.3. Let us recall the definition of the kernel K.(x, 7) (See (1.3)).
Since K( +,75) is excessive, Kq( -, 7) increases to a kernel K( - ,7)
which is smaller than K( - ,7%), as « decreases to 0. Noting that
K(-,7%), €0M, is minimal, we can show easily that either K( -, %)
=K(+,7) or K(+,7)=0 holds. We denote by M,, the set of all
7 €0M; such that K(+,7)=K(+,7). We shall show zu,(dM,—0M,,)
=0. Since

Ee ™) =1-aG,1(x)=|  Kaolx, ) taldn)
and since E.(£)=G1l(x)<oo, P ({<o0)=1 holds. Therefore, making
a tgnq to 0 in the above equality, we have 1=SBM‘I€(x, 7) tto(dy).
This proves zo(0M,—0M,,)=0'>,
Observe that the kernel K,(x,7) coincides with g.(x, 7)/7g(n)

if 7€ E. Then by a simple calculation, we obtain

Koz, 1)~ K, )+ (@ 8)|Kalw, 2 Koz, )78(2) dz=0

for all &, #>0. Therefore, S’&‘f(v)zgg(z)f(z)l(a(z, 7)dz satisfies the
resolvent equation. In what follows we prove that S¥* is sub-Markov.
Since K.(x,7) is positive, it is obvious that f_-0 implies S¥f=0.
We have on the other hand,

asti={{rg()—alre) gutz, ) dz} K(x, ) dx.

Note that yg(x) is co-excessive. Then the quantity in the blacket { }
of the above equality is positive. This implies that «aS%1(y) is lower
semi-continuous, since the kernel K (x, 7) is lower semi-continuous in 7.

Furthermore, aS%1(y) coincides with G¥7g(%)/rg(n) for 7€ E, which

13) The point yEM,, is oftenly called an active boundary point and y»E€0M,
—dM,,, a passive boundary point. Let us denote the K(-., y)-path process as
(x,, &, P1). Then P}({<0)=0 or=1, according to 7 is passive or active, respectively.
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is dominated by 1. Hence aS%1(y) <1 holds for all y €0M,,.

A similar argument can be applied to the entrance kernel K*(¢&, x).
We can prove af(0M¥—0M*,)=0 and the operator S, defined by (1.3)
is again a sub-Markov resolvent.

It is easily seen that S, restricted to E is a gy-transform of G,
namely, S, f(x)=G.(g7f)(x)/gr(x). Therefore, if u is G.-excessive,
u/gr is Sy-excessive in E. This fact permits us to define the fine
continuous extension of u/gr to the space M,,, by the following

lemma.

Lemma 4.1. Let G.(x,dy), a>0 be a sub-Markov resolvent
kernel defined on « mecasurable space (S, B). Suppose that cach
Ga(x, dy), >0, x€S is absolutely continuous relative to a suitable
measure m. " If v is a nonnegative function defined a.e. m and satisfies
aGq.v=<v for each >0, a.e. m, then aG,v(x) increases with o for

all x €E. Furthermore, ?(x)=lim aG,v(x) is excessive relative to G,
a —o0

and G, 9(x)=G.v(x) holds for all x € S.

Definition. The function v is called a supermedian and v, its

regularization.

Proof. Assume that the above stated function u is bounded. If

a= {3, we have
&G, () = 36 0(x) =Gy v(x) = B[Cav(x) ~ (B ) G Ca(x)]
= (@=#)Gat(x)+ BB =) GaGau(x)
< (@=B)Gav(x)+ (- ) Cav(x)
<0

for all x€S. Hence G, v increases with a. By the definition of ¥

we have

Gsp=lim aGzG,v=Ilim a(a—B) [Ggv—G,v]=GCGgzv.

Q—so00

The above inequalities imply BG;0=pRGzv <9 and lim BGgzd=1.
Ao
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In case that v is unbounded it is easy to see that v,=vAn is a
supermedian. Let #, be the regularization of v,. Then clearly o,
increases with n. Hence the limit of {f,} denoted by ? is excessive.

Since G, 9,=G,v,, we see G, ?=G, v by letting n tend to infinity.

Remark. Let u be a potential represented as u(x)= S gy, yyuld y).

Then the normal derivative du/0g (defined in §1) is represented as

oun ;.

or ;):SK*(;’, V) u(dy).

The following is an analogue of Green's formula involving a

potential and a harmonic function.

Proposition 4.2; Let u be a potential of the minimal L-diffusion

represented as u(x)=g g(x, v)u(dy) and let v be a harmonic function

K*(¢g, x)
") uE(dé)

of the minimal L*™.diffusion represented as v(x)——‘gb(é)
Then

_ o 0u
frmen uan={ s 3E @ u@e

holds. In particular, if v=1,

Ou

/l(E):g M,.0g

(&) 13 (d$).

Proof is immediate from
SaMm,D(e)g_:;(g) ﬂz((df):S/l:)k(df)i;({-‘)K*(e, y) u(dv)
=\ ho(y) ().

4.4. We have defined the kernel &(x, v) by (1.5) in the case

x and y are in E. We shall prove
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Proposition 4.3."  The kernel 6(x, v) defined by (1.5) has a

unique finely continuous extension to M,, = M, .. Furthermore, the kernel
(4.5) 6.(&, n)zcthﬁ(E‘, K (x, ) dx

increases to O£, ) as a->+oo for all 2€M,, and € M.,.

Proof. Let {&,} be a sequence in F converging to :€M,,—FE
in the fine topology of M,,. Since the kernel K*(& x) is excessive
function of ¢ for each x &€ FE relative to the resolvent S, it is finely
continuous in M,,. Thus @(&,, x) converges to K*(&, x)/rg(x) as
n—oo, that is, ® (&, x)=K*(, x)/rg(x) holds. Observe that (£, x)

is a supermedian relative to S¥ for each fixed &, that is,
(4.6) (516, a6, =06,

holds for 7€ E. Then the left hand of the above increases with « for
all ¢eM,, and y€M,, by Lemma 4.1. Denote its limit as @(6, 7).

Then it is S,-excessive in & and S¥-excessive in y. Furthermore, the
above regularization (;(5, %) coincides with @ (&, ) if & y€E. This
proves that @(6, 7) coincides with the finely continuous extension of
(¢, 7). The latter assertion is obvious since the left hand of (4.6)

coincides with the right hand of (4.5).

4.5. We now proceed to the proof of Theorem 2. Let (x4, &, P,)
be the minimal L-diffusion and (x,, &, P*") be the minimal L*"-
diffusion. We have shown in Theorem 3.2 that the measure P, and
Pi""" are mutually absolutely continuous except x of a polar set. Thus
in particular, the sample paths x,(w) converge to both of the Martin
exit boundary and the Martin entrance boundary as t-»{, for almost

15)

all @ relative to P, and P}’ except x of a polar set We can

14) The latter half of this theorem has been pointed out by Fukushima “On
Feller’s kernel and the Dirichlet norm”, Nagoya Math. J. 24 (1964), 167-175.

15) The polar set of the minimal L-diffusion and that of the minimal L* /0.
diffusion coincides. See [16].
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prove the above fact for all v € E. In fact, since w(x)sz(x;,,ZIti?g Xy
exists in M and M*) is harmonic and coincides with 1 quasi-everywhere,
it has to be 1 for all x, by the continuity of harmonic function. Simi-
larly as the above, x. exists in M and M* a.e. P¥™ for all x€E.

The absolute continuity of the measure P, and P}"* (quasi-every-
where) implies the mutual absolute continuity of the terminal distribu-
tions P.(x; €E) and P¥"{(x. € B) (B is a Borel set of 9M or OM*),
for all x. (We can remove ‘“‘quasi-everywhere’’ by a similar reason as
the above).

Now let us notice that the convergence to a.e. points (x,) of the
Martin boundary in the fine topology coincides with the convergence to

16)

the boundary along with the sample paths a.e. P, Then the asser-

tion of Theorem 2 follows.

4.6. Let u be a harmonic function of the minimal L-diffusion.
Then —u? is superharmonic. In particular, if u is represented as
(4.2) with @€ L*(0F, n,), —u® dominates the harmonic function
—gK (v, 7) @(y)? no(dy). Hence it has the Riesz decomposition. Denote
the potential part of —u” as u, and, by s the corresponding potential

measure. Then we have

Lemma 4.2. (Doob [2]). Let w be a harmonic function ve-
presented as (4.2) with i € L*(0FE, sto). Then

6U,p

@=(tre- 1T ec putdn  ae .
&

Proof. Since

wy—ut= —SK (x, ) @ () sto(dy)

holds,

16) This fact has been proved independently by Féllmer, Meyer and the
author. See [16], H. Follmer “Feine Topologie am Martinrand eines Standard
processes,” Z. Wahrscheinlichkeits theorie Verw. Geb. 12 (1969), 127-144. H. Kunita,
“Markov process and Martin boundary,” Sem. on Prob. 17 (1963) (Japanese).
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w(y) —ul( V)

ﬁ?’;"g'(y):—gar ar() K (v, m) r20(dy)

= 7 — (e 2@ (A _77_l¥7_ ii N
=, LH) = #TO0, ol — T ()]

<[ Catn—a@T 60y, » mildy).

Since the last term of the above has the finely continuous extension to
EUOE, we have

('iu

@47 2 @ =Lam -] 66, 1) ati)

On the other hand, notice

and the fine limit of u is %. Then we obtain

(49 o @ 2 L)~ n )T 668, 1) o)

by Fatou's lemma. The above two inequalities (4.7) and (4.8) imply

the assertion.

Proof of Theorem 3. Since

Ou Ou
—‘LUP—LU —22 ,] a 8_.{:1_
. . . . ou Ou
the Riesz measure of the potential u, is given by 2} a;; ~— .
0x; 0x;

Consequently Proposition 4.2 and Lemma 4.2 conclude the theorem.

§5. Invariant measures of L-diffusion resolvents

In this section, we discuss several properties of L-diffusion re-
solvents involving invariant measures.

Let R,, >0 be an L-diffusion resolvent satisfying (R.1) and
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(R.2), and R¥, the adjoint of R, in L°*(E, dx). We may assume
without loss of generality that R¥ maps L*(E, dx) into C(E), by the
assumption (R.1) and Stampacchia [21]. The function h of (R.2)
satisfies aR¥h=h for all @>0, so that h satisfies L*h=0 and is con-
tinuous. We define a new resolvent RE"f by h 'R¥hf. Then R¥" is
a conservative Markovian resolvent. Similarly as Proposition 2.5, we

have
Proposition 5.1. R¥" is an L**-diffusion resolvent.

Proposition 3.2. Both of R. and R¥E¥" map L7(E, dx) into
Cy(E), and for all f€Cy(E) both of aR.f and aRE"f converge to

f(x) as a—>o00 at every point x.

Proof. The first assertion is obvious. Let us notice
AR, f(x)=aG, f(x)+Ee ““iia(x;)),

where @, is the boundary value of aR,f. Since ess sup |f.(x;_)]
<<sup|f(x)]| <oo, the second term of the right hand converges to 0 as
a->oo, which proves lim«R, f(x)=limaG, f(x)=f(x). The con-

A-+0 «

vergence of awR¥* f () is proved similarly.

Let us denote the inner product and the norm of L*(E,m) as (,)m
and || ||», where m is the measure defined by m(dx)=hdx. Since m
is an invariant measure of R,, R, and R%" can be regarded as re-
solvents in L*(E, m) with norm conditions «||R.||» =1 and «||R¥*{,
-Z1. (e.g. Yosida [237). Further the ranges R(R,) and R(R¥") are
both dense in L*(E, m) by Proposition 5.2. Thus there exists strongly
continuous and contraction semigroups T, and T}'" associated with R,
and R%" respectively. We denote the generators of T'Ff and TF" as
4 and A*" 1t is well known that the contraction property implies
that 4 and A*" are dissipative, i.e. (u, Au), =0 for all u €& D(A) etc.

However, we can mention a stronger assertion in this situation.

Proposition 5.3.  The following two inequalities are satisfied.
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(5.1) —(u, Au),, Q};SZa,-j— Ou (?E—-Jm. for all ue D(A)
i 0x; 0xj
g *.h ~. ou Ou . *, h
(5.2) —(u, A W)y =\ a2 - dm Sor all ue D(A*").,
i 0x; Oxj

Proof. We shall only verify (5.1), because the proof of (5.2) is
carried over similarly. Set 4°=ABR;=F(BRz;—1I). Since m is an

invariant measure of R,, we have gAﬁuzdmzo or equivalently,

(5.3) —2(APu, u),= S(A’g u?—=2uA® u) dm.

The integrand of the right hand side of the above is nonnegative

because

(AP u®—2uAd?u) (¥)=R(BRsu*—2upBRzu+u")(x)
28R, dy) (@) —u(y)* 2 0.
Therefore for any » with compact support in E such that 0 v <1,
(5.4) —2(dpu, u),,,gS{A(BRB ) —2ud B Ryu}vhdx.

Now we can choose the above v so that L*» is a bounded function.
In fact let G, be the minimal L-diffusion resolvent in U, where U is
an open set with regular boundary and UCE. Then v=G¥f, 0<f<1
has all these properties. Now it is easy to see that L*(vh) and
L*(uvh) belong to L%*(U, dx). Consequently, (5.4) can be rewritten

as
—2(A4gu, u)sz{L*(vh)BRﬁ u?—2L*(uvh)BRsu} dx.
Making (8 tend to oo, we get

—2(Au, u)n gg {L*(vh) u*— 2L*(1{vh)u} dx
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ggvh(l,ug —2ulu)dx

:_2g<201§*? gi‘ vdm.
R B vJ7

Since v is arbitrary, we get the inequality (5.1).

Let D(D") be the set of all functions u whose first derivatives

Ou_ (in the sense of the distribution) satisfy SZa,-j Ou_ Ou hdx < oo,
0:)6,' (?x,- aACj

Proposition 5.3 shows that both of D(A) and D(A*") are included in
D(D"). We define the symmetric bilinear form D" in D(D")x D(D")

as follows;

NIV

h V)= F7 el
(5.5) D u, v) SEZGU Ox; 0x;

Then D(D") is a vector lattice and D*((u—c¢)*, u Ac)=0 is satisfied for
all ©€ D(D") and nonnegative constant ¢, where (v—c)*=u—uAc.

The following proposition is sharper than the preceding one.

Proposition 5.4. Let ¢ be an arbitrary nonnegative constant.
Then

(5.6) —((w—c)", Au)yp=D"((u—2¢)", u) Vu e D(A).
67 (=), A= D)y w)  VuE DA,

Proof. We only prove (5.6). Since m=hdx is the invariant

measure, we have

—2((u—c)*, A% u)
ZBS[BR,,{(u—c)'}2—-2(u——c)“'/QR,gu—l-(u—c)" (u+uANc)]dm.
But the integrand of the right hand is greater than or equal to

[8RaC-, dn =0 () —@=e) (a?

—2(u—c)*{BRs(uNc)—uANc}=0.
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Let v be the function used in the proof of Proposition 5.3. Then

- 2((”’ - C) 1‘7, Aﬂ u)m

;;SIVEA’? {u—e)Y2—2u—c) A% ulhdx
= SL*(U’L)[BR/.;{(IJ —¢)' Y =2L*@wh(u—c) )BRzuldx

ﬂ_":S[L*(M) {(u—c) Y —2ul*(wh(u—c)") ] dx

=2D"((u—c¢)", (u—c))+2Bwh(u—c)', uNc)
=2D"((u—c)", u)
This proves (5.6).

Remark. Let us introduce the norm [l lf,, as
Ml =V D" (uy )+ (u, w)m

and denote the completion of CF(E) by the above norm as Dy, Let
A*" be the adjoint of A in L*(E, m). Then both of D(A4) and D(A4*")
contain dense subsets of Dy ;. In fact, since (Lu, v),=/(u, L*"y), is
satisfied for all u with Lu € L*(E, m) and for v€ H}(U)(UCE) with
L*"ye L*(E, m), D(A*") contains such », which implies that D(A*")
contains a dense subset of D, ; This shows that A*" is exactly the
generator of the adjoint semi-group T¥* of T, in L*(k, m). As a
consequence of this fact, it turns out that D(A) contains a dense
subset of Dy, too. ([23, Chapt. IX7])).

At the end of this section, we give a sufficient condition that an

L-diffusion resolvent has an invariant measure m=hdzx.

Proposition 5.5. Suppose that R, is a conservative L-diffusion
resolvent in L*(E, dx) such that («—B)||REI|=<1 holds for m=1,2, ...
Then there exists a strictly positive function h of L*(E, dx) such that

T¥h=h, where TF is the semi-group of the adjoint resolvent.
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Proof. Let R(I—aR,) be the range of L*(E, dx) by the
mapping [ —aR., and N(I—aR,) be the kernel. Then L*(E, dx)
=R(I—aR,)PN(I—aR,) holds (See Yosida [ 23. Chapt. VII']). Since
1€ N(I—aR,) by the conservativity of R., R(J—«aR,)xL*(E, dx).
Then there exists g of L*(E, dx) such that (g, (/—aR,)f)=0 for
all f€L*(E, dx). This means that g satisfiess g=aR%g and hence
aR¥|g|=-| g| or equivalently, T¥|g|.=|g|l. On the other hand, we

have

S T¥ gl (,'I;\fng,l | 2l ,/,vzg | &l dx.

Consequently A= g| satisfies TFh=Ah. Since & is not identically 0, it

is strictly positive by virtue of the relation h=aR*¥h=aG%h.

§6. Boundary conditions for L-diffusion resolvents.

We now come to the place of proving Theorems 4 and 5. A
crucial point for the proof of Theorem 4 is to find the operator (),
which is done in series of propositions. We will fix a conservative
L-diffusion resolvent R, satisfying (R.1) and (R.2), unless otherwise

mentioned.

6.1. Let i be a function of (R.2). It is convenient to choose the
reference measure 7 for the Martin kernel such as y(dx)=(h(x)+1)dx
or slightly generally, 7(dx)=f(x)(h(x)+1)dx, where f is a bounded
measurable function. Since aRY¥h=h is satisfied by (R.2), it satisfies
L*h=0 by (R.1). Hence h is represented as (4.4) by Corollary 3 to
Proposition 4.1’

Let us first introduce several notations. Let /% be the houndary
value of h. Set v=-1-(to+ 1), c(r)=2(7) and c*(€)=k U (2),
Since ¢ and xF are mutually absolutely continuous by Theorem 2, the

functions ¢ and c* are bounded and c is strictly positive a.e. y. Define

new kernels as

Ho(x, =Koz, n)c(), HEE, ©)=K%(E, x)c*(@),
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Udé,n)= Sfii’y‘(é‘, X H(x, P)dx=0,(¢, 7)c*(&)c(y).

Then U,(¢, 7) increases to 6 (&, 7)c*(¢)c(y) as a—>o0, by Proposition

4.2, The following notations are often used later.

Hyp(x)=\H.(x, 7) ¢() v(d7),

Hio(x)

i

[rae, oo vae),
At f @ =(H1E, x) f()ds,

Ue p(®)= | Ualé, 1) o) v(d).

In case a=0, we drop the suffix a.
Lemma 6.1. U, is a bounded operator in L*(OE, v).

Proof. The kernels U, admits the following properties. (i)
U.(¢&, ) increases with «, (ii) a™' U,(¢&, 7) decreases as « increasing
(Proposition 4.3), and (iii) U,1 and U¥%1 are bounded functions, because

of the following two inequalities;
Ul®) =@ K2, DdrS @ (K*@, mdx <@,

URL) = e() | HEL () K, m) e Z e [KCx, ph(e) e < ).
Here U% is the adjoint of U, in L%(E, v). Consequently, we have

| (¢, Ug ¢’)»|§[SSU(,($, 77)1[’(5)2»((16);;((1-,7)]%
x| (| vate, motitviaevan |

S,.UUa1($)¢'($)2u(d$)]%ﬁUl‘l(vy)¢(77)2v(d77)]%
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Zconst |[¢[l.]l¢]l..
This proves that U, is a bounded operator.

6.2. By virtue of Theorem 1 of [14], there exists a unique

kernel r.(x, y) which satisfies the following three conditions;

O Rof)={rate, Dy, REFD= (s 0 Sy

(i) ra(x is a-excessive. function of x and y relative to R,
> Y .

and R¥, respectively.

(iii) For each a, >0 and x, yE€E,
ra(x, y)—rq(x, y)+(a—/?)8r(.f(x, 2)rg(z, y)dz=0.

Furthermore,

Proposition 6.1. For each fixed x (or y), ho(x, y)— ga(x, ) is

a nonnegative solution of (L—a)u=0 (or (L*—a)u=0).

‘Proof. Observe that gha(.’r, WfNdy (f€L(E, dx)) is a-har-

monic function of x. Then for each open ball B of E and x € B,
6.1) SHSB(x, d)ha(z, Y)=ha(x, ¥)

holds for almost all y since R,f—G.f is an «a-harmonic function.
Take the. regularization for the both sides of (6.1), as the function of
y. Then we see that equality (6.1) holds for every y of E. Thus
ha(x, y) is a-harmonic or a solution of (L—a)u=0 by Theorem 2.1.
A similar discussion proves that h.(x, y)/ho(y) is a-harmonic relative
to L*™.diffusion. Hence h.(x, y) is a solution of (L*¥*—a)u=0 by
Theorem 2.1".

Our next task is to get the- Feller representation of r,(x, ¥).

Proposition 6.2. There exists a nonnegative 0E x 0E-measurable
Sfunction M,(y, &) such that
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(62)  halr, )= [Kale, DML, OKEE, )o@ ()

for every x, yeE. Furthermore, such M, is unique up to pox pg-

measure 0.

Proof. Let fe&L”(E, dx). Since u=R,f—G.f is a bounded
a-harmonic  function, there exists a bounded measurable function
T1a(f)() on OE such that Rq f(x) ~Go f() = |Kal, DAL @to(dn)
holds. The function /W,,(f) enjoys the following properties; Zl71a(f+ 9]
=M. (f)+M.(g ae. s and A,(f,) decrease to 0 ae. xo if fn
decrease to 0 a.e. dx. Consequently, thlere exists a function A,(7, ¥)

such that vzW(,(f)(n) :S/Wd(n, nf(ydy. Therefore for almost all y,

haes 2=\ Kalr, )W, ) to(dln)

holds for‘all x. We shall show the above holds for all x and y, by
taking a suitable version of J/.(y, v). Since h(x, y) is an a-excessive
function of y relative to G¥%, SBGﬁ.(./g(y, dz) V. (9, z) increases to a
function M, (7, y). This M.(7, ) is obviously a desired version of M,.

Now the function v=REihf—GX%hf is a solution of (L*—a)v=0
belonging to H},.(E) by (R.1), (R.2) and Proposition 5.1. Hence -it
has the Martin representation. Set ¢;(77)=Sh(x)f(x)K(x, 7)dx. Since
v/h is a bounded function, there exists a bounded measurable function
My (@) such that vngi(S, X)M (@) hpk(dg). Hevnce‘we have the fol-

lowing equality

v (=K1 PR usdd) = o) My, Potan)

This proves that for almost all 7, there is M,(y, & such that
(Mr, DK EE, 0RO 13 =M G, .

. It remains to verify that there is a jointly measurable version of
M, (y, &). Let B. be the set of all ¢—-0 of L7(QFE, u¥) for which
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SMa(vy, e(&)h(&) n¥(dé) is measurable function of 4. Then B contains

{K%(&, y), y€E}. Set u”(y)=ho(y)‘lgMa(77, HKEE, Y h(®) n§(de).
The reduced function H¥%"0u”(y) relative to the minimal L*".diffusion
is measurable function of % and coincides with ho(y)_ISAMa(??, &HK*
&, (&) uf(ds), where A is a closed subset of OM,, (See [14]).
Hence B/ contains all nonnegative functions of L~=(9E, nf). Thus by
an usual argument we can get a jointly measurable version of M,.
The uniqueness of M, follows from that of the Martin representation.

This completes the proof.

6.3. Let D(M) be the set of all ¢ € L*(0F, v) such that @U,17!
are bounded functions. Then D(M) does not depend on «, because of
the properties (i) and (ii) of U,l stated in the proof of Lemma 6.1.
Then

Map(®)= | Ma(&, 7o) v(dn)

is a linear mapping from D(M) into L”(0E, v), since M,U,1=1 fol-
lowing from the conservativeness of R,. Using this notation, the Feller

representation is written as
(6.3) R.=G,+H.MA%.

The operator H, and H¥ are determined by the minimal L-diffusion.
Therefore, all informations of R, such as (Q.1) ~(Q.2) are included in
M,. We shall investigate its properties in this small section.

We denote by B3’ the smallest g-field for which the function family
{@|u € D(A)} are measurable, where & is the boundary value of u.
The L%-subspace of L%*(QE, v) consisting of all ¥¥'-measurable functions
are denoted by L*(0E, ¥, v). Then we have

Proposition 6.3. For each a>0, there exists a sub-Markov and
contraction semigroup T¢ in L*(OE, v) such that Ma=g Tdt. Fur-
0

thermore, T? restricted to L*(OE, %, v) forms a strongly continuous
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semigroup.

Before the proof, we prepare the following lemma.

Lemma 6.2. For each =0, we have
(6.4) S(L—a)uﬂi{(n—c)-}dxgo, VueD(A) and ¢ 0.

Proof. Let us denote the inner product relative to the measure
m(dx)=hdx as (,)m Set wp=G.(¢—L)u, u€ D(A4). Then there
exists {up } of D(A)NHI(E) converging to u, with respect to the
norm || ||lm={])"(,)+(,),,,}%, by the remark after Proposition 5.4.

Moreover,
((u— Up, — o), (L—a)(u— u’ﬁ,.))mg 0

holds for every n, because L—a restricted to the domain D(A) is

completely dispersive. The left hand is rewritten as

((u—up,— )", L—a)u)n+ Be((u—up,—c)*, up,)
where B"(v, u)= B(vh, u). Making n tend to + oo above, we obtain
(6.5) 0=((Hea—c)", (L—a)u)n+ BL(Het—c)*, up),

0= h(Heii—c)'y (L—a)u)+ Bo(h(Hyii — )™, up).

Now hH.(it—c)" is decomposed to the sum of H¥{(z—c)*} € H% and
ve H}(E), and further

B (MH,i—c)", U‘IJ):Ba(v, u’[’)z — (v, L—a)u)

holds (§2.2). Hence the last expression of (6.5) coincides with
(H¥{(a—c)}, (L—a)u). This completes the proof.

Remark. Similarly as the above, we can prove
(@ —ayurizndet D\ H s, How) +a(Hos, Hadw =0, Vue D).

In fact choose {u,} as before, substitute u—u, in the place of u in
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the equality (5.1), and next make n tend to infinity. Then we get
(L—a)u, Hyt)m+ Bo(hH i, wy)+ D" (H ity Holi) +(Hy iy Ho i)y =< 0.

We can prove as before that B, (hH,&, u,,)z((L—a)d, HYia—hH, @)

and hence we have the inequality.

Proof of Proposition 6.3. The boundary value of u€& D(A)
satisfies nzMa,lAl’c'i(a'—L)u by the Feller representation. Cosequently,

(6.4) is'rewritten as
((Ma¢,—‘c,)+’ ¢)v£0a ¢=ﬁ§(a'—lf)u
It can be easily seen that the above holds for all ¢& D(M)'", We

can now apply Theorem 4 of [12] and we obtain the proposition.

We shall denote the generator of 7¢ in L*(QE, ¥, v) as Q..

Propoesition 6.4. The domains of Qu, >0 are independent of
a. Furthermore, the operator Q.+ PU, does not depend on a>0,
where P is the orthogonal projection from L*(OE, v) to L*(OE, ¥, v).

For the proof of this proposition we prepare

Lemma 6.3. (cf. Fukushima-lkeda [7]). M, and My are related
by

M,K—M/g‘l‘Md(Ua—Ulg)Mﬁ:O.

; Proof. Let us write as R, f=G,f+ H M, 1% f and subtract the
resolvent equation of G, f from that of R,f. Then

H M A% f—HoMg% f+ (a—R) G Hs Mg % f
(= B Ho Mo T5G 5 f+ (0 — 3V H oM T5H s M 1% f=0.
Hence at the boundary, v o
(6.6) M A% f—MgH% f+(a—B)MA%G, f

+(a—B)M A%XHsMg A% f=0.

17) {H%fIf € L™, dx)} is dense in LXGE, v).
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On the other hand,
(a— ;Q)II*G,jf % 5f— H*f
(6.7) (@—RITEHy=(@—B) T H+ Bla—B)A%GCH
=(a—R)AtH+ BT - THH
=l H—BIMEH=U,—U,.

Substitute (6.7) into (6.6) and we get the desired relation for (p=fl’§f.
It is easy to extend this for all ¢ € D(M).

Proof of Proposition 6.4. We know that U, maps L>(3E, v)
into D(M). Hence by Lemma 6.3, the ranges {Mq,¢|¢ € D(M)} are
independent of «. Since (), coincides with Mz' on the range of M,
and since the ‘equality of the above lemma is written as M,— Mg
+ M (PU,—~PUIMz=0 for o€ D(M), Qo+ PU, does not depend on
« on the range {M,¢|p€ D(M)}. This proves that

(6.8) Myo—Mso+ My(PU,—PUg) M 9=0

holds for every ¢ & L*(OFE, ¥, v), where M’;zgte'”T‘,“dt. Repeating
the same argument to M), we see that {Mj qool(pELz(@E, B, )} s
independent of « and 4, and Q.+ PU, is independent of « on 'thé
common ranges {M)“ (pl(oELz((’iE B, v)}).

6.4. We denote the common operator Qa—l—PU,, as Q and its

domain as D(Q). We will show in this small section that thls operator

() possesses all properties required in Theorem 4.

Proposition 6.5. The operator Q is a generator of a conservativé

Markovian semigroup with v as its invariant measure.

Proof. Since U, is a f)buﬁded“dperato'r by Lemma 6‘1 " Q be-
comes a generator of a semigroup by Phillips’ perturbatlon theorem of
semigroup. Furthermore, the operator () is completely dlsperswe be

cause it is the limit of the completely dispersive operators {Q.} (as «
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tend to 0). Consequently, the semigroup associated to the generator ()
is sub-Markov. Now, the property M,U,1=1 implies Q,1=—PU,1
or equivalently, (1=0, which proves the conservativeness of the
semigroup.

Since m=hdx is’ the invariant measure of R, the adjoint resolvent
R¥* with respect to m is again conservative L*".diffusion resolvent.
Therefore semigroup 7¢'*, which is the adjoint of 7% in L%*(0E, ¥, v)
is again strongly continuous and sub-Markov by [12, Corollary to
Theorem 3]. This implies that the adjoint Q¥ of Q. is exactly the
generator of T¢*. Repeating the same discussion to Q% we see
Q*1=0 or (1,Q¢).=0 for all ¢€ D(Q). This proves that y is the
invariant measure of the semigroup associated with the generator Q.

This completes the proof.
The property (Q.2) is proved at the next proposition.

Proposition 6.6. (cf. Lemma 5.5 of [7]). D(Q)CD(D*) and

(6.9) (¢, 00).+-5-DH(g", 0"

~ 66, ne- @0 RO usEe o) 50
holds for all ¢ € D(Q).

Proof. Set QazQa-{-—%A(PUa1+PU}'§1)], where [ is the identity

operator. Since —;— (PU,1+PU%1)I is a bounded operator, Q. con-

stitutes a generator of a strongly continuous semigroup. We shall
prove that the associated semigroup is contraction. Observe (¢, Q.¢),
=(¢, Q).+ Di(¢, ¢), where

Dile, 9) =2\ U, 1(0(&) — o)) (@(&) — 9())w(d2)v(d).
2

Since D4(gp, ¢) < D*(¢, ¢) <+ oo, we obtain

(¢, Qup). = (@, V@), + D"(g, ¢).
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Now, substitute it =MzA*%(3—A)u in the place of ¢ above and next

make [ tend to 0. Then we obtain
(G Qait), . (H*it, Au)+D"(, @).

But the right hand of the above inequality coincides with (H*i, 4u)
+ D"(Hu, Hﬁ,) by Theorem 3 and hence it is nonpositive by Remark
after Lemma 6.2. Since Q. is the smallest closed extension of Q.
restricted to {ii|u€ D(A4)}, we have (¢, Q.¢). -0 for all g€ D(Q).
Therefore the semigroup associated with O“ has contraction property.

Incidentally, we have D(Q) D(D") and (¢, Q¢),+D"(¢, ¢) <0.
In fact, notice (¢, Q).+ Di(p, ¢)=(¢, Q.¢), -0 and make « tend to
+ 0o, then we have 0-<D"(g, ¢)Z— (¢, Qp), <oo.

On the other hand, since
. ~ . ) 1 7 7 - ~ 12
(07 Qa0). = (97, Q@) +((¢ )7, - - (Ul + UEL). =Klle |1,

Q. is K-dispersive in the terminology of [127], where K =ess sup—;— (U1
+ U¥%1). Therefore, the associated semigroup is positive. Consequently,
the operator Q(, has to satisfy the inequality (¢", Qu@), =0 for all
¢€ D(Q) (See [12]). However (¢*, Q.¢), is rewritten as

(0,00~ U2 me @0 DdDvdn+ | D, o).

Making n tend to infinity, we obtain (6.9). The proof is completed.
We have so far proved that the operator () satisfies (Q.1) and
(Q.2) of Theorem 4. We shall prove now the houndary condition

(6.10) D(A)={ueCy|Luc L=(E, dx), u € D(Q) and Qi —PH*Lu=0}

Denote the right hand of the above as [). Let u be of D(A). Then
—(Q—PUa)H,zP.FAlﬁ(a—L)u holds. Letting « tend to 0, we get the
equality QH,—PI?*Luzo. This proves D(A)CD. Conversely, take u
from D, set f=(ax—L)u and define v=R,f by (6.4). Then w=u—rv

is an c-harmonic function belonging to D. Hence (_)ﬁ*—{—P.fl*(—L)sz
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or equivalently, Qi — PU,o=0. Hence we have

o>

: ; (U, 14 U*1, @°), = (i, ()17’),+D (i, )= (i, Q.), < 0.

Since —;—(U,,l—kl/"}:l) is strictly positive a.e. vy, @ is identically O.
Thus we have proved D D(A). The proof of Theorem 4 is now

completed.

6.5. Proof of Theorem 3. Let () be an operator satisfying
(Q.1) and (Q.2). Note that

O, Dh(E) n¥(dE) no(dy) = U &, m)v(dE)v(dy),

then the following inequality is immediate.

D' (g, ¢>“)—SS(~)($, Do~ (e IE) 1 (de) ol d)

= Di(e, ¢')—SSUH(E, e (e (My(d&)v(dy).
Hence the inequality of (Q.2) implies

(¢, Qo).+ Dli(e, ¢+)_Sgl/”($‘ e (£)e (pv(dé&)v(dy)<0.

Setting Oa=()+<';} Pl/al—i——%rPl,/’M)I—PUa, the ahove inequality is

equivalent to (¢*, Qu@),-<0. This proves
(0, Q=PUD).= (¢, | {PUL+PURLLg) 0.

Since () is completely dispersive by (Q.1), we have
(=)', (Q—PUL@). Zc((¢—c), —PU,L), <0.

This shows that the semigroup associated with the generator ()—PU,

is sub-Markov.



General boundary conditions 329

Now the inequality (Q.2) implies (Q¢, ¢),+D"(¢, ¢) <0. In fact,
substituting —¢ in the place of (Q.2), we obtain

(¢, Qp).+ ; D'"(e™, ¢7)

+ SS@(e, Do (D (MM dE) 1o(dg) 0.

Summing up this and (Q.2), we obtain

. 1oanr oo 1 o )
0= (g, Q¢)»+~éfD’(¢ ,w')+—§~D’(¢ , e )+ Do , @)

= (¢, Q¢). + -;—V—D”(rp, ).

Therefore we have

- 1 ~,
0= (¢, Q). +—5- D¢, ¢)

;é((/’, (Q_PU“)@»‘I'%’S(U(J-I- Uﬁl)(&zdy,

Consequently, if (¢, (0—PU,)¢).=0, ¢ has to be 0, which proves the
existence of (Q—PU,) '. We shall write this as M,. Then M,
satisfies equality of Lemma 6.3 by the definition, and M, U,1=1 by
Q1=0. From these two properties it is easy to see that R,f defined
by (6.3) satisfies the resolvent equation and is actually conservative
Markovian resolvent.

The above defined resolvent R, satisfies (R.1) obviously. We shall
prove that (R.2) is also satisfied for this resolvent. Let us notice that
() is a generator of a strongly continuous, conservative Markovian
semigroup in L*(QE, ¥, y). Then the adjoint operator Q* is also a
generator of a strongly continuous semigroup by [12, Corollary to
Theorem 37]. Since v is the invariant measure, the associated adjoint
semigroup is also conservative Markovian so that MXU*1=1, where

M¥* and U¥ are adjoints in L*(0F, ¥, v). This equality proves that
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R¥'® is conservative, so that (R.2) is satisfied.

It remains to verify the boundary condition (6.10). Denote the
right hand of (6.10) by D, and take u from D(A). Then by (6.3),
—(Q—PU)i=PIT(a—L)u or equivalently, Qit=PUii — PIT&(cc— L)u.
Making « tend to 0, we see (Jii=+ Pl*Lu. This proves u€D. Con-
versely, take u from [), set f=(ax—L)u and define v=R.f by (6.3).
Then w=u—v is an (L —ca)-solution belonging to 0. Hence Qm
—PA*Lw=0 or equivalently, Qiw—PU,w=0, which proves a&=0.
Thus u belongs to D(A). The proof is completed.

6.6. It is possible to weaken condition (R.2) to get a similar
result as Theorem 4. We shall introduce the following condition (R.2’)
instead of (R.2).

(R.2") There exists a strictly positive function belonging to LY(E, dx)
f\H‘—(E) for which (5.1) of Proposition 5.3 holds.

Then Theorem 4 is modified as the following way.

Theorem 4'. Let R, be a conservative L-diffusion resolvent with
(R.1) and (R.2"). Then there exists a unique operator () in L*(0E, %, v)
satisfying (Q.2), (Q.3) and the following (Q.17).

Q1) Q is a generator of a strongly continuous and conservative
Markovian semigroup.
The proof is similar and is omitted. Theorem 5 can be modified

in a obvious way in this direction.

§7. Some special cases

7.1. Condition (Q.2) of Theorem 4 is of special importance. We

shall discuss the meaning of (Q.2) in some special cases.
We will assume in this small section that the operator L is self
adjoint i.e., L=, 9 <u,'j-@a~ > Then, since the minimal L-diffusion
(9:(5; 0x,-
resolvent is self adjoint with respect to the Lebesgue measure, the

Naim's kernel ®(&, 7) is symmetric in & and 7 so that we have
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—g@(é, 1e(8) () rno(d&) pe(dn) = ; D¢, ¢7)

Now let R, be an L-diffusion resolvent satisfying (R.1) and (R.2") with
h(x)=1, and let () be the associated operator on the boundary. Then

making use of the above expression, (Q.3) is rewritten as

(¢*, Q)+ D¢, ) =0 for all ¢ € D(Q),

or

Q2) (¢—0)", 00, +D((¢—0c)", ) =0  for all g€ D(Q).

In order to study the meaning of (Q.2'), we will introduce the
reflecting L-diffusion. For each f of L%(E, dx), we can associate a

unique element u € H'(E) in such a way that
D(u, v)+a(u, v)=(v, f) for all ve HY(E).

Write this » as RLf. Then R% is an L-diffusion resolvent. In fact
u=R5Lf is a solution of («—L)u=f and hence it is continuous if
f€L”(E, dx); The sub-Markov property follows from the fact that
H'(E) is a Dirichlet space in the sense of Beurling-Deny. We call
this R% as the reflecting L-diffusion. We denote by Q7 the operator of

Theorem 4 associated with the reflection L-diffusion. Then Q7 satisfies

(7.1) (¢, Q")+ Do, $)=0
for all ¢ € D(Q") and ¢ € D(D). In fact, the relation
(7.2) (Ha, Av)+ D(Hu, Hp)=0 vE€ D(A) and ue H'(E),

is immediate from the equality D(u, v)+(u, Av)=0, v H*(E) and
vED(A). Let us notice the relation ALu=Q’u and D(Hi, Hv)
=D(@, 5). Then we obtain (7.1) for ¢=u and ¢=5. The extension
to the general ¢ € D(Q) and ¢ € D(D) is obvious.

?}L:r defined in §1. Therefore, the

boundary condition of the reflecting L-diffusion is characterized. as

The operator Q" coincides with -
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gu =0, where—alﬁ- is the normal derivative introduced in §1.
&

0g
Now, the condition (Q’.2) shows

o000 M y) < (o)
(7.3) ((¢—0)", Q) ((¢ O 5e) S0, 0€D@ND o )’
This shows that both of %I; and Q———gg~ are completely dispersive.

Corollary to Theorem 4 will now be obvious.

7.2. It is possible to get the decomposition of the operator () for
general L-diffusion 'resolvent. In this small section, we assume that
the coefficients &; of the operator L is bounded or that the boundary
OF of the open set E in which the operator L is defined, satisfies the
cone condition. Then the bilinear form B(u, r) of (2.1) with the
domain H'(E)x H'(FE) is continuous and bhounded from below ([21]).
Furthermore, B((u —¢)", uAc)=0 holds for all u & H'(E) and positive
constant c¢. Therefore there exists an L-diffusion resolvent R} such
that u=R,f satisfies B(v, u)+a(v, u)=(v, f) for all ve H'(E) by
Theorem 2 of [12]. We call this R% the reflecting L-diffusion re-
solvent. The reflecting L-diffusion resolvent is conservative because
u=1 is the solution of B(v, u)+a(v, u)=(v, @) for all v€ H'(E).
Therefore there is a strictly positive function A of L*(E, dx) such that
m=hdx is an invariant measure of R% by Proposition 5.5. The
function & satisfies «R%h=~h and hence it belong to H'(E) (The range
of R¥ is included in H'(E)). Consequently, the reflecting L-diffusion
satisfies (R.1) and (R.2). We denote the corresponding operator of
Theorem 4 by Q7. Then

Lemma 7.1. For g€ L*0E, v) and ¢ € D(Q"), it holds
(7.4) (¢, Q"¢). + B(H*h, Hp)=0.

Proof. Since B(v, u)+ (v, Au)=0 holds for ueD(A) and
ve H'(E), we get (¢, [1*Au),+B(H*h, Hi)=0 if we set v=H*gp.
Notice that Q’"Zﬁ*Au, we obtain (7.4) for i=¢. The extension to
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general ¢ is obvious.

Lemma 7.2. Let R, be an L-diffusion resolvent satisfying (R.1)
and (R.2") with the h. Set B"u, v)=B(uh, v). Then

(7.5)  ((u—c) 'y Lu)p+ B"((u—c)*, u) <0 for all ue€ D(A).

Proof. We know by Proposition 5.3 that ((u—c¢)*, Lu)+ D*
((u—¢)", u) =<0 holds. On the other hand we have B"(u, u)=D"(u, u).
In fact, since B"(1, u)=0 for ue€ H'(E), we have B"1, u®)=0 if u

is bounded, which is written as

Su{2<bi—2uu 0‘%@) g? }/ulxzo
Xj X

by (2.7). This and the formula (2.7) show that D"(u, u)= B"(u, w).

Therefore
B"(u—c)", u)=B"((u—c)", (u—c)")
=D"(u—c)', (u—c))=D"((u—c)", w).

This proves (7.5).
Similarly as Lemma 6.2, we obtain the following lemma.

Lemma 7.3. Under the same condition as Lemma 7.2, we have

(Q.2") ((¢—0c)", Q).+ B(H*{(¢p—c)} ', Hp) <0.

Proof is similar as that of Lemma 6.2. Let u&D(A4) and
u=—G(Lu). Choose {u,} of H{(E)ND(A) converging to u in
Il Wm-norm. Substitute u—u, in the place of u in the equality (7.5)

and then make n tend to infinity. Then we obtain
(Lu, H*{(i—c)*})+ B(H*{(i—¢)*}, Hi) <0

by the same argument as Lemma 6.2. This proves (Q.2"") in case
¢=1i, because Qi =PA*Lu.
This lemma combined with Lemma 7.1 shows that both of Q" and

Q—Q" are completely dispersive.
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7.3. Finally we show that there exists a bounded and uniformly
positive excessive function such that aGXh-Zh and L*h=0. Let £ be
a bounded open set with regular boundary including E. Extend the
operator L to F as is done in §2, which we write as L. Then the
reflecting L-diffusion exists and has an invariant measure m(dx)=hdx
by Proposition 5.5. This & satisfies L*h=0 and strictly positive in E.
Since A is continuous, the restriction of h to the space E is bounded

and uniformly positive. It is easily verified that aGXh < h.
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