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L et E  b e  a  bounded open set in n-dimensional Euclidean space.
The real L '-spaces with bounded Borel measure in o v e r  E  are denoted
by Ln(E, Llioc(E, i n )  are defined as u s u a l .  Suppose w e  are given
an elliptic operator L  defined on E as

(0.1) L=  E
Y '" E x i

(

Here, a i i  is bounded measurable, symmetric in  i  and j ,  uniformly posi-
tive defin ite and bi ELP°(E, dx) w ith  som e p o >  n , w h ere  d x  i s  the

Lebesgue m easu re . A  function u  on E  is  ca lled  a  (w eak) solution of

L u = f  for a given f  E Ll o c (E , dx ) if weak derivatives n

Ou

 i = l ,  2, nux,
belongs to L%,(E, dx) (q o i s  the conjugate of p o )  and

y u(0.2)1 EaEaua d x j  
E
 v ( E b  

O X i

) d x  l v f d x
OXj 

is fulfilled for a ll  y E C( E)) {the space o f infinitely differentiable func-
tio n s w ith  compact supports in E l .  T h e  form al adjoint of (0.1) is
defined as

(0.3) 0
x,

( aa— a, • )L* — E (b,.),Ox ia Oxi

nam ely, y  i s  a  w eak  solution of L* v = f ,  i f  (0 .2 ) is fu lfilled  f o r  all

u E C (E ),  rep lac in g  yfdx b y  .S.ufdx.
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N ow  let R 0 ,  a > 0  b e  a  fam ily o f  linear transform ations from

L  '(E , dx ) to C (E )= {the space of continuous functions in E } , satisfying

t h e  resolvent equation :  R,— + (a —  13) I?, R 3 = 0  fo r  a ,  i3 > 0  and

sub-Markov property : 0 iT aR 0 f 1  i f  0 1. I f  u = R a f  satisfies

(0.4) (a —  L) u =.f  fo r  all f  E L "(E, dx),

R ,  is called a n  L-diffusion resolvent. S e t D (A )=  {R a  f  E  L - (E, c/x)}
and  define A u  = (a—  R ,,l)u (= u ) . A  with th e  domain D (A ) is called

th e  generator o f  th e  resolvent.

What we will concern in  this paper is to determine all L-diffusion
resolvents satisfying (R .1 ) a n d  (R .2 )  (stated i n  § 1 ) , o r  equivalently,

to derive t h e  most general boundary condition which prescribes the
function family D (A ) .  T h e  L-diffusion resolvent we a r e  going to in-

vestigate a r e  very general i n  t h e  two points ;  neither t h e  smoothness

(o r  o rd in a l differentiability) o f  u E D ( A )  nor t h e  smoothness o f  th e

boundary is assumed. So it is not our aim that we derive th e  boundary

cond ition  in  an  explicit form such a s  Wentzell [ 2 2 1  our expression of
th e  boundary condition is m ore like th e  o n e  fo r  Markov chain such as
Feller's an d  D ynkin's [4].

T h e  problem o f  boundary condition for diffusion process (o r  resol-

vent) has been proposed by W . Feller a n d  has been studied in  fu ll
details by Feller, Dynkin a n d  Ito-Mckean, in  c a s e  o f  o n e  dimensional

diffusion process. F o r  t h e  multi-dimensional diffusion  process i n  a

bounded domain with smooth boundary, Wentzell [ 2 2 ]  has obtained

th e  boundary condition  of the function R a i '  belonging to C2 (E ) .  Then

Ueno has introduced th e  n o tio n  o f  th e  Markov process on the boundary
associated with Wentzell's boundary c o n d itio n , a n d  Sato-Ueno [19],
Courrege a n d  others h a v e  investigated th e  ex is ten ce  o f th e  d iffu sion
process satisfying Wentzell's boundary condition, making u se  o f  Ueno's
Markov process o n  th e  boundary.

A ll of these works a re  based, at least analytically, o n  th e  semigroup
operating in  th e  Banach space consisting o f continuous functions. How-

ever, in  our situation, it is natural and powerful to discuss th e  problem
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i n  L 2 -setting. Actually, Fukush im a [6] has determined all symmetric

Brownian processes over a n  arbitrary bounded dom ain , making use of
th e  theory o f th e  D irich le t space introduced by Beurling-Deny [ 1 ]  and

Doob's representation o f  th e  D ir ic h le t  integral o f  harmonic functions

[2 ] .

In  this a rtic le , th e  symmetric assumption which Fukushima's work

is based o n  is removed, a n d  his results [ 6 ]  a r e  extended to arbitrary

L-diffusion processes. Especially, our emphasis lie s  in  characterizing the

generator Q  o f  t h e  U eno's M arkovian sem igroup o n  t h e  boundary

associated with a  given L-diffusion resolvent.

T h e  approach o f  th is a r t ic le  would be applied to t h e  Markov
chain , too. It is  in teresting to  com pare  th is w ith  D ynkin D I ]  and

Shiga-Watanabe [201

§ 1 .  Outlines and main results.

1 . 1 .  Among L-diffusion resolvents, o n e  o f  th e  fundamental is so

called the  m in im al L-diffusion resolvent. Let H ( E )  be th e  completion
-1auo f  C 2c7(E) by th e  norm Hub/ i(E) = 1 E (  - u2 id x  2 . A diffusion

Oxi
resolvent is called m in im a l if  th e  domain D (A ) is included in H (E ) .
T h e  ex is ten ce  an d  the  uniqueness o f  th e  m in im a l L-diffusion resolvent

(except possibly th e  sub-Markov property) a re  d u e  to Stampacchia [21].
L e t  u s  denote th e  m in im a l L-diffusion resolvent by Ga . Then the

adjoint G t o f  Ga  i n  L 2 (E , dx) maps L - (E , dx ) into C (E ) C 2 1 1 ) .  We

have further,

Theorem 1 1 ) . T here ex ists a  unique standard dif fusion process 2 )

(x 1, ,  Ps ) ,  x E E such that

Ga.f (x)= Ex(1 0f  ( x 0 ( 1 0 for all f  E dx).

1) In the case 1) 1 =-0 and a E  is regular, this theorem has been proved by
Kanda [9].

2) For the definition of the standard process, see Dynkin's book o r  [1 1 ]. We
use the same notation as [11]. But the e-field associated with the standard
process is omitted. It should be noted that the minimal L-diffusion process satisfies
Meyer's Hypothesis (L ), by the property (i).
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Furthermore,

(i) Ga  f (x ), a  0  (defined by the right hand o f (1.1) i f  a = 0)
and  its  adjoint Gt, a  0  maps L - (E, dx) into C(E).

(ii) Both of  aGa f  and a G f  converge to f  as a--+00, if  fE C (E ).

The above (x t , C, P x )  is called the m inim al L-diffusion process.

Theorem 1  will be proved in Section 2.

Now, since our expression of the boundary condition i s  made in

the Martin boundary of the minimal L-diffusion process, we will discuss

several problems concerned with it. H ere we introduce the definition
following [ 1 4 ]  to  f ix  the notation. Let g (x , y )  be Green's function

of the minimal L-diffusion such  that Gof  (x) + (x ,  .1 . ) f (y )d y .  We

f ix  a  fin ite m easure r  so  th a t b o th  o f  rg (y )-=5 r(d x )g (x , y )  and

gr(x ) + ( x ,  y ) r (d y )  are continuous and strictly positive on E .  The

M artin ex it and entrance kernels K (x , y )  and K*(x, y )  are defined by

K(x, y) — g ( x ' K *(x
'

 ) —  g ( x ' .
rg ( y )  ' g r(x )

Set fK (y )= - f (x )K (x ,  y )d x  and K * f (x )= K * (x ,  y ) f (y )d y .  The

completion of E  relative to  the weakest uniform topology in which the

function family { f K f  E Co (E )} (or
 { K * f f  E Co (E )} )  are all uniformly

continuous, is denoted by M (or M * ) .  Here Co(E) denotes the function
fam ily consisting o f f  E C (E ) w ith  compact supports in E .  The sets

OM=M—E and O M *=M *— E are ca lled  th e  M artin  e x it  boundary

and the M artin  entrance boundary, respectively, Let f r (  and k * f  be

continuous extensions of fK  and K *f to M  and M *, respectively. Then

there ex ist kernels K (x, 72) and K*(e , x) such that 5f (x)K(x, 77) dx

= f k(v) and 1 K * (e , x )f (x ) d x  =  f M  hold for a ll  f  E Co ( E ) .  They

are M artin  e x it and entrance kernels. T h en  w e  have the following
Martin representation : L e t  u  b e  a  nonnegative function such that

r(dx)u(x)<+ 00, AY"— E L2

" c (E , dx) and Lu= 0  (o r  L * u  0 )  hold.
Ox i 

Then u  has a unique representation
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(1.2) u(x )=-K ( x , 11 (4 ) ,  (or u ( x ) = f  K*(E, x)/.1*(d$))am am*

m aking u se  o f th e  measure i  (or ,a*) concentrated in  th e  extremal
points of OM (or OM *). W e  s h a l l  c a l l  it (or /e ) a s  th e  canonical
measure o f u.

1 .2 . On the Martin spaces M  and M *, let us define new kernels.
For ce> 0, set

(1.3) Ka(x, 77)=K(x, 77)— + a (x , dz) K (z , 77),

K :(E, x )=K *(E, x )— +* (e , z )G :(x , d z ) .

Since K( • , >7) and K *(E , • ) are excessive and co-excessive functions
respectively, K a (x , 7)) and K (Œ , x )  are nonnegative. Furthermore, it
can  b e  p ro ved  th at the sets M e u  =1E E M * 1 1 ( :( ,  •  )  0 }  and M e x

= iv  E M K a ( • , X_ 0 } are independent of a > 0 and include E.

Let us now  define linear transformations S a  a n d  S : on M e n  and

M e x  a s  follows;

(1.4) Saf (CO= E.IC 1($, X )  gr(x )f (x ) dx ,

S:f  (77)= SE r g(x) f  (x) 77) dx.

Then it turns out that both o f Sn  a n d  S :  are sub-Markov resolvents.

The weakest topology in w hich  all Sa -excessive (o r S 'E-excessive) func-
tions are continuous is called the fine topology of the space M e „ (or Me x ).

Now if e is a point of E, S a f W  coincides with gr(E) - 1 GaigTf i(e),
so  that the resolvent S a  re s tr ic ted  to  the set E  i s  the so called gr-
transform of the original resolvent Ga . T h u s if u  i s  an excessive

function o f  Ga ,  u / g r  i s  an excessive function o f th e  resolvent S a

restricted  to  E .  This fact perm its us to  define the finely continuous
extension of u / g r  to  the space M o n . In  particular i f  u is  a potential,

it  is  n a tu ra l to  regard the fine lim it o f  u/gr to  the boundary &Men
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au=M e„—E as th e  normal derivative o f u ,  which we denote a s  
g

A  sim ilar observation enable u s  to  define Naim's 0 -k e rn e l. For

x , y E E , we define

(1.5)
e(x' gr(x )rg(y )

T hen  th is kernel  f i .  h a s  a  un iquely f in e  continuous extension to

M„.

These facts will be proved in § 4 .2  a n d  § 4.3.

1 .3 . In order to  state th e  boundary condition, it is necessary to
identify the exit and extrance boundary p o in t s .  L e t  E M M  —E
and  e E aMen Men E. I f  th e  re s tr ic t io n  o f  each  fin e  neighbourhood
of to  the set E  i s  the restriction of a suitable fine neighbourhood of

C, an d  v ice  v e rsa , th e  tw o  points and e are  identified. T h en  ev e ry

ij E O M , is identified at m ost w ith one point E E OM,„, and vice versa.

Now le t ho b e  a  bounded and uniformly positive function such that
L*ho -= 0 an d  le t 4  (concentrated in  OM*) b e  th e  canonical measure
of ho . The canonical measure of the constant function 1 is denoted by

Po (concentrated in  O M ). It can be proved that p o (0M— OM„)= 0 and

4(19M— O M )=  O. M o reo ver w e  have

T heorem  2 .  p o -a lm o st all p o in ts  o f M e ,  are identif ied w ith 4-
alm o s t all points of  al Il e„. Furtherm ore, p o a n d  a r e  mutually
absolutely  continuous after this identif ication.

The above identified se t is  d en o ted  b y  E. T h e n  i f  u  and h  are

represented as

(1.6) u (  = K ,  v ) R (v) i o ( d ) , h (x) 5 K * (e, x)h(E ) ( d ; ) ,
aE aE

h u and have the (fine) lim its ri(e) and h(e) a t  po -almost a l l  pointho

a s  x  tends to  e  a long  w ith  the fine topologies of M „ and M „. We
hshall call this (or JOa s the boundary value o f u ( o r
no
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B y  v ir tu e  o f  T h e o re m  2 ,  w e  are ab le  to  g e n e ra liz e  th e  Doob
representation o f th e  D irich let in te g ra l o f  h a rm o n ic  fu n c tio n s . L e t h
b e  a  s tr ic t ly  positive func tion  rep resen ted  a s  (1.6). W e  d e f in e  the

bilinear form  P h as

( 1 .7 ) Dh(So, 0)

1  N
— 2 77)(0(; — 0(77))(40() —  OW ) h(OE)/4(a)//0(c/ 77).

The follow ing theorem  is a generalization o f D oob's [2].

T h e o re m  3. L e t h  b e  a  strictly  positiv e function represented as

(1 .6 ) w ith boundary  v alue h. T hen ev ery  bounded function u  such that
aLu = 0  a n d  E a ii a u  u h  d x < 00 has the boundary value i  belong-ax;

ing to  L - (8E, g o ) and

auEa • : u  dx
6.vi 

Theorem  2  and 3  w ill be  proved  in Section 4.

1 . 4 .  L e t u s  n o w  r e t u r n  t o  o u r  m ain subject. Let R ,  b e  an

L-diffusion re so lv e n t. W e  w ill assume th a t  th is  R ,  satisfies the follow-

in g  tw o  conditions.

(R.1) The adjoint R t: i n  L 2 (E, (l x ) satisf ies (a—  L*) f = f.
Oh

(R.2) T h e re  e x is ts  a  stric tly  positiv e  f unc tion  h  such  that u x

E L 2 (E , dx) a n d  h(x) R „ f(x) dx =11i(x) f(x) dx holds f or all f .

The m easure in (d x )= h d x  is ca lled  an inv ariant m easure o f R,.

I t  c a n  b e  p r o v e d  th a t  the a b o v e  it  is  re p re se n te d  as  (1 .6 )  with

E  (R E , lit) . Define dv = --21 --- (h dp0) and denote by .1A' the least

6-field in  w h ich  the fam ily  o f functions {al u=1-?„,f ,  E 1 7 (E , dx)} 3)

3) u  is  w r itten  a s  u ---G„ /4- Ho  f i  w ith  bounded m easurab le function  C. I t can
be show n that the tin e  lim it o f u  to  the boundary exists and eq u a ls  fi a.e. p o. See
footnote 16).
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are measurable and b y  L 2 (a E, ,  o )  the subspace o f  L 2 (OE, o )  consist-

ing  o f a ll V-measurable functions. We denote the orthogonal projection

from L 2 (0E, o ) to  L 2 (aE, ,  o )  as P .  Then we have

T h e o re m  4 .  L e t R a  b e  a  ccmservative 4 )  L -dif fusion resolvent w ith

(R .1 ) a n d  (R.2). T h e n  th e re  e x is ts  a  u n iq u e  lin e ar o p e rato r Q  of

L 2 (0E, ,  o )  adm itting the follow ing properties:

(Q.1) Q  i s  a g e n e rato r o f  a  strongly  continuous and conserv ativ e

Markovian semigroup i n  L 2 (0E ,',13', v) w ith  o  a s  its inv ariant m easure.

(Q.2) D (Q) )  and

1s0+Qço dv+D h (ço- ,  v ')

77)  , + ( )v - (-1) leo(d) Po(dv)

h o ld s  f o r all ço E D (Q ), w here  y9+  =m ax  JW , ÇO– -=g0 —  ÇO+  a n d  D(D f i )

= Igo E L 2 (0E, 9 )1D h (go, go) < °O.

(Q.3)
 

T he generator's dom ain o f  th e  resolv ent R a  is  charac teriz ed  as

D (A )= iu E C(E)1L u E  (E, d x ), n E D(Q)

• 0and + P  (u — =0}  ,
g

w h e re  H u  is  th e  harm onic f unction tak ing v alue n  a t  th e  boundary.

Conversely we have the following assertion.

T h e o re m  5 .  L e t  h  b e  a  strictly  positiv e f unction represented as

(1.6) an d  h , its  b o u n d ary  v alu e . Let b e  a  sub 6 -f ie ld  of  the  B orel

f ie ld  o f  E . S u p p o s e  w e  are  giv en a  linear operator Q o f  L 2 (0E, V  , o)
w hich  f u lf ills  (Q.1) a n d  (Q.2). T h e n  th e re  is  a  unique conservative

L-diffusion resolvent R a  w hose boundary  condition is (Q .3 ). Furtherm ore,

th is  R a  satis f ie s  (R.1) an d  (R.2).

4) R „ is  c a lled  co n se rv a tiv e  i f  aR„1 = 1  h o ld s  fo r  a ll d.
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Theorems 4 and 5 will be proved at Section 6.

1 . 5 .  Theorems 4 and 5 show that there is a one to one corre-

spondence between conservative L-diffusion resolvent satisfying (R.1)

and (R.2), and linear operator Q on the boundary OE satisfying (Q.1)

and (Q.2) through the relation (Q.3).

Condition (R.1) means, roughly, that th e  sample paths of the

Markov process associated with the resolvent R ,  has no jumps from

the boundary 5 E  to  the inside E .  However, we do not investigate the

property of the sample paths in this paper.

The operator Q is the generator of the Ueno's Markov process on

the boundary. But in case that is  n o t  e q u a l t o  the topological Borel

field of 5E , the Markov process (semigroup) on the boundary is defined

not on the boundary 5 E , but on a  suitable identification (or partition)

o f 5E  subject to the a-field 0'.

Let us investigate the meaning of (Q.2) and (Q.3) in some special

cases . In  w hat fo llow s w e assume that the coefficients bi o f  th e

operator L  are identically O. Let us denote by D(D) th e  set o f all

ço E 0 0 E ,  p o )  such that D(ço, < 00 5 ) . T h e n  (D(D), D) is a Dirichlet

space in  th e  sense of Beurling-Deny [11, namely D (D ) is  a  vector

lattice and D(Uço, Uça)<D(ço, 0  holds for ço E D(D), where Uço = ço -  A 1.

For the Dirichlet space (D(D), D), there corresponds a unique generat-
OHo r  denoted by - - - o f  a  strongly continuous Markovian semigroup in
0 g

1, 2 (5E, p o )  such that — D(v, 0) —

 ° H
 ç o  dp o holds fo r ço E  D  

°H 
5 g g

OHa n d  E  D(D). ço is  an analogue o f  the normal derivative of theg
harmonic function f rço taking th e  va lu e  ço  on  th e  boundary. We

define the normal derivative analogue for the function u  such that
RHE L - (E , d x )  a n d  a E D - - )  as follows.
0 g

au 0 H 0 
= 11 +- (u  — Ha),E D

( & H  

5 g g 5 g 0  )

5) When h= 1, we uni it supe rfix  h  in D h  etc.
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Now let R a b e  an L-diffusion resolvent satisfying (R .2 ) with h 1.

Suppose in addition that the a-field on the boundary associated with

I ? ,  coincides with the topological B orel field. Then the boundary con-

dition stated in (Q .3) is rewritten as

RHQ'a+  'u  —0
g

for a E D ( )rD (Q ),R g

OHwhere V  - - - Q
- g

T h e  above operator Q ' has a n  interesting property. It can be

shown that (Q .2) is equivalent to

(q .2 ) 5(49 — c ) Q v  /to+ D((v— c) , ço)

'c  O , v v E D (D ),

where c  are constant functions. Obviously the above inequality implies

((,o c ) + Q ' d / t o i l  0 for ço E D(Q)r)D (  " -11

) .ag

Generally, the operator satisfying the above inequality is called com-

pletely dispersive. It is known that the generator of a contraction and

sub-M arkov sem igroup is completely dispersive and conversely if a

completely dispersive operator becomes a generator o f a  sem igroup, the

semigroup has to be sub-Markov (See [1 2 1 .

Keeping this in mind, we have

C o ro lla ry  to  T h e o re m  5 .  L et Q ' be a  generator of  a  conservative
M arkov ian sem i group in  .L2 (aE, p o )  w ith  p o a s  i t s  in v arian t measure.

S uppose that D(Q')c\D( )  and  range  R(2 — Q
OH R H ' — are  both dense
R g g

OHin  L 2 (0E, p o ). T hen  th e  sm allest closed ex tension o f  V  + denotedg
by  Q ex ists an d  th is  Q posesses all properties (Q .1) an d  (Q.2).

It is possible to have the similar explanation o f th e  generator

even in the case bi 0. These problems are discussed in Section 7.
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§ 2 .  The m in im al L-diffusion process.

Let us first in troduce several notations. C' (E) stands for the set

o f  all continuously differentiable functions in E. We introduce norms
p1;1;1-  1  to  C 1 (E ) as

Ila II H ,p ( E ) =
a X i

1
+  U P ) d  X ) P

  

and denote the completion o f C4 (E ) by these norm s as  f i l 'P(E). u  is
said to belong to H 1-0 P, ( E )  i f  a E IPA  U )  fo r an y  o p en  s e t  U  such
th a t r J ( E .  H ( E )  stands for the closure of Co

- (E )  in  1/ 1- P ( E ) .  The

dual space o f H P ( E )  is denoted by H - 1 4 ( E ) ,  where q  is  the number
such that 13-1  + ([ 1 = 1 .  The norm of 1/- 1 4 (E ) is denoted as 11H 1•'HE)•

When p = 2 ,  the super-index p  is often dropped and written as 111(E)
etc. The space o f  continuous functions vanishing at oo is denoted by
C ( E )  and the space o f  bounded continuous functions is denoted as

Cb ( E ) .  T h e  norm of C ( E )  o r  Cb ( E )  is defined as the spremum of

the absolute value of the function.

2 .1 . Let us define a  bilinear form in H (E )><1 1 (E )  as

Ou B (u, y )=1  ay —  u E b i  .,„° v

E  i , j = 1  O X i  ( 1 X j  i = 1

and B a (u , y )  as B (u , v )+a(u , y ) , w h ere  ( , ) is  the inner product of

L 2(E , d x ) .  Then B  is continuous, i.e. there exists a positive constant

K  s u c h  th a t  B (u, II II
 

Further, B  „(u, y ) i s  co-

ercive fo r sufficiently large a , i .e . th e re  ex is ts  positive constants i3o
and k  s u c h  th a t  B # a (u , u) k i l  u 111 ( E ) . ( S e e  [ 2 1 1 ) .  Suppose now

a>  ,30 . Then fo r  each TE H - 1 (E ) th ere  ex ists  a unique u  of H ( E )
which satisfies

(2.1) B „(y , u )= < T , y > for all v E H  (E ),

b y  the Lax-M ilgram theorem  ([231 , p. 9 2 ) .  Conversely fo r  a  given
u E 1 / (E ) th e re  ex is ts  a unique T E H -1 (E )  which satisfies the above
e q u a lity . W r ite  th e  m app ing  TE u  E f ro ( E )  a s  u -=GaT.
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Then G,„ is a continuous, one-one and onto linear mapping from H - 1 (E )

to  H ( E ) .  We prove this fact for arbitrary a > 0 , namely,

Lemma 2 .1 . Far each a > 0 ,  there  ex ists a  unique one-one, onto

and continuous linear operator G„ f rom  H - 1 (E ) to  LN (E ) which satisfies

(2.1). Furtherm ore, G  restricted to L - (E , dx) is  sub-Alarkov.

P r o o f .  It is well known that H ( E )  is  a  vector lattice a n d  is

easily seen to satisfies

.13((u— c) 4 , u Ac) = 0 for all u E H (E )  and O.

Hence there exists a  strongly continuous sub-Markov semigroup T i with

7:111-1:;- e3 "1 such that 1 e  " T t f d t=G a t  for a > i30 (See [ 121 ). Then

th e  Laplace transform Ttt di is well defined a n d  is i n  1,- (E, d.v)

for all a > 0 if EL - (E, d x ) .  We shall again write this a s  G„ f.
Clearly it satisfies th e  resolvent equation G„ — G,3 f  + (a —,3)G0 G„f = 0
fo r  3> 3 0 a >  O. H e n c e  t h e  r a n g e  o f  I + (a — /9)G,3 i s  dense  in

1 )(E , d x ). O n  th e  other hand, since Gi9, e 9 >/9  is a  compact operator

i n  L 2 (E, dx) 6 ) , th e  r a n g e  o f  / + (a— d)G 8  is  c lo s e d . T h is  a n d  th e

above argum ent show that th e  r a n g e  o f  I - F(a —  9) G8 coincides with

th e  whole space LAE, d x ) .  Consequently, th e  equation u  (a — u

=G 13 7 ' has a  unique solution u  fo r  a n y  TE if - 1 ( E )  b y  t h e  Riesz-
Schauder theorem. It is easily seen that this u  is  the unique solution

o f  (2 .1 ). We denote this u  as G , T . T h e  "o n e -o n e  a n d  onto" property

is immediate from the  resolvent equation G„T—G,3 T+(a—  3)G„G 8  T=0

for 13>

T h e  following Stampacchia's result is fundamental i n  our later

discussion.

T h eorem  (S tam pacchia [211). (1 ) L e t  u  b e  a  solution of

6 )  By th e  coersiveness of 11(u, i)), we have

KIIG ( H) B(G,, f,G„. f ) - (G„ f, II II IIG f ( E )

which process jIG„fi l l .( E )I I .  T h e  compactness of G  fo llow s from
Rellich's theorem.
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(a— L ) u= T  belonging to 111 0 , ( E ) .  I f  T  E H - -P(E ) w ith  som e p> n,
then  u  is  (H o lder) con tinuous i n  E .  (2 )  G „ is  a  continuous linear
operator f rom  H 1 -(E ) in to  C b ( E ) .  I n  particu lar, if  th e  boundary OE
is regularn, G a T  (T E  E C (E ) .

Appealing the above theorem, we have

Proposition 2 .1 . S u p p o se  th at O E  is  re g u lar. T h e n  G a  i s  a
sub-Markov resolvent in  C _ (E ) whose range is  dense  in  C (E ).

P ro o f. T h e  assertions except th e  denseness of the range are

immediate from Lemma 2.1 and Stampacchia's theorem. L e t  u  be

o f  Co- ( E ) .  Then L u  belongs to H 1 -(E) because aii  a r e  bounded

and bi E L P(E , d x ) . Therefore u =G„(a—L) u  belongs to  the range

Gt,(H - 1 A E ) ) .  This proves that the range Ga (11- " ( E ) )  is  dense in

C ( E ) .  On the other hand since C ( E )  is dense in H - 1 -P (E ) and since

Ga  i s  a  continuous mapping from T h  " (E )  in to  C ( E ) ,  the range

G„(Q E ) )  has to be dense in C ( E ) .

The above Ga  is called the m inim al L -dif fusion resolvent.

2 .2 . We shall prove Theorem 1 in the case where OE is regular.

By virtue of Proposition 2.1 and the Hille-Yosida theorem, there exists

a positive, contraction and strongly continuous semigroup o f  linear

operators Tt ,  t>  0  in  C,,o (E )  whose Laplace transform is the minimal

L-diffusion resolvent. Thus there exists a  H u n t process (x 1, :,
x E E  associated with th e  above semigroup. In  order to prove the

continuity of the sample paths x t ,  we require

Lemma 2 .2 . L e t  T E E - " ( E ) ,  p > n ,  a n d  u = G a T .  L e t  U  be
a n  open  s e t  su c h  th at  <T , g o > =0  f o r  all go E  C (U ) .  T hen  u(x )
=E x (e - "u u (x ,,) )  h o ld s  f o r all x , w here  r u  i s  the  hitting tim e for the
s e t  Ile.

P ro o f. Let us choose T „EL P(E, dx ) converging to T  in H - 1 •P(E)

such that <T,, V > = 0  for all go E U ) .  Then fo r u n (x )=G a T , we

7 )  a E  is of Cl-class, for example.
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have u„(x )=E r (e - arr u„(x r i . ) )  by Dynkin's formula. Making n tend to

Do, u ( x )  converges to u (x ) uniformly by Stampacchia's theorem and

hence the assertion holds.

W e now prove th e continuity o f th e  sample paths .vt following

Kanda [9 ]. L e t U  be an open set such that (7C E  and V , an open

set such that V I EE  and Fr - X=0. Then there exists u =G„T E C„- (E )

(11 - 1 •1) (E )  such that u(x) = 0 in  U  and u (x)>  0  in  V .  Then since

T=(a—  L)u  = 0 i n  U , w e  have u(x) = E x (e - - ' ' " u ( x , , , ) ) .  This proves

P x (x„, E V, r a < 0 0 )=-  O. S in c e  V  is arbitrary, we see

Px(x„ E E— U, r u <0.0)= 0 or P x (x,„ E E— 0 U, r u  <00)=0.

This concludes that the sample paths are continuous.

T h e  following proposition asserts that the m inim al L-diffusion

process is transient.

Proposition 2.2. Gf GO= Ex (1  f  (x i ) d t) is w ell def ined and be-
longs to C _(E ) if f  E LP(E, dx),

P ro o f. Suppose for a moment that for each a > 0,

(2.2) u— aG,u=G„.f

has a unique solution uE L 2 (E , dx) for a  given .f  E L (E , dx), .f
Then u  belongs to ff lo ( E )  and satisfies — L u  = f .  (Hence u  does not

depend on a ) .  Since u  is bounded and continuous by Stampacchia's

theorem, aG ,u  is bounded in  a .  Making a tend to  0 in (2.2), we see

that Gf (x )  is bounded and hence it coincides with u.

The existence of the solution of (2.2) is equivalent to the unique-

ness of the solution of the homogeneous equation u — aG a u = 0  (i.e.,

u = 0 ), by the Riesz-Schauder theorem. Let u  be a solution of the ho-

mogeneous equation. Then L u = 0  is satisfied, so that u (x )= E x (u(x_ A ))
holds fo r  a ll compact set K 8 ) . Letting K  E ,  w e see  u -= 0 because

8 )  The condition u = a G „u  is equivalent to u (x )-- E ,(u (x ( ) )  ho lds. On the other
hand, it is known that u ( x )  E , ( u ( x , , , K )) E ., (u (x , ) ) .  M aking t  tend to infinity, we
have tt(x )--E .,(u (x ,K )).
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u E C (E ) .

2 .3 . Before we proceed to th e  proof of the existence of the

minimal L-diffusion process in  arbitrary open set, we develope some

potential theory in case where OE is regular.

Let us define the adjoint operator G : o f Ga  a s  <G , T , S > = < T ,
G :S > ,  where T , SE 11- ' ( E ) .  Then G : is  one-one and onto mapping

from 1-/- 1 ( E )  to 1 1 ( E )  and u  =G : T  is a unique solution of (a — L*) u
-= T. Furthermore, we have

Proposition 2 .3 . (1 ) Ga  i s  a  continuous m apping from  H - 1 (E)
in t o  C ( E )  i f  p >  n .  (2 )  T h e  ran g e  G :(C (E ))  is  dense  in  C (E ).

The first half of the above proposition is again due t o  [2 1 1  The

latter half can be proved similarly as that of Proposition 2.1.

W e have thus shown that the minimal L-diffusion process satisfies

Hypothesis (B )  of [141 and hence all discussions of [141 is applicable

to the minimal L-diffusion. We state here some o f th em . A nonnega-

tive function u defined on E  is called a-excessive i f  d 3 G , u (x )_<  u(x)

holds for all i9 >O0 and 43G„ s converges to u as 8-+00. The function

u  is called a-co-excessive i f  Ga  is replaced by G : in the above defini-

tion. In case a =0, a-(co)-excessive function is called (co)-excessive.

a) Ex istence o f  t h e  p o te n t ial k e rn e ls . F o r e ac h  a> 0 ,  there
ex ists a unique k ernel g a (x , y )  which satisfies

(i) G  f ( x )=S g a (x , y ) f  (y ) d y . f  ( x ) = g „ (  y ,  x ) f  ( y )  d  y .

(ii) g„(x , y ) is  a-excessive f unction of  x  f or each y  and, a-co-excessive
function o f  y  f or each x .

In case that a = 0 , g a (x , y )  is written as g(x , y ).
We next define harmonic and superharmonic functions. Let A be

a Borel set and let 0- A  b e  the hitting time for the set A .  Th e a-
distribution o f x , A : 1 1 (x , d y )=E r (e - " i ; x  E d y ) is called a-harmonic

measure fo r  th e  s e t  A .  A  function u  defined in  E  is called a-

superharm onic in  V  i f  it is lower semi-continuous, finite from below,

finite a.e. d x  and satisfies
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(2.3) u ( x )  ( = M , (x , d  y )u(y ))

for a ll open sets U  such that (7 (  V .  lith e  in eq u a lity  (2.3) holds for

a =  0 , u  is  c a lled  superharm onic in  V .  W hen th e equality holds in
(2 .3 ) fo r a ll su ch  U ,  u  is  ca lled  a-harm onic (o r  harm onic i f  a = 0 ).

It is w ell know n that a nonnegative function u  i s  a-superharmonic if

and only i f  i t  is  a-excessive.

Let / 1  be a positive measure with finite mass on each compact set.

The function Ga (,u) + a (x , y ) ,u(d y ) is  ca lled  an a-potential i f  i t  is

finite alm ost everywhere, a-potential is a-superharmonic.

13) R iesz  decomposition ( [1 4 1 ).  L e t  u  b e  an a-superharm onic
f unction. T hen u is decom posed to the  sum  of  an  a-harmonic function
an d  an  a-poten tial if  an d  only  if  there  ex ists a n  a-harmonic function
dom inated by  u. Furtherm ore such decom position is unique.

c) D irect decomposition of  11 1 ( E ) .  L e t  H a  or 1-11  be  the set o f
a l l  u  of  11 1 ( E )  such that (L  —  u  = 0  o r  ( L *  — a ) u =0, respectively.
Then

111(E)= H a lf (E )=1 PE D In (E ) .

Furtherm ore, B  a (u , v )=- 0  is  satis f ie d  f o r u  E H ',„ and  v  E  11 (E ), o r
v E H a  a n d  u  E ( E ) .  In  fa c t , le t  u EI/ 1 (E ) a n d  v  =G a (a—  L)u

((a -  L ) I L  E H - 1  (E )) , th en  v E H V E )  and it — v E Ha  a s  is easily seen.
It is also obvious that H a  n In (E )= O. The latter direct decomposition
can  b e  p ro v en  s im ila r ly . T h e  orthogonality relation B a (u , v) =  0  is
immediate from the definition o f H a  and

2 .4 . A  function u E H IgE ) is called an a-subsolution if  B a (v , u)
>  0  holds for a l l  v E q ( E )  such that v O.

Theorem 2 .1 . (c f. [8 1 ). 1 ) Ev ery  a-potential is an a-subsolution
belonging to n  1 1 1 (E ) 9 ) . Conversely  every  a-subsolution belonging

1<q < ' 1

t o  n  Hf ( E )  is  decom posed  to  th e  su m  o f  a n  a-potential an d  a
1 < q< nj

9) n  is the dimension of the space E,
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solution o f  (L — a) v = 0. 2 )  A  function a is a-harmonic if and only
if it  is  a  solution of (L — a) u =0  belonging to 1-110 ,(E ).

P ro o f. We divide the proof into several steps.

10 . Suppose u  is  an a-potential represented a s  g.,(x , y ) p(d y )
with finite measure p .  We prove that u E I ll'q (E )  and B c,(y, u)

1<q<;2 -1

=  1.)citt holds for y E C ( E ) .  Choose f  n >  0  in  L - ( E , d x )  such that

--=-f„ dx  converges weakely to  it. Then

Ga (p )(x ) g  (x ) dx

 

1G4 ( x ) sup I g  i in (E ) .

    

Since G t is a  continuous linear operator from H - " ( E )  into C 0 (E )  by

Proposition 2.3, there exists K > 0 such that sup

where p = (1— q - 1 ) - 1 >  n .  This proves that 11G a(11011111 , a( E) is bounded

in  n. Consequently a  subsequence o f  G a ( t i n )  converges weakly to it'

in H 1 4 ( E ) .  It is  easy  to  see  that u ' coincides with u .  Making n

tend to  + 00 in B  “(v , Ga(10)=1v  dp n ,  we obtain B a (v , u) 4  v  dp .

20 . L et u s  prove that the assertion of 10 is  v a l id  fo r  any a-

potential u =G a Cti), i f  w e  replace u E H i , g ( E )  b y  u E
n-1 n-1

H- I,q
c ( E ) .  It is known in [1 4 ] that the potential measure i t  has finite

mass on each compact set. Decompose th e  potential a s  u u2,
where u i (x )= -- 1

v
g ay )  p ( d  y )  and V  is an open set such that VCE.

It suffices to verify that u2 i s  in H I ( E )  for q< 
 n  —

n

1  •  
Notice that

Hgv  u2 coincides with u2 in  V  and that it is an a-potential with finite

m ass in  V(1141). Then Hgv  u i (x )  is o f H i 'q (E ) by 1°. This shows

that u E H I- 4 (V ) , S in c e  V  is arbitrary, we obtain the assertion.

3
0

. Suppose now u is a-harmonic. W e m ay assume without loss

of generality that u  is nonnegative. Notice that u(x)=--Hg v  u (x ) holds

in  V  and I n v  a  is an a-potential. Then we have

B a (v, u)= B a (v , Hg v u )= a v v dp=-0 i f  y E V),

where i t  is the potential measure of H g v  u. Since this holds fo r arbi-
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trary V  w ith  rcE, w e see that u E H I4 (E )  and satisfies (L —a) u = O.

T h e  fact that u E 111,) ,(E )  follows from Hgv  u E Hi„,( V) (See [21, §91).

4° . L e t  u  b e  a  s o lu t io n  o f  (L — a) u = 0  be long ing  to  1/10 ,(E).

W e first assum e th a t  u  is  nonnegative a n d  belongs to ( E ) .  Since
B ,(v , ,3G, H 1 2 ) -=  (V , u —  9G  , a n d  B „(v , u)= 0 holds fo r  y E 1 /(E ) ,
w e have

Ba(v, 8G„ — 11) = (V , 3 G a , 1 2 ).

S e t  w =  8 G „u — u .  N o tice  th a t  w+ b e lo n g s  to  I/ 1
0 (E ) . T h e n  the

above equality implies B a (w' , —  811w11 2. O n  th e  other hand, since
B a (w', 1,v)=Ba(w 4  w 4 ) - •  (a —  80111v+112, w e  h a v e  w  =  0  o r  equiva-
len tly , u <  ,  8 u  i f  a+ 8> 8 0 . T h is  proves that u  i s  a-excessive

o r  a-superharmonic.

Assume now  that t h e  above u  is not a -h a rm o n ic . T hen it has a
nontrivial potential in  th e  R ie sz  decomposition. Then B a (v, u) .=  yd,et

hold by 1° a n d  2° , where /I is  th e  potential m easure. T h is  contradicts
(L —a) u = 0.

L e t  u s  consider t h e  general c a s e .  L e t  U  b e  a n  o p e n  s e t  with
regular boundary in  E  a n d  le t  CZ be th e  minimal diffusion resolvent in
U . Then u  belongs to H' (E) a n d  is bounded from below. S e t c= min

x aU
u (x )  and define v =u — c H g v l. Then v  satisfies (a— L) v = 0 i n  U  and

is  nonnegative i n  U .  Then th e  a rg u m e n t o f  th e  above can be applied

to  v  a n d  w e  s e e  th a t  v  is a-harm onic i n  U , proving that u  i s  a-
harmonic re la tive  to  t h e  minimal L-diffusion i n  U .  T hen Proposition

2.4 o f  th e  next sm all section shows th a t  u  is  a-superharmonic relative

to  the diffusion considered.

5° . L e t  u  b e  a n  a-subsolution belonging to  r \  H ( E ) . We
1<q< n

7–

m ay  assum e w ithou t lo ss o f genera lity  th at u E  r\ 1 11, (E ).  We
1 < q< nn

prove that u is decomposed into th e  sum o f  a n  a-potential a n d  a  solu-
tion o f  (L — a) v =0 . L et p o > n be a  number such that bi E LP0 (E, dx )
a n d  go , t h e  conjugate o f  p o . Choose g  s o  th a t  g o < g  a n d  g/g o

< n ( n - 1 ) - ' ,  a n d  le t p  be th e  conjugate o f  g. Then
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„(v, ),(E)1}1111111, 1(s)

H '' 1 (E ) .

Hence F(v)=-- B,,(v, u )  is  a positive linear functional on  H 1 4 ) ( E ) .  On

the other hand, H 1 4 (E ) is included in C ( E )  densely and the norm

1IH1p is dominated by the supremum norm up to constant multiple, by

Sobolev's lemma. Hence F ( v )  is extended to a  continuous linear func-

tional on Cc.„( E ) .  Then there exists a  unique positive measure a such

that F ( v ) =  vd,u holds for a ll v E

The function G a( IL )=8 - „(x , y ) /i(d y ) is finite almost everywhere,

because G„(,le) gd x Gt g( y ) ,u(d y ) holds fo r  gE L - (E , d x )  and the

right hand is finite. Hence Ga ( p )  is  a potential. Since B a (v, G.(11))

vdt.€ holds by 1
°
, u  —G a (p )  satisfies (L — a)(u Ca)) = O. This

completes the proof.

Corollary, a-harm onic function is (H Older)bider) continuous.
Proof is obvious since the solution of (L — a) u  = 0  belonging to

H L (E )  is 1-161der continuous by Stampacchia's theorem.

2 .5 . L e t V  be an open set of E  such that re/ c E .  We denote by

r v  the hitting time for the set F .  T h e n  the process terminated at

r v ,  denoted by (x t , rv , P x ) ,  x E  V  is again a standard diffusion process.

On the other hand, to  the operator L  restricted to V C E , we can as-

sociate the m inimal L-diffusion re so lv en t G . T h a t is, u = G K f  is

defined as a unique solution of (a —  L) u =1' in  V  belonging to II à(V ).

Proposition 2 .4 . GI', coinsides with the resolvent o f  (Xt, rv,
x E V.

P ro o f. Set G;, f(x)-= Ex (1
0

f ( x t ) d t )  .  W e have to prove Gr,

= G ', .  Since G V (x )=G  f (x ) —  E x (e ' ri'G  „f (x  „))  holds and the latter

term of the right hand is a-harmonic in  V , G'„ f  and G „f  are both

solutions of (L — a )  u  =  f  in V .  Consequently, w  = G  f  —  f  satisfies

(L  —  a)w= 0 in  V , i .e ,  w  is a-harmonic in  V .  Furthermore, if 13V is
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regular, w -= 0 on  R V  because both o f  Ga l  and Ga' f  are 0  on  RV.

Therefore w  is identically 0  in  V.
In case that 8 V  is not regular, some modification is necessary.

L e t U be an open set with regular boundary such that uc V and let

Gtz, b e  th e  corresponding minimal L-diffusion resolvent. Then it is

easily seen that Gtalf f  if O. C h o o se  U„ so that Un-= V.

Then G f  increase to Ga' f  because ru„ increase to r v. On the other

hand, it is easy to see that GV,..f, n  > 1  are bounded set in Hg V).

Therefore G f  coincides with a  weak limit o f a  subsequence o f G " f

in  H 16 ( V ) .  This proves that G  f =G ,K f E  H (V ). The proof is com-

pleted.

We shall now give the

Proof o f Theorem 1 .  Let È  be a  bounded domain with regular

boundary such that L E E .  We shall extend the given operator L  to
the operator L  in  E  by setting ai, = 6,1,  b1 = 0  on E—E, fo r example.

Let (xt, C, Px) be the minimal Ldiffusion process on E .  Then (x t , r , Px)
is the desired diffusion process by Proposition 2.4. Other assertions of

the theorem is obvious.

Rem ark. Theorem 2.1. is  va lid  fo r  arbitrary minimal diffusion

process.

2 . 6 .  At the end of this section, let us consider the adjoint diffu-

sion process. Let h  be a strictly positive co-excessive function such that

L*h =0 . We define the /i-transform of G I as GI' hf(x )= -h (x ) - - 1 0, hf(x).
Then Gt' h  is  a  sub-Markov resolvent and it is  the adjoint of Ga  rela-

tive to the measure h(x) dx. It has been shown in  [1 5 , Theorem 6.11

that there exists a  diffusion process (x 1 , x E E having GI' h  as

its resolvent. Set

L * h 0   ( alogh  )  8  
— E a x i a  x i )  E (b i  —  2E .

Xi O X i

Then,

Proposition 2 . 5 .  u f  i s  a  so lu tion  o f  (a—  L * '" )u = f.
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Further, i f  h  is bounded and unif orm ly  positiv e, (x t , C, P x" )  i s  the
minimal

 L *
 ' - diffusion process.

P ro o f. Set u =Gt. h f ,  f  E L - (E , d x ).  Then

(2.4) B(uh, v)+ a1uhvdx =1hfvdxy  E C (E ),

where B  is the bilinear form defined by (2.1). W e have on the other

hand,

(2.5) B (uh, v)

Flu a y  h— logh  t  a v   d= 1 "Ei d ai,  o x i   oxi 
8x; O X i x 'J

(2.6) B(h, uv)

-=1[uhEai j Ologh ayl o g h  au • uhEa•• dx
j j ax;  0 x , 0 x ;  0 x ,

FluyhEb
a

i +uhEbi  ld x .
• ax iO X i

Since h  satisfies L*h= 0 and since u v E ln (E ),  B (h , u v )= 0  holds.

Subtract the right hand o f (2.6) from the right hand o f (2 .5 ). Then,

(2.7) B(uh, v)

oaxu,  ay —yE
ax;

alogh  t  au  1h d
.1ax ;a x i 

_= 1[ E a i  j   au  OM — vhE ib — E2a  lo g h   t  au  i d
ax i a x ; a x ; ax;  J  x .

Combining this with (2.4), w e see  th a t u =G t' h f  i s  a solution of

(a — In case that h  is bounded and uniformly positive, it

is obvious that u E H ( E ) .  This completes the proof.

T h e  fo llow ing is th e  counterpart o f  Theorem 2.1 and can be

proved similarly, making use of Proposition 2.5.
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Theorem  2.1'. (i) I f  u  i s  a n  a-co-potential, it is  (L *  —  a)-

subsolution belonging to T \  111;̀,7c (E). C onv ersely  i f  u  is  a  (L* — a)-

subsolution o f  n in,qc ( E ) ,  it i s  the sum  of  a-co-potential and a

solution of (L* — a) v = O.

u  is a solution of (L* — a) u = 0  belonging to  H 1 0 ( E )  i f  and

only  i f  u/h i s  an a-harm onic function of  the L *''-dif fusion.

§ 3 .  Additive and m ultiplicative fun ctio n a ls o f  th e  minimal L .

diffusion processes.

In the paper [111, we have discussed the relation of the generators

o f  tw o  Markov processes whose Markovian measures a re  mutually

absolutely continuous. We shall apply these results to the present case

in a slightly modified form . The results o f this section will be applied

to the proof o f Theorem 2.

3 . 1 .  Let (xt, C, P x ) be the minimal L-diffusion process. Let us

recall the class of additive functionals a n  and defined in  [181 or

[13]. s tan d s  fo r  th e  se t o f all continuous additive functional

(A F )  X 1 su ch  th a t Ex (X )  < 00 and Ex (X ! ) = 0  f o r  0 t < c o  and

x E E .  A  stands for the set of all continuous A F go t which is written

as  th e  difference o f  tw o  nonnegative ( = increasing) A F ç a(i =1 , 2)

such that Ex(40 é) < C''')  fo r  0 t< co and x E E.

It is convenient to extend the classes 9..it and :)f. in the following

manner. We shall write "quasi everywhere" for "except for a polar

s e t" . 'TJZ is defined as the set of all A F X 1 such that for all 0 < t< cxp,

E (X )  < CX 3  and .E(X ,) -= 0  holds quasi-everywhere. (The excepted set

may depend on each A F X t ). The class of A F is defined similarly.

Similarly as is the case of it can be shown that for each X, Y

of 11, there exists a unique < X ,  Y >  o f  t such that

Ex(X t Yr)= Ex (< X , Y > 0 t  < c o

holds quasi-everywhere. Now let L 2 ( < X , X > )  be the set of all nearly
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Borel m e a su ra b le  fu n c tio n s  f  s u c h  t h a t  Exf d< X ,  >

<  o c  h o ld s  fo r  all t <  o c  q u a s i-e v e ry w h e re . T h e n  fo r  X E '.1.
)
Q  and

J
.
E L 2 < X, X  > ), the stochastic integral =  f  (x , )d X „  is defined as

an elem ent of a ll  satisfying

<  Y, Z > t = -Y f  d<X , Z >. o
for all ZEJJL

The existence and the uniqueness of the stochastic  integral is proved

sim ilarly as Motoo-Watanabe [18].

3 .2 . Let us define X7 fo r  u E D(A ) as

t
(3.1) X 7=-u(xt)—u(Ao)— 

• 
L u(x ) ds.

. 0

Then X7 E NiTt ([18]).

Lemma 3 .1 . Fo r e ac h  u, e  E D(A ), w e have

(3.2) < X '',  X  > t = 2  (E cr u
 °u

 dsRx i a x ;

P ro o f. Notice

u(x 0) Lu(x s) ds, u(x) = — Ex(5 oLu(x s) ds)

e tc ., w e  have

Ex (X t X  L)= Ex ( 0  0Lu(x s) dsX
So

Lv(x s) ds))—  u(x)

-
=E x(1  L u (x ,)0  L e (x i ) (it)(Is)d-- Ex 0

o
L v  (x ,)( L u(x t) d t)ds)

—  u (x )  v(x )

= — Ex 0
o
l,u(x ,) v(x ,) ds)—  E(1 0Lv(oc,)u( ,) ds)—  u(x) v(x)

=G(Luv)(x)--G(vLu)(.0— G(uLv)(x).
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On the other hand, it is easy to  see

L u v =  u L r  L u  2 E  a

Therefore we get

a u  a, 
Ox i  •

(3.3) E 1,i., X '0'0 ) = 2 Ex 0'0'd s ) ,a l l , RV
O X i  RXJ

which implies

au v(3.4) Ex(X 7
x

=2 E  (5 a Ea. ;  n (is )
 0 0  X  i

i f  w e notice the additivety o f  .X4 and th a t  o f th e  integrand of the

right hand o f (3 .4 ) and use the Markov p roperty . The equality (3.4)

proves the lemma.

Remark. L e m m a  3 .1  shows, in particular, t h a t  a l l  <Z , Z >
(ze9.31) are absolutely continuous with respect of t A C , because Xi:,

u E D (A )  generates ( S e e  [ 1 8 ] ) .

W e shall ex tend  the above lem m a to  arb itrary u E 11 1 ( E ) .  But

before doing this let us introduce the following function fam ily. LP(E)

s tan d s  fo r th e  se t o f all m easurable functions f  in  E  such that

y )L f(y ) I'd y  is fin ite quasi-everyw here. 11 1 ( E )  stands for the

O u  au
s e t  o f  all u  E  L 2 (E) s u c h  t h a t  g(x , Eaud y  i s  f i n i t eax ;

quasi-everywhere. Then LP(E)D LP(E, d x )  and 11 1 (E ) )  H l( E )  holds.

In fact, let gE L — (E, d A ); then

1g G I  f  d

 

1If 1P G*  gd sup1G* g i

    

i f  f E L P(E , d x ) . This shows that G P  is finite almost everywhere,
which implies that G P is finite quasi-everywhere. The latter assertion

H l(E ))  H l (E )  is proved similarly.
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Proposition 3 .1 . Let ,  i = 1, 2, • • n  b e  a  s e t  of  functions
i n  L A E). T hen there ex ists a  unique AF X t o f which satisfies

au(3.5)< X , X ' > 1=- 5 
o
2(E a iff —„„ s for a ll v E D(A).(Ix ;

P r o o f .  Suppose there is a  linear mapping from 9)-1. into L2 (E)
which satisfies the following (F.1) (F.3).

(F.1) F( dZ ) = f  F (Z ) for all J'E L 2 (<Z ,  Z >),

(F.2) F (Z) (2E  ai f f i f f ) (z, Z ) ,  where (Z , Z )  i s  a  function such

that < Z,Z ) ( x  s )ds.

(F.3) F (X ") -=- 2 ( for a ll v E D (A ).

Then, since E (1 E a,i f , f ;  ds).<  0 .  holds quasi-everywhere, there exists

a unique Xt o f  931 such that <X , Z> t =-5
o
F(Z)(x s )d s  holds for all Z

by virtue of Proposition 2 .4  o f  [ 1 1 1 .  This X  is  the desired one by

(F.3).

The existence of F  satisfying (F.1) (F .3 ) is proved as  follows.

Let 9i. be the set of XE an which is written as X = E 1gk dX ", g1 E L 2

k=1
avk (<xv , , x">). We define F':L i ( E )  as Fi (X )= g k E c tiji

k i , j (IX./

for such X .  Then this F' satisfies (F.1) ---- (F.3). It is known, on the

other hand, that th e  space s..Ti is  dense in 'X i ( [ 1 8 1 ) .  Thus F ' is

extended uniquely to a  linear mapping from 111 into L l ( E ) .  The proof

is complete.

C oro lla ry . F o r each  u E H 1 ( E )  there  ex ists a u n iq u e  X 7 o f  sTil
w hich satisf ies (3.2) f o r all  v E D(A).

R em ark . If belongs to P(E, dx ) with a  suitable p> n, the

A F X -,  o f  Proposition 3 .1  belongs to W t, because E x
o 

a i; fif; d s )  is
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finite for all x by Proposition 2.2.

Theorem 3.1. T here ex ists X  , ,  X "  of  'B . such that

ay
< X i , X 1' > t =25 a 11d s for all /7E D(A ).

0 ay ;

Furthermore, every X t of  :IN  is represented a s  X t = f i (x s )dx si where
'

E L 2 (E).

P r o o f .  The existence of su ch  A l, • , X 7  is obvious from Pro-

position 3.1 and Remark after that. The latter assertion follows from

•that A: 1: is represented as X 'I=  2 f ,a u  t iX t  and {X7, u E D(A )}  gener-

ates

3 .3 . It is  des irab le  to  get the expression of X '  fo r  arbitrary

uE  H i ( E ) ,  similarly as (3.1) of the case uE  D(A).

Proposition 3 .2 . L e t  u  b e  a  f unc tion  o f  11 1(E )  s u c h  th at

Lu E L i (E). T h e n

u(x t)—  u(x  0-1
o
Lu(x s )ds

holds for t < .  In particular, if L u= 0, X': is of ;W.

P r o o f .  We first consider the case a  E I P ( E ) .  S et u 2 = — GLu
and u i  = u —  u2. The both of u 1 and  u 2 b e long to  H 1 ( E )  b y  c ) of

§ 2.3. It is sufficient to prove the assertion for u 1 and u 2 . S e t

t
X, = a 2 ( A: t) - ii 2  (.17 0 ) -  L u(x ,)ds.

o

Then the proof of Lemma 3.1 is applicable with no essential change

and we see that X,= X .

For the proof of the case /Lb  let us assume for the moment that

/21 is bounded. Then since u  (x e)  is  a martingale relative to (At, Pr),
x E E, u ,(x i)  exists and the A F defined by

t
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(3.6) Xt = u  (x t ) — u (x 0 ) i f  t < C,

=  iii (a)) — i f  t C,

h as  m ean  0  relative t o  P x , :v E E . Hence A t b e lo n g s  to  9 it  a s  is
easily seen. Furtherm ore, for n E D (A ) w e have

(3.7) Ex ( ) = 2Exu  au 2 a y  d s )

. 0 aX j

In fact,

Ex (X - X ) E x ((ù  i((o ) —  u i(xo ))( —  v(x 0 ) —  c, Lv(x ,)ds))

u t (x )G lx (x )— s) ds).

Notice that E(î1 17s;17 ) = u i (x,), then the la st expression of the above

is equal to

u i (x )G Lv(x )— G (u i Lv)(x) -=2E x 0  E a „  au '  ds)
o a x i a x ;

for a l l  y E D (A).

Therefore we get X t -=-- X ': by the uniqueness of _10.

Let us consider the case that u1 is unbounded. Choose a sequence

of open sets E ,  w ith  regu lar boundary such  that E „ C E „ ,C E  and

\J En =- E .  Let T , be the hitting tim e for the set E .  T h e n  X t A T,, E 9.11,
where X t i s  the A F defined by (3.6). Furthermore, we have

(3.8) E x (Xt AT „ X '; AT „)

tA T„
=E x((u i(x t A T,, ) — u i (x 0 )(v ( xt A T„ ) — n(x 0) — Lv (xs)d s))

0

tAT„ au
= 2Ex (5 Ea 11  on d s )x i u x ;

b y  the argum ent of the preceding paragraph. On the o th er hand,
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since u1 is harm onic w e have

t
(3 .9 ) E x (X

AT „
i „)  E r ( u i ( x t A r ds— IL (X ) 2 = 2 E x ( 1 E l l i j  

a
 U l   )

a X i  O X i

° L 1 1  ° L t i  d s ) .n

Since the la st te rm  o f the above is finite quasi-everywhere, E x (X

is bounded in  a quasi-everyw here . Th is proves X t E T t .  M aking a

tend to infinity in (3.8), w e see X 1 -=

W e shall next consider the case u E I P ( E ) .  Let us notice that
auH 1 (E )C H 1 0 , ( E ) .  In  fact i f  u E (E ) the function  g (x , y )E a,,  x

•  
°u

 d  y  is locally integrable, i.e. for an y open set U  such that CC E,
ax;

w e have

dx5 g (x ,  y)[ Eai, au au
a Xi a Xj _

a u  au d y — G*  in( y )[L ail R x i_
d y < 0 0 .

Since we can choose U  so that G* / u  is  s tr ic tly  positive in E ,  u must

belong to  1/10 , ( E ) .  Consequently, the above argument applied to the

stopped process (x t , ru , P x )  can conclude that

X  A r , = u (x  A r t ) — a ( v 0 ) — L u(x  s )ds

h o ld s . S in ce  U  is arbitrary, we obtain the first assertion.

It rem ains to  p rove the latter assertion. Let u  b e  a  harmonic

function o f H i ( E ) .  Then

E x ((X % ) 2 ) = E x (u(xT „) 2 ) —  u(x) 2 =2 E ,(1 aU a u
 d S )

0 ') ax X j

b y (3.9). Hence w(x)=--  lim E x (u(x r„) 2 )  is finite quasi-everywhere. On

the other hand, it  is  easy  to  see  th a t w  is  a  harmonic function, which

implies w (x ) is continuous and, in particular, is fin ite everyw here. This

proves Ex (X )  < 00 fo r a ll 0 < t < 00 and x E E .  The proof is completed.
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C o r o l l a r y .  U n d e r th e  s am e  as s u m p tio n  a s  Proposition  3.2,

{a(x7-„)} are  uniform ly  integrable relativ e to  P r f o r  x  except a polar
set. I n  p artic u lar, if  u  is harm onic , Ex (u(x-r.) 2 )  is hounded in  a for
all x E E.

3 .4 .  It is  possible to obtain similar results as the aboves for the

adjoint diffusion process. L P (E )*  is defined as the set o f all f  such

that g(y , x)I.f( y) I Pdy is finite quasi-everywhere. H 1 (E )*  is defined

sim ilarly. Now let h  be a  bounded and uniformly positive co-excessive

function such that L * h =0 . The existence of such h  will be proved at

§ 7 .  Let (x t , C, P " )  b e  the minimal L*J'-diffusion. Then Lemma 3.1,

Proposition 3.1 and Theorem 3.1 are valid for the minimal L*ii-diffusion

with the obvious modification. However as to Proposition 3.2, we have

only a  slightly weaker result, namely,

Proposition 3.2'. L et u  be a  locally  bounded function of  111 (E)*

such that L*u E L l ( E ) * .  Then

u(x i ) — u(x 0 ) —1 h -  L*(hu)d s

belongs to ;:)- -N  and

a u  av <X u , X v >t=-1  L at., n ils
Jo o x i  fox;

w ith respect to  the m inim al L*' h -diffusion.
W e omit the proof.

C o r o l l a r y .  Under the sam e condition as Proposition 3.2', {n(xT„)}
is uniform ly  integrable w ith respect to  P x"  except x  of  a polar set.

3 .5 . L et {c i } , i =1, n be functions o f L 2 (E, d x ) .  Set

; oxi

A  method o f  constructing a diffusion process corresponding to the

operator L ' is  the transformation of the minimal L-diffusion by multi-



302 Hiroshi Kunita

plicative functional. Set

(3.10) M i = e x p L E  c i (x0 c ds i f  t < C,

0 if t > .

Then it is a multiplicative functional (M F ) such that Ex (M 1) < 1  holds

quasi-everywhere (See [1 3 1 ). Set E' = Ix  ; Px (M o  =-1)= 1} . I t  is  w e ll

known that there is a standard diffusion process (x i , C, x E E ' such

that

1314(B r < C } )  E x (M t ;  Bn-(t<C1), v  B t

holds i f  we define (x i , C, PL4 )  on the same basic space (9, 7 ) a s  that

o f (xt, C, P x ) .  We shall denote th e semigroup o f  (xt, C, P x ) as T .

Then Theorem 4.1 o f [1 1 ] asserts

Proposition 3 .3 . Let u be a function o f 1- n (E )n L – (E , dx) such
that Lu E L i (E , dx) and L' u E L – (E ,  d x ) .  T hen w e have

(3.11) T u (x )—  a (x )= Ç  P I(L 'u )(x )d s .

However, we do not know in general whether such ( TI , t >  0) is

the unique semigroup satisfying (3 .10). A  sufficient condition for this

is that each c ,  belongs to LP(E, d x ) with some p>  n. In  this case,

the transformed process coincides with the minimal L'-diffusion process.

In  fa c t , under this condition there exists th e  minimal L'-diffusion

semigroup T ; by Theorem 1. Obviously, T ; satisfies

(3.12) T;u — u= 0 T;L' uds u E D (A '),

where D ( A ' )  is  the domain o f th e  generator o f th e  semigroup T .
Taking the Laplace transform in  the equalities (3.11) and (3.12), we

obtain

u=G;„(a— L')u =- G  (a—  L')u u E D(A ').
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Since {(a — L ')u luED (A ')}  =L (E, d x ) holds, G' =G ig .  T h is  proves
th a t (x 1, C, I l l )  i s  the minimal L'-diffusion process. Furthermore we
have

Theorem 3 .2 . L e t (x t , C, b e  the m inim al L'-diffusion with
E L P ( E ,  d x ), p >  n . T hen there ex ists a strictly positive Wmeasurable

function e•(w) such that e =M t e(0 i ), E x ($ )=1  and

.1);(B)= Ex (e ; B),B E

holds quasi-everywhere.

P r o o f .  B y  v ir tu e  o f  Dynkin [3, Chapt. X ] a n d  K unita DO], it
is enough to verify that M1 defined  by (3 .10) is of the class (D ),  that
is , for arb itrary fam ily of stopping tim es { 71, the fa m ily  IM T I is
P s -uniformly integrable quasi-everywhere.

A pply the formula on stochastic integral o f  [ 1 5 ]  to  F(x)= xex

and A t = c1(x)dX1— 1E a 1 cc d s . Then we obtain
1=1)0 2 o

1  
F(A t ) — Mt log lift =Z t+

5t
2  0 .M.,( a,7 c i c5 )ds,

w here Z t i s  a local martingale w ith  m ean 0•" ) T h e re fo re  i f  T is  a
stopping time such that Z rA r is  a martingale, w e have

1,( log M T )= E ;( 1  .E 1117. 1 E  c iG '  ( E a o  c i ci )(x).2 o 2

Since the la s t  expression of the above is finite quasi-everywhere, we
see that E x (MT log M T) is uniformly bounded in  { T} quasi-everywhere,
which proves that M t i s  of the class (D).

The condition c i E LA E, d x), p>  n  is  n o t a lw ays n ecessa ry  for

T heorem  3.2 . A ctually w e have only used that G t ( E  c i cf )  is finite

quasi-everywhere. Consequently, we can prove, sim ilarly as the above,

1 0 ) Precisely, there is a  sequence o f stopping times such that T„ — s+ oo and
Zr,, is a m artingale with mean 0.
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th e  following

Theorem 3 .2 '. L e t  h  b e  a  bounded an d  uniform ly  positiv e co-
ex cessiv e function such that L*h= 0. L et (x t , P k )  b e  th e  minimal
1,*' h -dif fusion process. T h e n  th e re  e x is ts  a  M F  M t a n d  a  strictly

positive 7-measurable function s u c h  t h a t  = M ( 6 1
t ),  E r (E )= 1  and

P x" ( B ) =- E,(E ; B) v B E

holds quasi-everywhere.
OloghProof is obvious because E L 2 (E , d x ) a n d  hence

E c tii(b
Ologh y b 2 E a l o g h

i — 2Ea, k
k X k  A k Oxk

is finite quasi - everywhere.

§ 4 . M artin  boundary

4 .1 . T h e  m in im a l L-diffusion process satisfies Hypothesis (B )  of

[1 4 ],  by v irtu e  o f  Theorem 1. Hence th e  d isc u ss io n s  concerning

M artin  boundary in  [14, 151 a r e  applicable i n  our s itu a t io n . W e have

also shown i n  Theorem 2.1 that a  s o lu t io n  o f  L u =- 0  belonging to

H 1 0 (E ) is  h a rm o n ic . Hence i f  t h e  fu nction  a  is  nonnegative and

r-integrable, it has the  un ique  M artin  representation

(4.1) u (x )=  a m , K ( x ,  77) ii(c172),

where R.Mi is  th e  s e t  o f  a ll i7 such that K ( • , v ) is m inim al harmonic

a n d  K (x ,  v ) r (d x )= 1  holds. In  p a r t ic u la r , th e  c o n s ta n t  function 1

satisfies L1 =0 , so that it has t h e  representation, making u s e  o f  the

canonical measure g o .

It is interesting to know under which condition the harmonic

function u  is represented as

(4.2) u (x )= 1
2 3 1 ,

K(x, v)Fteil) p0(d72)

G*''
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with R  o f LP(aM i .  fib). The following is due to T . Watanabe" ) .

Proposition 4 .1 . L e t u (x )  be a  harmonic function.

1) u  is  represen ted  a s  ( 4 .2 )  w ith  n E g o )  i f  a n d  on ly  if

{ u (x ,,)}  is uniform ly  integrable relative to th e  m easure P7 ,--= Px y(dx).

2) u  is represented as  (4 .2 )  w ith T iEL P o m i, p >1  if  an d  o n ly
i f  sup E y ( lu (x  „)1 P)  < .

H ere, T „ is  the  hitting tim e f o r E nc, w here lE n}  i s  a  sequence of open
sets such that B  (E  1  C E  a n d  J En = E.

P ro o f .  W e fo llow s  th e  proof o f  T .  Watanabe fo r  th e  com-

pleteness. It is known ( [1 4 1 )  that x ;._  = lim  x t exists and P x (x 4-_ E B)
t

=1 K (X , v) 0 (d77) holds. Hence i f  u  is represented a s  ( 4 .2 )  with

i i E  (OM' , p o ), w e  have u ( x ) = E ( u ( x ) )  an d  P 7 (1 a  c <  0 0  .
Since u ( x r „ ) = E 7 ( u ( x - - ) 1 7 T „ )  holds, { ii(xT„)}  are uniformly integrable

with respect to  P7 .

Conversely assume that { u(xT”)}  are uniformly integrable relative

t o  P y . Th en  y  = lim  E x ( lu ( x T )  )  exists, integrable relative t o  the

measure r  and hence it is harmonic 1 2 ) . As a consequence o f this, both

o f  u i (x)=1im  E x (u  (x T „))  and u 2 (x)=1im  Ex (u - (x T „)) a re  harmonic

functions integrable relative t o  r  and u =- u u 2 . Th is proves that

both o f u  and y have Martin representation, and the canonical measure

o f y  is the absolute value of the canonical measure o f u.

I t  is now sufficient to prove that the canonical measure o f  y,

denoted by /1 ', is absolutely continuous with respect to  p o . Let f (w )
be the limit o f u (x T „) . Set y' = E x (  f ) .

 T h e n  v = v ' h o ld s .  In fact,

it is easy to see that y—  y' is nonnegative harmonic function such that

—  y ') r(dx ) =  0 . Hence y — v' is identically 0. Now consider the

reduced function HB y for the Borel set B  of M .  Then

11) T . Watanabe, "Some topics related to Martin boundaries induced by con-
table Markov processes", Proc. of 32nd Section o f / S U  (1960).

12) If an  excessive function u is integrable relative to the measure, it is finite
quasi-everywhere. See [16].
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linv (x )=K r( If I ;  x c_ E B )= B K (x , V) ll'(c1 V)

holds ( [ 1 4 1 ) .  Consequently, Py ( x  E B )= 0  implies Ï/B  (x) r(d x)= 0

or ,u'(B)-= 0. This proves that i t ' is absolutely continuous with respect

to Po.

The second assertion can be proved similarly.

Corollary 1. u  is represented a s  (4 .2 )  w ith  n  E L 2 (aM1, I to )  if
xu 6 6  . 1 ( y )  d  y < e 0and o n ly  i f  u(x) 2 r(d x )<0 0  a n d  7. ,e-(y)LEa11

Proof is immediate from the above proposition, Proposition 3 .2  and

its corollary.

Corollary 2. (Doob [ 2 1 )  Suppose th at  th e  reference m easure r
is concentrated  in  a  s in g le  p o in t .  T hen ev ery  harm onic f unction of
H i (E ) is represented a s  (4 .2 ) w ith  f i  E L 2 (0M1, ito)•

Proof is immediate because E x (u (x T ) 2 )  is bounded in  n  for all x

by Proposition 3 .2  and its corollary.

4 .2 . L e t  h o b e  a  bounded and uniformly positive co-excessive

function  w ith  L* ho = O. W e  f i x  th e  function h o h e re a fte r . Let

(x t , C, P x*'ho) be the minimal L*' h o-diffusion process. It has the potential

kernel g(x , y )= ga(y , x )ho(y ) - 1 1, 0(x). I f  we take h o (x )r (d x ) as its

reference measure, the Martin kernel of the L " -d if fu s io n  is defined as

g(y , x ) _  K * ( y ,  x )
K h q x ' y ) —  ho(x )gr(x ) ho(x)

T h is  proves that th e  M artin  (ex it) boundary o f  L*• h °-diffusion

coincides with (homeomorphic to) the Martin (entrance) boundary o f L-
diffusion. Furthermore, the associated Martin kernel K 4 (x , $), Ç E OM*
coincides with h o (x) - 1 1 (* (E , x ) . Then any nonnegative harmonic func-

tion  u  o f  L* diffusion, integrable with respect t o  ho ( x ) r (d x ) ,  is

represented as

u(x) = .h0 (x) - 1  K * (E , x) fi(de),am,
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where & M t is  th e  set o f all Eam* such that K *(Œ, •) is minimal

harmonic. Consequently, i f  u  is a nonnegative solution of L*u =  0  such

that 1u(x) r(dx)<  00  and u E 1/10 , (E ),  it is represented as

(4.3) u(x) = x) ,a(de)
aM

by virtue o f  Theorem 2.1'. T h e  measure f i  is  c a lled  the canonical

measure o f u .  We shall denote the canonical measure o f h o a s  4 and

fix it.

Let us investigate the condition that a is represented as

(4.4) u(x )=11(*($, x )R ($)/it(de).

Proposition 4 . 1 ' .  L e t  a  b e  a so lu tio n  o f  L * u = 0  belonging to
I l l o c ( E ) .  T he assertion of  Proposition 4 .1  is  v alid  i f  w e replace P 7 ,
L 2 (0M, p o )  and form ula (4.2) b y  T I P ,  L 2 (6 M t ,  4 )  and form ula (4.4),
respectively.

P ro o f. Since ho is bounded and uniformly positive, the uniform

integrability o f  u (xT”)/h (xT ) etc. are equivalent to that o f  u(xr.).
Hence i f  w e  notice u /h o is harmonic with respect to  L*• h o-diffusion,
the assertion is the consequence of Proposition 4.1.

Corollary 1. L e t a b e  a solution of  L * u = 0 .  Suppose

r(cl x) u(x) 2 < c o  a n d  18. 7- (x ) [E a i ,  6 1 1  ° I 1 1 (x )dx<00.
Oxi 8xf

T hen u  is represented as  (4.4) w ith  n E L 1 (0 M  t, 4 ) .

Corollary 2. S uppose that r is  concen trated  in  a s in g le  p o in t.
T hen ev ery  solution o f  1,*a= 0  belonging to 111 (E )  is represented as
(4.4) w ith  nE L 1 (8M t, 4 ) .

Corollary 3 .  L e t  u  b e  a  nonnegative solution o f  L*u =0  such

t h a t  11(x)r(dx)<04) an d  u E H 1 (E)* . T hen it is represented as  (4.4)



308 H iroshi Kunita

with E 1, 1 (6E,

4 .3 . Let us recall the definition of the kernel K„(x , v ) (See (1.3)).

Since K ( • , V ) is  excessive, K a( • , V ) increases to a  kernel k-( • , V)
which is smaller than K ( • as a  decreases to O. Noting that

K ( • , V ), V Eami is minimal, we can show easily that either k( • , 72)
=K ( •  , v )  o r  k (  • , 7 ) = 0  holds. W e denote by M .  the set o f all

v ERM1 such that k( • , 71) =K (  • , V). W e shall show ito(OMI - 011/ ,)
= 0 .  Since

Ex ( e ' L-) =1— aG a 1(x )= 5 a m i K a(x , V) Ito(dV)

and since E,(C) =G1(x )< P ( <  0 0 )= 1  holds. Therefore, making

a  tend t o  0  in  th e  above equality, we have 1 = 5  k (x , v )g o (dv).
am,

This proves iio(aMi — M e„)=0 1 3 ) .

Observe that th e  kernel Ka(x, 72) coincides with ga(x , 77)/Tg( 77)
i f  v E E .  Then by a simple calculation, we obtain

K a (x,7?)— K s (x, 72)-k (a—  (3) K a (x , z )K (z , v )rg (z )d z  =0

for all a , 3> 0. Therefore, S ''f ( v )=g (z ) f ( z )K „(z , v )d z  satisfies the

resolvent equation. In  what follows we prove that S'ct,' is  sub-Markov.

Since K a (x , 71 ) is  positive, it is obvious that f 0 im plies S O.

W e have on the other hand,

a.5 1 1 ( n ) =I r g ( x ) — a1r g(z ) g a (z , x ) dz ) , K (x , v )d x .

Note that r g (x )  is co-excessive. Then the quantity in the blacket 1 }-

o f the above equality is positive. This implies that a S n (v )  is lower

semi-continuous, since the kernel K (x , v) is lower semi-continuous in v.

Furthermore, a.S'7,1(n) coincides with G r g ( ) / r g ( )  f o r  v E E , which

1 3 ) The point riE M oftenly called an active boundary point and )2Eami
a passive boundary p o in t. L e t u s  denote th e  K (  •  ,  i2)-path process as

(x„ C, P I ) .  Then P(C< oo) —0 or =1, according to  i  is  passive or active, respectively.
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is dominated by 1. Hence a .511(72) < 1 holds for all E OM„.

A  sim ilar argument can be applied to the entrance kernel K * ( e ,  x).

W e can prove 14(om t- 9m ).= 0 and the operator S a  defined by (1.3)

is  again  a sub-Markov resolvent.

I t is  e a s ily  seen  th a t S ,  restricted to E  is  a gr-transform of Ga ,

nam ely, S a f ( x )= G a ( g r f  ) ( x )/ g r ( x ) .  Therefore, i f  u  is  Ga -excessive,

i t / g r  i s  Sa -excessive in  E .  This fact perm its us to  define the fine

continuous extension of u / g r  t o  th e  space M e a , b y  th e  following
lemma.

Lemma 4.1. L et G a ( , dy), a > 0  b e  a  sub-Markov resolvent

kernel defined o n  a  m easurable space (S , B ). S uppose that each

G „(x, d y), a> 0 , x  E  S is absolutely continuous relativ e to  a  suitable

measure in. • If y is • a nonnegative function defined a.e. m and  satisfies

aG , y<  v  f o r  each a >0 , a .e . m, then aG„ v(x) increases w ith a f or
all x E E. Furtherm ore, D (x)=1 im  aG „y(x) is  excessive relative to G,

and  G „P (x )= G a y (x )  holds for all x E S.

Definition. The function y  is  c a lled  a  supermedian an d  y , its

regularization.

P ro o f. Assume th at the above stated function u  is bounded . If

a  (3, w e have

aG„ y(x)— 13G 13 y(x)-=aG„ y(x) —i9 EG, y(x)— — a)G, G 8  V (X )1

= (a — 13)G„ y(x)-F 19(43 — a)G a V ( X )

<  (a -  i3)G a  v(x)+(19 —  a)G„ v (x )

< 0

fo r a ll x E S. Hence aGa  r  increases w ith a .  B y  the definition of 1

w e have

G 13P =lim aG G a  v = lim a(a — 8) - 1 E G  —  G „ v]=G /3 V.

The above inequalities imply 3G/3 = y 1 )  and lim [9G0 t = P.
13-,=•
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In case that y  is unbounded it is easy to see that v„ v  A n  is a

supermedian. Let P „  b e  th e  regularization o f  y „ .  Then clearly Pi ,

increases with n. Hence the limit o f  { t „ }  denoted by f) is excessive.

Since Gat, . =-Ga vn , we see Ga 'P-=Ga i, by letting n  tend to infinity.

Remark. Let u be a potential represented as u (x )=  1g(x, y) fi(d y).

Then the normal derivative au /ag  (defined in  §1 ) is represented as

p(dy ).

T h e  fo llow ing is an analogue of Green's formula involving a

potential and a harmonic function.

Proposition 4.2. L et u  be a potential of the m inim al L-diffusion

represented a s  u ( x ) = 5 g ( x ,  p ( d y )  and let y  be a  harmonic function

of  the minimal L "-dtf f usion represented as  v (x )=5e(e)
K * (e ,  x )  *

0(de)h0 (x)
Then

1)(y)ho(Y ) 11(d Y )=1 a m ,,, f)(e) (
°
9

u
g (e) legde)

holds. In particular, tf  y =1 ,

au 11(E)=5 a m 0  g (e)14(cle).

Proof is immediate from

5D ( E )   u  (e) (d $ )  =1 1 4  (de) fi(e)K * (e  y) it(dy)am,„ g

510 )  h o ( y )

4.4. W e have defined the kernel 0(x, y )  b y  (1 .5 ) in the case

x and y  are in E .  We shall prove
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Proposition 4 •3. 1 4 ) T h e  k e rn e l  (9, (x , y )  d e f in ed  b y  (1 .5 ) h a s  a
unique f inely  continuous ex tension to 114 „ „ M . x . Furtherm ore, the k ernel

(4.5) 69„ ($, = x)K(x , 71)

increases to  N(C, 71) as cc fo r  a l l  C E M,„ an d  vE  M .

P r o o f .  L e t  {$ , }  b e  a  sequence in  E  converging to  $ E M e „ —E
in  the fine topology o f  M,,„. Since the kernel K * ($ , x )  i s  excessive

function o f $  fo r  each x E E  relative to  the resolvent S a ,  it is finely
continuous in  Al e „. T h u s  ($„, .y) converges to  K *(E, x )/ r g (x )  as

n—>00, th at is, N (œ, x )= K *(C , x)/04.(x) h o ld s . Observe th a t 69($, x)

is  a supermedian relative to  S'a'' for each fixed $, th at is,

(4.6) 5S dx)e(e, x ) (9($, v)

holds for E E .  Then the left hand of the above increases with a  for

a l l  $ E M „  and - QE M ,.  by Lem m a 4.1. D enote its lim it as 0 ($, 7/).

T h en  it is  Sa -excessive in $ and Stexcessive in  Furthermore, the

above regularization E (e, 71) coincides with E (E, n)  i f  $ ,  E  E .  This

proves that 0($, coincides w ith the finely continuous extension of

($, v). The latter assertion is obvious since the le ft h an d  of (4.6)

coincides with the right hand of (4.5).

4 .5 . We now proceed to the proof o f Theorem 2 .  Let (xt, Px )

b e  the minimal L-diffusion and (x i , P * J 'a )  b e  th e  minimal
diffusion. W e  have shown in Theorem 3.2' th a t the measure 1 ',  and

Pt• h ° are mutually absolutely continuous except x  of a polar set. Thus
in particular, the sample paths  x ( w )  converge to both of the Martin

exit boundary and the Martin entrance boundary as t fo r  almost
a l l  w  relative to  I ) ,  and P:'ha except n  o f  a  po lar set 1 5 ) . W e can

14) The latter h a lf o f th is  th eo rem  h as b een  p o in ted  o u t b y  Fukushima "On
F eller 's  kernel and the Dirichlet norm", Nagoya Math. J .  24 (1964), 167-175.

15) The polar set o f  the m inim al L-diffusion a n d  th a t  of the minimal
d iffusion  co incides. See [16].
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prove th e  above fact fo r all x E E .  In  fa c t , since w (x)-=P x (x =lim  xt
ti

exists in  M  and M * ) is harmonic and coincides with 1 quasi-everywhere,

it has to be 1 fo r all x , by th e  continuity of harmonic function. Simi-

larly a s  th e  above, x exists in  M  and M * a .e . P t ' h "  fo r  all x EE.

T h e  absolute continuity of t h e  measure P ,  a n d  P t 'h  (quasi-every-

where) implies th e  mutual absolute continuity o f  th e  te rm in a l distribu-

tions Px (x-_ E E )  and E B ) (B  is a  B o re l se t o f  O M  o r OM*),
for all x .  (We can remove "quasi-everywhere" by a  similar reason as

th e  above).

Now le t u s  n o tic e  that t h e  convergence to a .e . poin ts ( /10 )  of the

Martin boundary in  th e  f in e  topology coincides with th e  convergence to

th e  boundary along with t h e  sample paths a .e . .P 1 6 ) . Then th e  asser-

tion o f  Theorem 2  follows.

4 .6 . L e t  u  b e  a  harmonic function o f  th e  m in im a l L-diffusion.
Then  — u2 i s  superharmonic. I n  p a r t ic u la r ,  i f  u  is represented as
(4 .2 )  w ith  i7, E L 2 (aE, /t o ), — 112 dom inates t h e  harmonic function

— 1 K (x , v ) Ft(77) 2  it 0 ( d i 7 ) .  Hence it has the R iesz decomposition. Denote

th e  potential p a r t o f  — u2 a s  u p  a n d ,  by p  th e  corresponding potential

measure. Then we have

Lem m a 4.2. (Doob [ 2 ] ) .  L e t  a  b e  a  harm onic function re-
presented as  (4.2) w ith  a E 0 0 E , /10 ). Then

au p
 ( E ) = —  (01 2 -Q) /to(d )

g

P ro o f. Since

a.e . / 4 .

a2-= — (x, 71) Ti,(77) 2 p o (dv)

holds,

1 6 )  T h is  fa c t h as  b een  p roved  in d ep en d en tly  b y  F611mer, M eyer and  the
au th or. S ee  [1 6 ] ,  H . F611m er "Feine T o p o lo g ie  a m  M artin ran d  e in es  Standard
processes," Z. W ahrschein lichkeits theorie V erw . Gel). 12 (1969), 127-144. H . Kunita,
"M arkov process and Martin boundary," Sein. on  Prob. 17 (1963) (Japanese).
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& Up = L e 0 2 " K (v
( '02

77)/10(dv)g Jais g ( y )

= D-1, (77) —  ii($)1 2 69(y, 7/)/20(d7i)—C E  1 [n(Œ)—  ( • -)1 2

gr(y)

--1 CF4v)— R,(e)12 0 (y , v)/10(dv).

Since the last term of the above has the finely continuous extension to

EUI9E, we have

(4.7) au (E) ri,($)12 0($, v)f io(dv).a g  —

On the other hand, notice

6 6 7 ) 2 u ( ) 2

g r ( y )
1  Po(A )=11u(77)— u(y )1 2 6(y , v ), ,,to(dv)

and the fine limit o f u is  a. Then we obtain

p(4.8)
Ou

($)  E i7 (e) —  Ti(v)1 2 0(E', v)fio(dri)a g

b y  Fatou's lem m a. Th e above two inequalities (4.7) and (4.8) imply

the assertion.

P roo f o f  Theorem  3 .  Since

a u  a u— Lup =Lu 2 =2  E
ax i o x ;

the Riesz measure o f th e  potential u p  is  g iv e n  b y  2 E a i  au   au  
ax i a x ;

Consequently Proposition 4.2 and Lemma 4.2 conclude the theorem.

§ 5 .  In v a r ian t measures of L -d iffu sio n  re so lv en ts

In  th is section, we discuss several properties o f  L-diffusion re-
solvents involving invariant measures.

L e t  R a ,  a>O  b e  a n  L-diffusion resolvent satisfying (R .1 ) and
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(R .2 ), and I C ,  the ad jo in t o f R „  in  L 2 (E ,  d x ).  W e  m ay  assume

without loss o f generality that R m aps L - (E, (ix ) in to  C (E), by the

assumption (R.1) and Stam pacchia [21]. The function h  o f (R .2 )

satisfies aleVi=11 for all a > 0 ,  so that h  satisfies L *h = 0  and is con-

tinuous. We define a  new resolvent M 'iif by h  1 h f .  Then R V  is

a  conservative Markovian resolvent. Similarly as Proposition 2.5, we

have

Proposition 5.1. R V  i s  a n  L"-ehffusion resolvent.

Proposition 5.2. B o th  o f  R „ a n d  R V  m a p  L - (E , d x ) into

Cb (E ) ,  an d  f o r  a l l  fE C b (E )  b o th  o f  a R „ f an d  aRth 1' conv erge to

f ( x )  as a— c).0 at ev ery  po in t x.

P ro o f. The first assertion is obvious. Let us notice

a l? f ( x )  --= c 6 „1 (x )+  Ex (e  "

w h ere  n  is  the boundary value of a R „  f .  Since ess sup

<sup f ( x )  < co, the second term of the right hand converges to 0 as

a  00, which proves Ern aR„ f(x)= lim  aG„ f (x)=- f (x). T h e  con-

vergence o f aRt'h f (x) is proved similarly.

Let us denote the inner product and the norm of 1,2 (E, in) as ( , )„,

and 111„,, where i n  is  the measure defined by n t(e /x )=-M x . Since in

is  an invariant measure of R„, R a  an d  R V  can be regarded as re-

solvents in  1,2 (E, in )  with norm conditions ahR„11„, „1 an d  all/M
i( 1 . (e.g. Yosida [231). Further the ranges R (R a ) and R ( R '')  are

both dense in L 2 (E, in ) by Proposition 5.2. Thus there exists strongly

continuous and contraction semigroups T1 an d  r t"  associated w ith  R,r.

and R V ,  respectively. We denote the generators of T1' and T V  as

A  and A*• h . It is well known that the contraction property implies

that A  and A *di are dissipative, i.e. (u , A u )„,<0  for all u E D(A ) etc.

However, we can mention a stronger assertion in this situation.

Proposi lion  5 .3 . T he follow ing tw o inequalities are  satisfied.
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(5.1) — (u, Au)„„rc _1E a u  a u

a u  a u(5.2) --  u , A " u)„, A E a 1 i - — dm

f o r all u  E D(A )

fo r  all u  E D(A * 'h ).

P ro o f. W e shall only verify (5.1), because the proof o f (5.2) is
carried over similarly. Set A3 = A3 Ro= 8(gRo— I). Since m  is  an

invariant measure of R ,„ we h ave  ./113 u 2 d m =0  or equivalently,

(5.3) —2(As u, u)„,= 1(A 1' u 2 - 2 u ie  u )  dm.

T h e  integrand o f  th e  right hand side o f th e  above is  nonnegative

because

(A 3  u 2 —2u u) (x ) j9(i9R , u 2 — 2u 3 R s  u + u 2 )(x )

> dy )(u(x )— u(y ))2L -i O.

Therefore fo r any r  with compact support in  E  such that 0 < v  < 1 ,

(5.4) —2(AR u, u)„,>{ A (43R ,3 u 2 ) - 2 u A  Ro

Now we can choose the above y  so that L*v  is a  bounded function.

In fact le t  -a, be the minimal L-diffusion resolvent in  U , where U  is
an open set with regular boundary and U C E . Then v = a t f ,  0 < f  < 1

has a ll th ese p roperties . N ow  it is  easy  to  see  that L*(vh) and

L *(uv h) belong to L 2 ( U , dx). Consequently, (5 .4) can be rewritten

as

— 2(A y  u, u)„, A .(L ,*(vh),(3 R u 2 — 2L*(uvII) d x.

Making 3 tend to  00, we get

— 2(A u, __411.*(vh)u2 — 2L*(uvh)u}  dx
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— 2u Lu)d x

au u
 j  v d tn.

ax i a x ;

Since y  is arbitrary, we get the inequality (5.1).

L e t  D(D h ) be the set of all functions u  whose first derivatives
au, Ou(in the sense of the distribution) satisfy 1 auEdif - hdx< 00.

0 X j

Proposition 5.3 shows that both o f D (A )  and D (A * .h )  are included in

D(D h ). We define the symmetric bilinear form D h in  D(D h ) x D(D h )

as follows ;

u   av(5.5) D h (u , r)=1  E a i;  a
:V i

h d x
(Y O X j

Then D(D h )  is a vector lattice and D h ((u — c) , u A c) = 0 is satisfied for

a ll u E D ( D 1 )  a n d  nonnegative constant c ,  where (u — c)+ = u — u A c.

The following proposition is sharper than the preceding one.

Proposition 5 .4 . L e t  c  b e  a n  arbitrary nonnegative constant.

Then

(5.6) — ((u — c) , Dh((u — c) - , u) Vu E D (A ).

(5.7) — ((u — .)' , ((u — c) , u) vu E D (A *' h ).

P r o o f .  W e on ly  p rove (5.6). Since m -= h d x  is  the invariant

measure, we have

— 2((u— c)', A  u)

= i.95D9R,8 1(u — c) 1 2 — 2(u —c) - L9Re u ± ( u  c)' (u+  u A c)] drn.

But the integrand of the right hand is greater than or equal to

/-2,3 ( • , dx)-((u— c)+(.)— (u — c) + (x )} 2

— 2(u —  c)+ R,d (u A c) — u A O.
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Let y  be the function used in the proof o f Proposition 5.3. Then

— 2((u — , A ° u),,,

{(u— c)' } 2 —2(u— c) A'0 ulhdx

=1L* (vh)EffR ft (u — c) '1 2 — 2L* (vh(u — c) -I) i9R u] d

(vh){(u — c) • 1 2 — 2u L* (rh(u — c ) )] d x

=2D h ((u— ,  (u —  0 1- ) + 2 B (v h (u —  , u  A c)

=2D h ((u u)

This proves (5.6).

Rem ark. Let us introduce the norm III as

u  = N/Dh(u, u )  (u , u)„,

and denote the completion o f C 0
- (E )  by the above norm as D 0 ,1,. Let

A "  be the adjoint of A  in L 2 (E, m ). Then both of D (A ) and D(A *ii)
contain dense subsets o f  Do ,h . In fact, since (L u, v)„,=(u, v ) „ ,  is

satisfied for a ll u  with L a E L 2 (E , m ) and for v E H?)-( U ) (C  (E )  with

L ' h y  E L 2 (E , m ),  D (A " ) contains such y , which implies that D (A " )

contains a dense subset of D o i ,. This shows that 
A * '

 is  exactly  the

generator of the adjoint semi-group T ' , "  o f  Ti i n  L 2 (E , m ). As a

consequence o f  th is fact, it turns ou t that D (A )  contains a dense

subset o f Do d „  too. ([23, C hapt. IX 1).

At the end of this section, w e give a  sufficient condition that an

L-diffusion resolvent has an invariant measure m-=hdx.

Proposition 5 .5 . Suppose t h a t  R a  i s  a  conserv ativ e L-diffusion

resolvent in  L 2 (E , dx) such  that (a 1 holds f or m=1, 2,

T hen there  ex ists a  strictly  positiv e f unction h  o f  L 2 (E , d x ) such that

T7h=h, w h ere  7.4` i s  th e  sem i-group of  the  adjoint resolvent.
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Proof. L e t  R (I —  ceR„) b e  th e  ran ge  o f  L 2 (E, ( I x )  b y  the

mapping _I —aR a,  and N (I — ceR „) b e  th e  kernel. Then L 2 (E, d x)
=R (I— aR „)(eN (1— aR „) holds (See Yosida [23. Chapt. V III]). Since

1 E N (I— aR „) b y  th e conservativity o f  R „, R (I — aR „)* LAE, dx).
Then there exists g  o f  L 2 (E , d x ) such that ( g ,  ( i — a R c , ) f )= 0  for

a ll f E L 2 (E , d x ) . Th is  means that g  satisfies g=a1V à g  and hence

or equ iva len tly , T  gg . O n  th e  other hand, we

have

57"P I g l d x = T 11.1g d x  =  IgIclx.

Consequently h-=-- I g l  satisfies T 'Ph =h . Since h  is not identically 0 , it
is strictly positive by virtue of the relation h - = a R h > a 0 h .

§ 6. Boundary conditions for L - diffusion resolvents.

W e now  com e to  the place of proving Theorems 4  and 5. A

crucial point for the proof o f  Theorem 4  is  to  fin d  the operator Q,
which is done in  series of propositions. W e  w ill fix  a  conservative

L-diffusion resolvent R a  satisfying (R .1 ) and (R .2 ) , unless otherwise

mentioned.

6 .1 . Let h  be a function o f (R .2 ) .  It is convenient to choose the

reference measure r for the Martin kernel such as r(d x )= (h (x )+1 )d x
or slightly generally, r(dx )=-J. ( h ( x ) d -  1) d x , where f  is a  bounded

measurable function. Since c e R n =h  is satisfied by (R .2), it satisfies

P h = 0  by ( R .1 ) .  Hence h  is represented as (4 .4 )  by Corollary 3  to
Proposition 4.1'.

Let us first introduce several notations. L e t h  b e  the boundary

value of h . Set 1).=
2

1

-
/

1to + c(77)— c i i i °  (77) and c* ($) —Ti c1/1°
dv dv

Since /10 and / 4  are mutually absolutely continuous by Theorem 2 , the

functions c  and c* are bounded and c  is strictly positive a .e . v. Define

new kernels as

H a (x , v )=K a (x , v)c(72), H :(e , x )= K 1 (e , x )c* (e ) ,
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U ,(e,v)= v)dx=0,($, 7y)c*(f)c(v).

Then Ua ($ , v) increases to 0($, v )c* (e )c(v ) as a-+00, by Proposition

4.2. T h e  following notations are often used later.

H a  v(x)=511.(x, 77) 0(77) v(01),

H w(x) --.=- 1HP,(e, x) v(e) v(4),

1 f  x ) f ( x ) d x ,

Ua  0( ) =1U,($, 77) 00 v(d7l).

I n  case a=0, we drop the suffix a.

Lemma 6.1. U„, i s  a  bounded operator in L 2 (RE,

P ro o f. T h e  kernels U , admits th e  following properties. (i)

U,($, 77) increases with a ,  ( i i )  cx- 1 11„($, 77) decreases a s  a  increasing

(Proposition 4.3), and (iii) L1 0 1 and U 1  are bounded functions, because

of the following two inequalities;

U ,1 ()=  c*(Ç) K:(e, x)dx _c*(e)5K*(e, x ) d x  -<",c * (E),

U :1(77)=c(v)fil1 (x)K (x,72)dx c(v)K (x, v)h (x)dx <c(77).

Here UP, is the adjoint of l i a  in  L2(aE, y). Consequently, we have

1 (0, U )  1 U„($ ,  )0 (e) 2 ( d$) Y( dv)

(e, 77)0(V v(de) v(d0

[1Ua1($)0(e)2 v(d$ )12 [1Ut 1 (v)  (72 ) ( )12
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< const 11011.1149 11, .

This proves that U , is a  bounded operator.

6 . 2 .  B y virtue o f  Theorem 1  o f  [141  there exists a unique

kernel r„(x , y ) which satisfies the following three conditions;

(i) R  f  (x )=Y  a(x , y ) f ( y ) d y , f (x )=1ra(y , x ) f (y )d  y .

(ii) r a (x , y )  is  a-excessive function o f  x  and y  relative to  R ,
and R ,  respectively.

(iii) For each a, 19 > 0  and x , y E E ,

r a (x , y )— r a (x , y )+ (a—  4 „ ( x ,  z ) r i3 (z , y )dz -=- 0.

Furthermore,

Proposition 6 . 1 .  For each f ix ed x  (or y ), h a (x , y )—  g a (x , y )  is
a nonnegative solution of (L — ce)u =0 (o r (L* — a)u =0).

• P roo f. Observe that .Y)f( Y ) d y  ( f  E L - (E , d x ) )  is a-har-

monic function o f x .  Then for each open ball B  o f E  and x E B ,

(6.1) HâB(x, dz)h a (z , y )=h,„(x , y)

holds fo r  almost all y  since R a f  — G ,f  is  an  a-harmonic function.

Take the. regularization for the both sides o f (6.1), as the function of

y. Then we see that equality (6.1) holds fo r every y  o f  E .  Thus

h a ( , y )  is a-harmonic or a solution of (L—ce) u = 0  by Theorem 2.1.
A  similar discussion proves that h ,(x , y ) /h o (y )  is a-harmonic relative

to  L"°-diffusion. Hence h ( x ,  y )  is  a solution of (L * — a)u =0  by

Theorem 2.1'.

Our next task is to get the Feller representation o f r a ( x ,  y).

Proposition 6 . 2 .  T h ere  ex is ts  a  nonnegative OE x  19E-measurable

f unction 11/1„(77, )  such that
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(6.2) h „(x , y )=1 K a (x , 7i)M,(77, e)KV OE, y)teo(dv)h($)4(de)

f o r e v e ry  x , ,y E  E . Fu rth e rm o re , su c h  M , is  unique u p  to  p o x
m easure O.O.

P ro o f. L e t  f  E L - (E, d x ) .  Since u = R a  f  — G ,f  i s  a  bounded

a-harmonic function, there exists a  bounded measurable function

/17/a (f  XV) on OE such that R,f(x)— G„ f(x)=1Ka(x, v)1171.(f)(7)1-to(dV )

holds. The function i f / „ ( f )  enjoys the following properties; M a ( f  g)
= 1714 n d - i f  a ( g )  a .e .  teo a n d  ir/ c, ( f n )  decrease to 0  a .e . i f  f n

decrease to 0  a . e .  d x .  Consequently, there exists a  function I f t , ( ,

such that M a (f )(77)=1171 ,(v , y )f (y )dy . Therefore for almost all y,

ha(x , y )=1K ,(x , 77)-0 , (1, Y )tio(d 71)

holds for a ll x .  We shall show the above holds fo r  a ll x  and y ,  by

taking a suitable version of ,I71,(V, y ) .  Since h ,( x ,  y )  is an a-excessive

function o f  y  relative to  0 , 13G,_ 3 (y, dz)l!„(77, z )  increases to a

function M ,( 7/, Y ). This M a ( ,  y )  is obviously a  desired version of -17..
Now the function v= —Ohl. is  a solution of (L* —a)v= 0

belonging to 1 /1 „ ,(E )  b y  (R .1 ) , (R .2 )  and Proposition 5.1. Hence it

has the Martin representation. Set ço(v) =  111(x ) f (x ) K (x , .q)dx . Since

v/h is a  bounded function, there exists a  bounded measurable function

/17a (yo) such that v =11( 1(E, x) 17-1,(004 ((W • Hence we have the fol-

lowing equality

(y )=-10 ,(e , y )M a (ço)hW  (dE) =go(V )M a(71, y)11o(dV )

T h is  proves that f o r  almost all th e re  is  M a (v , Ç )  such that

114,(77, E)1("7x(E, x)h(E)4(d0=ma(v, y).
It remains to verify that there is a  jointly measurable version of

C). L e t  B'_, be the set o f all 0  o f  L - ( 8 E ,  4 )  fo r  which
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$)y9($)//($),4(c/$) is measurable function of v .  T h e n  13', contains

{ 10,(E, y ), y  E  E I . Set u 9 (y)-=1-0(y) - 1 M,(77, E)K1`($, y)h(") f it(clf).

The reduced function W V° u l(y )  relative to  the minimal L*J`°-diffusion

is  m easu rab le  func tion  of q  and co inc ides w ith  h o (y) 1  M a (72, $) K*
A

(e y)11(e)ilt(d e), w h e re  A  i s  a  c losed  subse t o f  8 M „ (S e e  [141).

H ence B +'  c o n ta in s  a ll nonnegative functions o f  L - ( 8 E ,  4 ) .  Thus by

an  u su a l argument w e  c a n  g e t  a  jo in tly  m easurab le  version of M a .

The uniqueness o f  M a  fo llo w s fro m  th a t of the Martin representation.

This completes the proof.

6.3. Let D (M ) b e  the set of a ll ç  E v )  s u c h  th a t  çoUa 1- 1

are b o un d ed  fun c tio n s. T h en  D (M )  does not depend on a , because of

the properties ( i )  and ( i i )  o f  U ,1  s ta te d  in  the proof o f  Lem m a 6.1.

Then

maso($)=Itia(e, v)v(77)1)(4 )

i s  a  lin ea r m ap p in g  fro m  D (M ) in to  L - (8E, y ) ,  since  M a  Ua l = 1  fol-

lowing from  the conservativeness o f R a . U sing th is notation, the Feller

representation is w ritten  as

(6.3) R a=G a+H aM af it

The operator H a  and 1/1 are determined by the minimal L-diffusion.

Therefore , a ll informations o f  R a  s u c h  a s  (Q.1)"- (Q.2) are included in

M a . W e shall investigate  its properties in th is  sm a ll section.

W e denote by >1A' the smallest (1-field for w hich the function family

laI u E D (A )}  are m e a su ra b le , w h e re  n  is  th e boundary  value of u.
The L 2 -subspace o f L 2 (0E , y) consisting o f  a l l  V -measurable functions

are denoted by L 2 (8E, 13', 1)). T h e n  w e  have

Proposition 6.3 . For each a > 0 ,  there exists a  sub-Markov and

contraction sem igroup PI in  L 2 (8E , v ) such that M a  D d , .  Fur-

therm ore , II restricted  to  L 2 (8E, W , v )  form s a  strongly continuous
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semigroup.

Before the proof, we prepare the following lemma.

Lemma 6 .2 . For each a :> 0 , w e have

(6.4) (L —  cr.)uH :{(ii —  ) d x  0 , Vu E .D (A ) an d  c O.

P ro o f. Let us denote the inner product relative to  the measure

m (d x )= h d x  a s  (  ,  ) . .  S e t  II p G „(a— L)u, u E D (A ) .  Then there

exists {u p }  of D ( A ) r H ( E )  converging to u p  w ith  respect to  the

norm 111„,= {Dh ( , ) (  ,  ) }  2 , b y  th e  rem ark after Proposition 5.4.

Moreover,

((u — up ,, — c , — a) (u —  pn ))„t

holds for every n , because L — a restricted to the domain D (A ) is
completely dispersive. The left hand is rewritten as

((u (L — a)u) m + B((u — C)+,

where B ' (v , u ) =  B (vh , u ). Making n tend to + 00 above, we obtain

(6.5) 0 ((H ( n —  ) 5 (L — a) u)„, — , up),

0 —  ,  (L  - u ) +  B a(h(H,Ti —

Now hH,i (iir, —  c ) is decomposed to the sum o f I- — E H  and

E H ( E ) ,  and further

B,(h(H„a— c) 4 p )  =  B ,(v , Up) =  — (v, (L —a)u)

holds (§  2 .2 ). H ence th e  last expression o f  (6 .5 )  coincides with

— c) - } , (L —  a)u). This completes the proof.

Rem ark. Similarly as the above, we can prove

(L— a)u fn iidx+  D h (H a a, H a n) +a(Hart, Hari),„5-1--  0,V U E  D(A).

In fact choose lu p j  as before, substitute u — u p ,, in the place of u  in
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the equality (5 .1), and next m ake n  tend to  infin ity. T hen w e get

((L — a)u, H ).+ B  a(hH aR , , u p )a R  ,  H )  + a ( H ,  H ( ),, O.

W e can  p rove as before that B a ( h H  ,  u  = ((r. — a) tt , H f l h f f a ii)

and hence we have the inequality.

P ro o f  o f P ro p o s it io n  6 .3 . T h e  boundary value o f  u E D(A)
satisfies ri M , I7 1,; (a — L)u b y  the Feller representation. Cosequently,

(6.4) is  rew ritten  as

((m.so—c) (0), 0 , = — L)u

I t c an  b e  eas ily  seen  th a t the above holds fo r a l l  ço E D (M ) 1 7 ) . We
can now apply Theorem 4  o f [1 2 1  and we obtain the proposition.

W e shall denote the generator o f  I T  in L 2 (0E, y )  as Q...

Proposition 6.4. T he dom ains o f  Q  a > 0  a re  independent of
a .  Furtherm ore, t h e  operator Q a + H I , d o e s  n o t  d e p e n d  o n  a>0,
w here P  is  the  orthogonal projection f rom  P ( E, y ) to  L 2 (0E,.*V , y).

For the proof o f th is proposition we prepare

Lem m a 6 .3 . (cf. Fukushima-Ikeda [7 1). M c,  and  M13 are  related
by

M a ( U a —  U s )M /3=  O.

P r o o f .  Let us w rite as R a f = G a  f+ H a M a fi',1 f  and subtract the

resolvent equation of Ga f  from that o f R a f. Then

H a M  f —  s m [  + (a—  i3)G a H f

( —  )1 -1 „LW a  fitG ,9,1. +(a —  13)11,M,,f1I H 3 M /3 [71);, f = O.

Hence at the boundary,

(6.6) f—MRfi'hf + (a—  d)MatlIG13,f

+ (a- — 13)M a k c H /3M s  fl'“

17) {fir':,f1fEL - (E, d x)} is dense in  L2(aE,
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On the other hand,

(a—  j3) f G  f  = f -1 V  t i:f ,

(6.7) (a — t3) f i tH 1 =  (a —P ct H +3 ) f i p e c 1 3 H -

= (a — 3 )f iv i+3 ( f n —  f i)H

=ceii:H—  81-411=U,—  U -13.

Substitute (6.7) into (6.6) and we get the desired relation for ço =

It is easy to extend this for all ço E D(M).

Proof of Proposition 6.4. W e know that U ,  maps L - (6E, v)

into D ( M ) . Hence by Lemma 6.3, the ranges {M a ço I ço E D (M )}  are

independent o f  a .  Since Q „ coincides with M 1 on  the range of M ,
and since the equality o f th e  above lemma is written a s  Ma  — MR

+ M a  (PU a  — Ptf a )M o  = 0  fo r  ço E D(M ), Q a +PU a does not depend on

a on the range {M a yo I ço E D (M )} . This proves that

(6.8) ço + U P U ,(3) M x,9 ça 0

holds fo r  every ço E L 2 (OE, , u), where =  e ''P dt. Repeating

the same argument t o  X ,  w e see that {X 491ço E L 2 (0 E, ,  u ) 1  is

independent o f  a  a n d  2 , and Q ,+P U „ is independent o f a  o n  "the

common ranges {X ço I ço E 0 0 E , ,  u ) }  .

6.4. W e denote th e  common operator Q a + P U ,  as  Q  and its

domain as D (Q ). W e w ill show in this small section that this operator

Q possesses all properties required in Theorem 4.

Proposition 6.5. T he operator Q is  a  generator of  a  conservative
Markovian semigroup w ith  u  as  its  inv ariant measure.

P ro o f. Since U ,  is  a  bounded ' operator by Lemma 6.1, Q  be-

comes a  generator o f  a  semigroup by Phillips' perturbation theorem of

semigroup. Furthermore, the operator Q  is completely dispersive be-

cause it is the lim it of the completely dispersive operators { Q}  (a s  a
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tend to  0). Consequently, the semigroup associated to the generator Q

is  sub-Markov. Now , the property M a  LI„ 1 =1 implies Qa 1 = — PUa l
o r  equivalently, Q1 = 0, which proves th e  conservativeness of the

semigroup.

Since m =h d x  is the invariant measure of R a ,  the adjoint resolvent

with respect to  in is again conservative L"-diffusion resolvent.

Therefore semigroup T",'*, which is the adjoint of D  in  L 2 (OE, *A' , y)
is again strongly continuous and sub-Markov b y  [1 2 , Corollary to

Theorem 31. This implies that the adjoint Q : o f  Q a  is  exactly  the

generator of 7 7 ,* . Repeating th e  same discussion t o  Q*, w e  s e e

Q*1 = 0 o r  (1, Qv), = 0 for all E D (Q ) . Th is proves that v  is  the

invariant measure o f th e  semigroup associated with the generator Q.
This completes the proof.

The property (Q.2) is proved at the next proposition.

Proposition 6.6 . (cf. Lemma 5.5 o f [71). D(Q) C D(D") and

(6.9)
( s0' , Q +-21--Dh(v+,

-(9 (E , , ov - wso - - (oh( 4(dE),e(d)-_---,0

ho ld s fo r  a l l  ço E D(Q).

P ro o f. Set 0 „  () a ( P r i a  1  +  P U : 1 )  / ,  where I  is the identity

operator. Since —
1

— (PU  + PU 1 1 )  I  is  a  bounded operator, 0 ,  con-

stitutes a  generator o f  a  strongly continuous semigroup. We shall

prove that the associated semigroup is contraction. Observe (ça,r ) „
(So, QV') b i (V, (0 ) ,  where

Digs°, 0)= 2
17 1 M $ ) —  g o ( 1 7 ) ) ( 0 ( $ )  — 007)) 1)(cl$)v(dil).

Since Digv, go) Dh (v, v) +  0 .0 , we obtain

(so, Q.s0),, (so, Qs0),,+Dh (v,
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Now, substitute =M s  f t d  — A )u  in the place o f  cp above and next

make 9 tend to O. Then we obtain

(a, O a 17), -_-_,([1* a, A u,)+1- -) h (a,

But the right hand o f th e  above inequality coincides with (H* a, A u)

D h (Ha, H a)  by Theorem 3 and hence it is nonpositive by Remark

after Lemma 6.2. Since Q. i s  the smallest closed extension of 0 ,

restricted to {17 1 u E D (A )} , w e  have (ço, 0 , v ) „  0  fo r  a ll  ço E D(Q).
Therefore the semigroup associated with 0 „  has contraction property.

Incidentally, we have D(Q)C._-- D(p h ) and (yo, Qço)„-kb h (go, (o) O.

In fact, notice (v ,  0 ) , ço) = yo), 0 and make a tend to

+ 00, then we have 0 < b h (yo, ) —(v ,Qv ),<0.0.

On the other hand, since

Qav),=((o , Qv),+((ço )
2( t r a id- un)), o ço-2

Oa is K-dispersive in the terminology of [12], where K=ess sup 2
1 - ( U,1

U 1 ) .  Therefore, the associated semigroup is positive. Consequently,

the operator 0 „  has to satisfy th e inequality (yo 0  fo r  all

E D(Q ) (See [121). However ((.9± ,  0 „0 ,  is rewritten as

(ço Qço). — 55 u ,  7i)ço'($V ( -01)(d)» (d - )+  1
2 .1) /,̀,(v

Making n tend to infinity, we obtain (6.9). The proof is completed.

W e  have so  fa r  proved that the operator Q  satisfies (Q.1) and

(Q.2) o f Theorem 4. We shall prove now the boundary condition

(6 .10 ) D(A) =  E  CbILu E 1, - (E, clx), u E D (0 ) and 0ii — Pfi*Lu =01

Denote the right hand of the above as D . Let u  be o f D (A ) .  Then

— (0— PU„)Ti =Pfr(a— L )u  holds. Letting a  ten d  to  0, we get the

equality Qa— Pfi*L u= O. This proves D (A ) (  D . Conversely, take u

from D, set f  = (a—  L)u and define v=R„ f  by (6.4). Then .2E= u —
is an a-harmonic function belonging to D . Hence 0/771-Pi*(—L)u)=0
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or equivalently, (  IT' — P = O. H en ce  w e  have

( Ua l + Q ). + D (,  a ') Qatr)„<0.
2

1Since — — (U  1 + U n )  is strictly positive a.e. 1), is identically O.
2

Thus w e have proved D :D (A ) .  T h e  proof o f  Theorem 4  is now

completed.

6 .5 . P r o o f  o f  T h e o re m  5 .  L e t Q  b e  a n  operator satisfying

(Q.1) and (Q .2 ) . Note that

O( E, 77)17($) 4 ( ( f ,;)tio(dri) -- - - .  11„(`, v)v(de)v(dv),

then the following inequality is immediate.

Dh( vv -(E )  ()h (E )4 (d )/ 1 0 (d v )

Dig LT.($, Oço - U-•) ço - (v)v(dE )v (dv).

Hence the inequality o f (Q .2) implies

+ ) - 1S U.($, 71)So ($)V - (77)v(de)v(d 77)__-- O.

Setting 0 = Q + (  1  P U  1+ PU 'aq)I—  PU a ,  the above inequality is
2 a 2

1

equivalent to ( v 4 , Qa ço), < O .  This proves

(so- , (Q— Pua)(0), =  - - (  , {pu „i+pu n} o ) < o.

Since Q is completely dispersive by (Q .1), we have

, (Q — PU,)ço), c ((ço  —  ) , —

( Qço) ,  +.1)aço ,

This shows that the semigroup associated with the generator Q— PU,
is sub-Markov.
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Now the inequality (Q.2) implies (Qgo, go) d-h h (go, O. In fact,
substituting —go in the place of (Q.2), we obtain

(so -, Q V ) +  21  D h ( V - )

1 6( . , 71)40 (E)V (e)b()/4(cle)/eo((17))_- _-, O.

Summing up this and (Q.2), we obtain

0-> (go, (2 ),4- —2 -D1 -  h(1  ph (ço ç o - ) +  bh( v +
2

( s o , Qv), + 2
1 Dh(v, go).

Therefore we have

o (g  QV ), + -1) h (ç 0, ço)

(Q— PU 0 0 , +  1
2a l +  U1) 2 d .

Consequently, i f  (go, (Q—PU,)go), = 0 , q, has to be 0, which proves the

existence of (Q — PU ,) 1 . W e sha ll w rite  th is  a s  M a . Th en  M ,
satisfies equality of Lemma 6.3 by the definition, and M a Ua l =1  by

Q1=0. From these two properties it is easy to see that R f defined

by (6.3) satisfies th e  resolvent equation and is actually conservative

Markovian resolvent.

The above defined resolvent R a  satisfies (R.1) obviously. We shall

prove that (R.2) is also satisfied for this resolvent. Let us notice that

Q  is  a  generator o f  a  strongly continuous, conservative Markovian
semigroup in  L 2 (0E, v). Then the adjoint operator Q* is also a

generator o f  a  strongly continuous semigroup by [12, Corollary to

Theorem  31. S ince y is the invariant measure, the associated adjoint

semigroup is also conservative Markovian so that M VP1 =1, where

11V .  and U 1  are adjoints in  L2 (0E, ',ZA , y). T h is  equality proves that
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R:.h is conservative, so that (R .2 ) is satisfied.

It rem ains to verify th e  boundary condition ( 6 .1 0 ) .  Denote the

right hand of (6 .1 0 ) b y  D, and take u  from  D (A ) .  Then by (6.3),

=  3  —  L ) u  or equivalently, Qii=PU„R — P i-ser (a— L)u .

Making a tend to 0 , we see ()a= 4 -Pf i* L u . This proves u E D . Con-

versely, take u  from b ,  set f= (a — L )u  and define v = R a f  b y  (6.3).

Th en  w= u — v is a n  (L—a)-solution belonging to D . Hence CV.

— P ri*  L w = 0  or equivalently, 07., — PU ,R -=0 , which proves = 0.

Thus u belongs to D (A ) .  The proof is completed.

6 .6 . I t  is possible to weaken condition (R .2 )  to  g e t  a  similar

result as Theorem 4. We shall introduce the following condition (R.2')

instead o f (R.2).

( R .2 ' )  There exists a  strictly positive function belonging to L 2 (E, dx)

(1H 1 (E )  for which (5 .1 ) of Proposition 5 .3  holds.

Then Theorem 4  is modified as the following way.

Theorem 4'. L e t R ,, b e  a  conserv ativ e L-diff usion resolvent w ith

(R.1) and  ( R .2 ') .  T hen there ex ists a  unique operator Q in  0 0 E , y )

satisf y ing (Q .2), (Q .3) an d  the f ollow ing (Q.1').

(Q .1 ')  Q  i s  a  g e n e rato r o f  a  strong ly  con tinuous a n d  conservative

Markovian semigroup.

The proof is similar and is omitted. Theorem 5  can be modified

in a obvious way in this direction.

§ 7 .  Some special cases

7 .1 . Condition (Q .2) o f Theorem 4  is o f  special importance. We

shall discuss the meaning o f (Q .2) in some special cases.

W e  w ill assume in this small section that the operator L  is self
0adjoint i.e., L =  E (a 1 ;) .  Then, since the minimal L-diffusion

°x io x ;
resolvent is se lf ad jo in t w ith  respect t o  th e Lebesgue measure, the

N aim 's kernel N(E, v) is symmetric in  1,1* and 77 so that we have
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— ÇO(E, .??)v($ ) so(v) /10(de)p0(dv) --- 2
1 D ( Ço ,

Now let R ,  be an L-diffusion resolvent satisfying (R.1) and (R.2') with

h (x )= 1 , and let Q  be the associated operator on the boundary. Then

making use of the above expression, (Q.3) is rewritten as

(go+, Qsa),o +1)4, v )  1- for a ll ço E D(Q),

or

(e.2') ((ço — c )', (2(0),0 +D((go — c) ̀ , ço) i O for a ll ço E D(Q).

In  order to study the meaning o f (Q .2 '), we will introduce the

reflecting L-diffusion. For each f  o f  L2 (E , d x ) , we can associate a

unique element u E H 1 (E )  in such a  way that

D (u, v )+ a(u , v )= (v , f ) for all v E H i (E).

W rite th is u  as R V '.  Then Rr, is  an L-diffusion resolvent. In  fact

u = 1 ? f  is  a solution of (a — L)u = f and hence it is continuous if

fE  L ' (E ,  d x ) ;  The sub-Markov property follows from the fact that

f i l ( E )  is  a Dirichlet space in  the sense of Beurling-Deny. We call

th is  R  as the reflecting L-diffusion. We denote by Q T th e  operator of

Theorem 4 associated with the reflection L-diffusion. Then QT satisfies

(7.1) (go, Qr sb),q+ D(v), 0)=0

for all Ø E D(QT )  and ça E D(D). In fact, the relation

(7.2) (I-A , A v )±  D(Ha, HO =0 vE  D (A ) and u E I/ 1 (E),

is immediate from the equality D (u , v)-1- (u , Av)= 0, u E H i (E )  and

v E D (A ) . L et u s  n o tice  th e  re la tion  ['MU .--- Q r U  a n d  D(Hii, Hv)

-=.1)(a, v). Then we obtain (7.1) for go = a and 0 -=- D. The extension

to the general 0 E D (Q ) and ç9 E D ( D )  is obvious.

The operator Q" coincides with - 
°
L

I
 defined in  §  1 . Therefore, the

g
boundary condition o f th e  reflecting L-diffusion is characterized as
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au= 0 ,  w h e r e  
°u

 i s  the normal derivative introduced in § 1.
g g

Now, the condition (C)'.2) shows

OH (7.3) ( ( v — v )  <  0, E  D (Q )n D ( '9 1 1  ) .
g ,„ g

011This shows that both  of 
°H

-  and Q— are completely dispersive.
0 g 0 g

Corollary to Theorem 4 will now be obvious.

7 . 2 .  It is possible to get the decomposition o f the operator Q  for

general L-diffusion resolvent. In  this small section, we assume that

the coefficients 1)1 o f  th e  operator L  is bounded or that the boundary

OE of the open set E  in which the operator L  is defined, satisfies the

cone condition. Then th e  bilinear form B (u , v )  o f  (2 .1 )  w ith  the

domain H 1 (E )x  H i ( E )  is continuous and bounded from below ([21]).

Furthermore, B ((u — u  A  c)= 0 holds for all u E H 1 (E )  and positive

constant c. Therefore there exists an L-diffusion resolvent B ra such

that u =R ra f  satisfies B (v , u ) + a ( v ,  u ) = ( v ,  f )  fo r  a l l  t7 E 11 1 ( E )  by

Theorem  2 o f  [ 1 2 ] .  W e ca ll th is  Rra  t h e  reflecting L-diffusion re-

solvent. T h e  reflecting L-diffusion resolvent is conservative because

u  = 1  is  th e  solution of B ( y . u ) +a ( v ,  u )= (v , a )  fo r  all v E  H i  (E).
Therefore there is a  strictly positive function h  o f L 2 (E , d x )  such that

m =h d  x  i s  an invariant measure o f  R ia b y  Proposition 5.5. The

function h  satisfies alVa'h = h  and hence it belong to 11 1 (E )  (The range

o f R  is  in c lu d ed  in  H 1 ( E ) ) .  Consequently, the reflecting L-diffusion

satisfies (R.1) a n d  (R .2 ). W e denote th e  corresponding operator of

Theorem 4 by QT. T h e n

Lemma 7 . 1 .  Fo r ço E L 2 (11E, v) an d  OE D(Qr), it holds

(7.4) (ço, Qr çb), +B (H * h, HO)=0.

P r o o f .  S in ce  B (v , u )+(v , A u )= 0  h o ld s  fo r  u  E  D ( A )  and

v E H i ( E ) ,  w e  g e t (q ) , f i* A u )„ B (H * h , H a)=0  i f  w e  se t v = H * .
Notice that Q ra=i-j*A u , we obtain (7.4) for -=  0 . The extension  to
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general ç is obvious.

Lemma 7 .2 . L et R  b e  a n  L-diffusion resolv ent satisf y ing (R.1)
and  (R .2 ') w ith  the  h. S et B h (u , v )=  B (u h , v ). Then

(7.5) ((u — c ) ,  Lu),,+ B h ((u — c) 4 ,0 for a ll u E D(A).

P ro o f. W e know  by Proposition  5 .3  that ((u — , Lu )+
((u —  c) , u)< 0 holds. On the other hand we have B h (u, u)=- D h (u, u).
In fact, since B h(1 , u ) =0  for u E H 1 ( E ) ,  w e  have B h(1, u 2) = 0  if u

is bounded, which is written as

IE Eau °
a
1()

x
g
)
h  } ix =o

b y  (2 .7 ). This and the formula (2.7) show that D h (u, u)= B h (u, u).

Therefore

Bhau — c , u )=  B h ((u — c) , (u — c)' )

= D h ((u — ) , (u — c))--= D h ((u — c)' , u).

This proves (7.5).

Similarly as Lemma 6.2, we obtain the following lemma.

Lemma 7.3. U nder th e  sam e condition a s  L em m a 7.2, we have

(Q.2") ( ( ço — )  , Qço) + B(H* {(ço — c)} ' ,

P roo f is  s im ila r a s  th a t o f  Lem m a 6 .2 . Let u E D  (A )  and

u =  — G (Lu ). Choose { u p }  o f  in (E )n D  ( A )  converging to u  in

III 111.-norm. Substitute u — u p , in  th e p lace  o f  u  in the equality (7.5)

and then make n tend to infinity. Then we obtain

(Lu, H*1(17— c)+1)+ B(H* {(Ft — c)+} , H a )  0

b y  the same argument as Lem m a 6.2. Th is  proves (Q .2") in case

= a, because Q  =PH' * L u.
This lemma combined with Lemma 7.1 shows that both of QT and

Q—Qr are completely dispersive.
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7 .3 . Finally w e show  that there exists a  bounded and uniformly

positive excessive function such that ceGn t h  and L*h = O. L e t  "E' be

a bounded open set w ith regular boundary including E .  Extend the

operator L  to 17:  as is  d o n e  in  §2 , w hich  w e w rite  as L . Then the

reflecting L-diffusion ex ists  and has an invariant measure m(dx)=hdx
b y Proposition 5.5. This h  satisfies L*h = 0 and strictly  positive in P.
Since h  is continuous, the restriction o f h  to  the space E  is bounded

and uniform ly positive. It is easily verified that aGn <h .
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