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Introduction

The purpose of this paper is to show the existence and the
uniqueness of a Markov process corresponding to the operator
Af(x)=a(x)f'(x)+ Bf(x), where B is the infinitesinal generator of
1-dimensional symmetric Cauchy process and « is a bounded
measurable function. If a is Lipschitz continuous, this problem
can be solved as a particular case of the general theory of
stochastic integral equations due to K. Ito. The difficulty arises
if a is not Lipschitz continuous. In this paper, by making use
of the method initiated by D.W. Stroock and S.R.S. Varadhan
[13], we shall solve the above problem when @ is a measurable
function which lies in a sufficiently small neighborhood (with
respect to the supremum norm) of a constant function. The
problem has important meaning in the so-called boundary problems
of diffusion processes since the process corresponding to A
becomes the Markov process on the boundary of a Brownian
motion with an oblique reflection on the upper half plane. As
for the Markov process on the boundary of diffusion processes
and its role in the boundary problems of diffusion processes, we
refer to M. Motoo [8], K. Sato-T. Ueno [11] and N. Ikeda [2].

Now we summarize the content of this paper. In §1, we
prepare the notations and some preliminary facts. In §2, we
construct the operator K, such that K(A — A)=/. Formally, K,
is expressed as

K\ = G)\(I'_ Tx)ﬁl ’
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where T, f(x)= a(x)di(},‘ f(x) and G, is the resolvent operator of
x

the Cauchy process, i.e., Gy=(AI—B)"'. The above expression is
justified in § 2. In §3, following [13], the problem is formulated
as a martingale problem, i.e, a problem to find a probability
measure on a function space such that a certain functional will
be a martingale. In §4, the uniqueness of solutions of the
martingale problem is proved, while the existence of solution is
shown in §5. In §6, we collect all the previous results to get
the main theorem that there exists a unique Markov process cor-
responding to A if @ lies in some neighborhood of a constant
function. Some supplements are given in §7.
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§1. Notations and preliminaries

In this paper we are mainly concerned with the symmetric
Cauchy process on the real line R. First of all let us racall the
definitions and some properties of the process. It is a spatially
homogeneous Markov process on R with the transition function

P, x,E)=S p(¢, x—y)dy, where p(f, x)=-L—'_ for >0 and
E z PP+

xeR. The corresponding semigroup given by H, f(x)= r flx+y)

p(t, »)dy, is a strongly continuous on Cy(R)” and if B is the
infinitesimal generator of {H,}, then its domain contains C%L(K)?

and for fe Ci(R), Bf(x)= S:[ A+ 3)— flx)— ﬂZ} f'(x)]v% . Let

1) Co(R) is the space of continuous functions on R tending to 0 at infinity.

2) CR(R) is the space of C” functions on R with compact supports,
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G, f(s, x)=SfSle"*‘f(1, nNp(t—s, x—y)dydi. It is the resolvent of
the space-time Cauchy process, When f(s, x)=f(x), G,f(s. x)
zGJ(x)=§:e‘”H,f(x)dt and it is the resolvent of {H}.

The following facts are verified easily.

Proposition 1,1, (i) For each pin 1<p<, G, is a bounded

operator on L, (EYXL,R))” with the norm ||G,l| 1,371\—.

(i) For each t>0,

1.1 SupIHf(ﬂ-)IS WFI,> Sfor all feL/R),

‘Il_’_ “ tl V)

provided 1<p, g< and $+—1-—-1
q

(iii) For each p in 1<p<oo, there is a constant C, , depending
only on p and N such that

(L2)  sup IGADISCifl,  for all FELR)

and G, is a bounded operator from L, (R)to Cy(R).”

§2. Construction of K,

First we shall state some lemmas which lean upon a funda-
mental theorem of B.F. Jones [5] and D.W. Stroock—S.R.S.
Varadhan [13]).

Lemma 2.1. Set G*g(l, x)= S:Slp(t—s, x—y)g(s, y)dyds for

geCx(E). Then, for each p in 1<p<eo, there is a constant B,
(depending only on p) such that

3) E--0, =)<R, L{E) (resp. L(R)) is the L, space with respect to the
Lebesgue measure on E (resp. R).

o f=(|7 1o

5) Cy(R) is the space of bounded functions on R which have bounded con-

tinuous derivatives up to m-th order. C';( R)Y=C,(K).
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2.1) |IDG*gll,<B,ligll,  for all geCX(E),”

where Dz% (spatial derivative).

> d 2
Proof. Let us set k(Z, :v)=»67 ot x)=— (t2 el )=t
and Qx)= _£~x__’ then all conditions of B.F. Jones' theorem
z (14 x*)
[5] pp. 443-444 are satisfied. Hence, the statement follows at
once. Q.E.D.

Lemma 2.2. For feCE), let us set h=G,f. Then for
each p in 1<p< oo, there is a constanl A, depending only on p
(independent of \) such that

(2.2) DM, <AMNSAI  Sfor all fFECKE).
and
(2. 3) NDh|, <A NS, Sor all feCR).

Proof. We can define Gf{s, x)=rsm p(t—s, x—y) f(t, y)dydt
for fe C3(E) and show that Gf(s, x)=1;1r‘1: G, f(s, x)eC5(E). There-

fore, using the resolvent equation,
s, 1) = {7 p—s xRt 3) =Nt ) dy
for feCg(E). Let us set u=f—xh. Then for g Cz(E),

= S:S g(s, x) Dis, x)dzds = _S:Sng(s’ x) (s, x)dxds

B S:Sng(s. x)[“‘jj':p(t—s, x—y)u(t, y)dydt]dxds
= ‘STS:,“(" L S:Slﬁ(f—& x—y)Dg(s, x)dxds]dydt

- ‘ml““ y)DG*g(t, y)dydt .

6) CZ(E) is the space of C*= functions on E with compact supports.

7) For a function f on E (resp. R), fi, denotes the norm of f in L,(E)
(resp. L,(R)).
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Hence from Holder’s inequality, it follows that
LI <B,|lull,liglly .

provided 1<p, g< oo, % +l=1. Therefore,
q

DA, < Bolluil , < Byl £ 11, + XA L)
L2B,I 1, -

Setting A,=2B,, we have (2.2). (2.3) can be proved similarly
by setting f(s, x)=f(x)e™™ for feCi(R). Q.E.D.

We define the operator T, as follows:
Tuf(s) = (A=B)Guf(x) = alx) S-Gif(x)  for feCR).

Then for each p in 1<p< oo,
(2.4) T SU,<llalAlf,.>

Therefore, we can uniquely extend 7, to be a bounded operator
on L,(R).
Now we will put the following assumption on a.

Assumption (p): |l2||4,<]1.

If @ is a measurable function on R satisfying the ASSUMP-
TION (p) for some p, 1<p<oo, we define the operator K, as
follows :

(2- 5) KA = GA(I_ TA)-‘ »

which is a bounded operator on L,(R) and from (1.2) and (2.3)
we have at once the following

Proposition 2.2, K, is a bounded operator from L(R) to
CR) and

CA.
sup | Knf ()| STl /L, for all FELR).

8) ' fll=sup|f(x)].
TER
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§3. Martingale problem and stochatic integral equation

Let Q=D([0, o0)—R) be the space of right continuous func-
tions having the left-hand limit at each ¢>0 with Skorohod
topology. The space Q is a Polish space. We denote generic
element of O by w and o(f)=x(t, 0)=x(t). F, is the smallest o-
algebra with respect to which x(s, ) are measurable for 0<s<{
and F=F.= V Z..

>0
We will say that a probability measure P on (Q, F) is a

solution of the martingale problem for A starting from x, if
P[x(0)=x]=1 and

(3.1)  Xit) = exp [iG(x(t)—x(O))—iOS:a(x(s))ds

G E

1-u?/ =u?

is a P-martingale” for all de R, and also that P is a solution of
the stochastic integral equation for A starting from x, if there
is a Cauchy process £ with respect to P (i.e., P[£(0)=0]=1 and

E[e®t [ F ] = exp [(t-s)so;(e“"‘—l _ ibu )gl] ‘ (l>s))

1+u’/ nu?
such that

(3.2)  x(t) = x+S:a(x(s))ds+§(t)
- x+S:d(x(s))ds *H ug(ds, du)—l—S:S“ wp(ds, du)

lul<

where p, ¢ are random measures appearing in tne Lévy-Ito de-

composition of K(1). [cf. 3, 4, 12] and a()=a(r+L] I a
7w i1 14+ 4t
__1~S u_du
a sl 4wt u? :

Proposition 3.1. The following statements are equivalent:
(i) P is a solution of the martingale problem for A starting
Sfrom x.

9) If (Xe(t), F, R) is a martingale, then we call that Xa(¢) is a P martingale.
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(ii) P is a solution of the stochastic equation for A starting from
x.
Proof, The implication “(i)—(ii)” is clear since if we set
E(t):x(z)—x—g'a(x(s))ds, then E(f) is a Cauchy process with
[
respect to P. Now we shall prove “(ii)—(i)": Let us set ¥¢)
=‘l log Xa(l)=s S ug(ds, du)-:—S S up(ds, du)—Tt [S (e —1
{ < ul>1 i6

t
[ 0J lul odi '

—i9u)rdi+g (e"‘"‘—l)d—ua] and F(x)=¢®. Then using the
rut Jlw> T’

t

formula of H. Kunita and S. Watanabe [5] on the stochastic
integral,

Xty = Fo) = || [F(3(6)+ 10~ F(o(o)la(ds, dio)

is a P-martingale. Q.E.D.

It should be noticed that Stroock-Varadhan’s Theorem ([13]
Theorem 3.1, p. 356) is valid in our case, and their theorem is
used to prove the Markov property of the solution of the mar-
tingaleproblem.

§4. Uniqueness of the solution of the stochastic integral
equation

In this section, it is assumed that g is a measurable function
satisfying the ASSUMPTION (p) for some p, 1<p<eo, and this
p is fixed. The following Lemma is essential to show the uni-
queness of the solution, which is similar to the corresponding
Lemma 5.1 of Stroock-Varadhan [13].

Lemma 4.1. Let x,&R be an arbitrary but fixed point, P be
any solution of the martingale problem for A starting from x,,
and set u(f)=E[ re"“ fx(D))dt] for each bounded measurable

1]
Sunction f and A>0. Then, u\(f) is given as
mH) = |7 e@d

by some non-negative integrable function g\(x) such that g\(x)
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€ LAR)® and
Cir,
Im(f)lé'lfufalm;llfllp Jor all fe L(R).

Proof. In the preceding section, we see that x(f) satisfies
the equation

x(f) = x,+ S:a(x(s))ds+E(t)

t 1

- xo+§:a(x(s))ds+g Slmuq(ds, du)+S Slul>]up(ds, du).

L] Q

Let ¢,(s) be defined as follows:

s K for —f,'—£s<—k—;;l k=0, £1, -, 252"
$n(s) = - n fo s>n

[ —(m+1) for s<—n

Then, there exist a subsequence {#’} and a point s,&[0, 1] satis-
fying the following condition: if we define

4.1 xAt) = 2+ S:a(x(¢nf(t—so)+so))ds+E(t),

then x,(¢)—x(¢) in probability as »#'—oo for each #>0.> There-
fore,

tim B[ {" e frut)at] = EL[ e faear]
for any bounded continuous function f(x). This means u{"—p,
for every feC,(R) (n'—o0), where we denote

WES) = EL| o™ flat)dr].

Applying the formula of H. Kunita and S. Watanabe [6] on the
stochastic integrals to (4.1), we have

=_2_
10) q—p_1 .
(*) This will be proved in §7 (1°).
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FEAD) = F0)+ [ ae (s =) + 5 (xs))ds
+1] L) 0= frs)atds. du)
+ S;S el [f(x,./(s) + ll)—f(xnl(s)) _f/(x,./(S)) ll] %?

+1 L)+ 00— frs I ptas, du)
0J i >

for any feCi(R). Multiplying both sides by Ae™™, integrating
from 0 to oo and taking the expectation with respect to P, we
have

u DN ~BF] = fx)+ BL | e alalpuls = s+ so) fxult)at].
If we choose f=G,/ where & belongs to Cz(R), then
4.2) | u$C2() | < Ca Ikl llall n(| DGR .

On the other hand, u{"” is a bounded linear functional on L (R)
for each #»'**, Therefore from (4.2) and (2. 3), it follows that

7 C )
<y I'I}aﬁ]if ’
where |||, is the norm of the bounded linear functional u{*”
on L,(R). Since p{">—pu, for every f&Cy(R) when »n'—oco,
C

for all feCy(R)NL,(R). Therefore, we can extend u|C,(R)N
L(R) to be a bounded linear functional m on L, R), where
m | Cy(R)N L,(R) is the restriction of u, to the subset C,(R)N L (R).
Hence there exists a function g, of L,(R) such that

N = | fDawadx
for all fEL,(R). On the other hand, . is defined by a bounded
measure on R; ,L>‘(f)=g°° S paldx), feC(R) and thus,

(**) This will be proved in 7 (2°),
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S: (%) m(dx)=gl f(x)g(x)dx for any fFEC(R)NL,R). There-

fore, g is non-negative and integrable with respect to the Lebesgue
measure dx. Thus, u\(dx)=g(x)dx and

C,
lﬂu\(f)lsl_“a“A ||f”p for all fELp(R).
Q.E.D.
Lemma 4,2, Let P be the same as in Lemma 4.1. Then,
u(f) = Kz f(x)  for all fELR).

Proof. Applying the formula on the stochastic integral to
(3.2) and using the same calculation of Lemma 4.1, we have

wmIAf—=Bf1=f(x)+E[ S: e ™ a(x(s)) f'(x(s))ds] and hence if f=Guh,
heCi(R), we have (h)=f(x)+p(Tok). Thus, u(g)=rf(x,)

=G\I—T)\)"g(x)=Ky\g(x,) for g=({I—-T)h, heC2(R). Hence,
by Lemma 4.1, u(f)=K\f(x) for all feL/(R). Q.E.D.

§5. Existence

Assume that ¢ is a measurable function satisfying ASSUMP-
TION (p) for some p (1<p<) . Then, there exists a sequence
{a,} such that every a, belongs to CiR), ||a./|<|lall and a.(x)
—a(x) in Li(n—c0)."> We consider the sequence of the following
equations on some probability space (W, Q):

Xt = xo+ | au XD ds+n(t),

where 7(t) is a Cauchy process on (W, ). Since X, satisfies the
following conditions ; '

(1) for every T< oo,

lim sup Q[ Sup | X()I >k] =0

ktoo 1gng

(2) for every T<o and £>0,

11) If a,~a in Ly (I) (n— =) for any finite interval /, then it is denoted as
a,—a in Lo“(n — o)
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lim sup Q[uws, (8)>&]=0"",

50 1S

from a result of Skorohod [12] (cf. [1], | 9]) it follows that there
exists a sequence of processes {(X,, 7,)} on a probability space
(W, @) such that finite dimensional distributions of the processes
(X, 7,) and (X,, n) coincide and (X,, #,) converges in probability
to a certain limit (X,, 7,) whose trajectries belong to D([0,o)—K)
and they satisfy the following equations:

t ~
X () = xo—'rS a(R(s)ds +7.(t), n=12, -
We can show that
Sla,,(X,,(s))dse j‘ta(Xo(s))ds in probability (n—oo)

for each f>0, using the similar arguments as Krylov (|7] pp.
344-345). In fact, we have

I(n) = [l Soa,.(X,,(s)) ds — S:a()z.(s)) ds% > E]
S' XA X)) @ X(8))— an(Xo(s)] ds > g]

2 AONENS ADERNC SONPERY

0

<a|

@Hg {an(Xo(s) — an(X(s))} ds}l 2%]
[
Q[ su

sup | X9 2]+ sup QL Sup | X.(s)1 >17,

where </ and X,(x) is the indicator function of the set (—¥, b).
On the other hand, using the same argument as in Lemma 4.1,
we can prove the following iequalities ;

. &Gy
EL| IARNIdsT<T= i1,

for fe L (R)and n=0, 1,2, ---, where E[-] denotes the expectation
with respect to Q. Therefore,

12) Sce [1] for the definition of w'.
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I(n)<Q [, S {an( X)) — an(X (N} ds %]

3 e“C
+ ||(l“A —ana ey — a“pr'*'”alv a”pl)

+ sup Q[ sup | X,(s)| =]+ Q[ sup | X(s) =],
1€1< 00 <<t o<t

where
gl = ([ 18t012d9)">.
Therefore, X,(f) satisfies the following equation;

Rty = 5o+ | aRdsHds+ald).
Thus we have the following

Proposition 5.1. Let a be a measurable function satisfying
the Assumption (p) for some p(1<p< o). Then there is a solution
of the martingale problem.

§6. Main theorem

Theorem 6.1. Let a be a measurable function satisfying the
Assumption (p) for some p, 1<p<oo, Then the martingale pro-
blem has unique solution P, for each starting point x. Moreover,
(P,) is a strong Feller process which satisfies the following equation ;

6.1  TfD-fn = | TAsmds®
for each t=>0 and fe CiR).

Proof. From Lemma 4.2 it follows that P(¢, x, dy)=P(x(t)
edy) is uniquely determined. Therefore, (P,) becomes a strong
Markov process™***’ and consequently P, is uniquely determined.
The formula (6.1) is verified from (3.2) using the formula on
the stochastic integral. Q.E.D.

Remark 6.1. If the function g satisfies the same condition

13) T f(2)=ELf(x(t)]
(***) A proof is given in §7 (3°).
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as in the above Theorem, then positive strongly continuous
contraction semigroup {7,} on CR) satisfying (6.1) is uniquely
determined.

Remark 6.2. If a(x) is a measurable function and a(x)—c
satisfies the Assumption (p) for a constant ¢, then Theorem 6.1
remains valid. For we can prove that Proposition 1.1, Lemma
2.1 and Lemma 2.2 are valid for same constants as in the case
c=0 respectively when we replace p(f, x) by pt, x)=p(t, x—ct)
1 ¢
7 Pr(x—ct)

§7. Some proofs

(1°) Proof of (). Let us set f(¢, w)=a(x(#, »)) and for each
positive integer m, set

fult, ) = f(t, ) for 0<t<m
=0 for t<0, t>m.

Then f,.(t, 0) € L{RXQ. dt xdP). Therefore f,(-, o) L(R) for
each m and almost all . Hence, for all ¢, almost all « and all m,

-~

| LS5, @)= fult+s, 0)Fds—0  (n—o0)

and the above integral is smaller than 4sm S(s, ®)*ds. There-

fore, for each m,
S'—")SQS‘:” [fm((l)n(t);ns‘ 0)) —f,,.(t+s, m)]gds dPdt—0 (”_,oo) ]

Thus there exist a subsequence {n (m)} of {n} and a null set
N(m) such that {»,(m+1)}c {n,(m)} and

Si’asn [f"'((i)""'("”(t) +5, @)= fult+s, 0)dtdP—0 (k—-o0)

for any s=[0, m]1N NGn).**> Since

14) The proof is a slight variation of K. Ite ([4] Lemma, p. 336).
15) N{m)? is the complement of N(m).



488 Masaaki Tsuchiya

(L busemlt =)+, @)= Flt, )T dtdP
SST,SQ[fm(¢,,,<m)(t)+s, w)—fult+s, 0)dtdP,

it follows that

I5) = 7| Llustt=)+5. @)= £ut, 0)TdtdP—0
(k—o) for any s€[0, m]N N(m)°. Therefore, using the diagonal
method, we can choose a point s,&[0, 1]~ n N(m)® and a sub-

sequence {n,} such that I7(s,)—0 (k—o0) for every m. Now,
we denote

St 0) = flu(t —So)+ S0, )
= a(x{p,,(t — So) + S0, ®)),

then for each m,

Smfw(t’ ) dtqgmf(t, w)dt in probability (k—oo).
[ 0

(2°) Proof of (xx). First, we note that E(f)=x(f)—x,
—Sta(x(s))ds is measurable with respect to &, and E£(#)—E&(s) is

independent of &F, (s<tf). To simplify the calculation, we assume
that s,=0 and{»'} = {n}. Since

BL[ e senan|< &

EL| e fneyan+
+ BL[ e flatar]],

12
o

it is sufficient to estimate E[g e ™ f(x,())dt], etc. From Pro-
position 1.1 (ii), it follows that

B0 [ e ptaainant| = (7 e at EL Aty t+ 5]

R R RV |
S(rz 1+ 5 ) t"""dt)”f”"

q



On a small drift of Cauchy processes 489

Let us set Y= E(t)—f(-zl,;><t>—21;), Z= xo+a(xo)—+a( (21”»
(= 3)+e(%). Prian=P(vean=p(t-1,»)ay and  Pyaz
=P(Zedz). Then,

EC[" e flnear)

- B[ tncte e ) 3) )]

- S::e"“th[ AY+2)]

- ng:e‘“dt ) quz)j F(y+2)Py(dy)

1

= [ emar (" Paan | o an(t-25)ay.

Hence from Proposition 1.1 (ii), it follows that

gy
(t_2>

Also, the ramainders are estimated by the same calculations as
the above and we have the proof of (*#).

B[] e s < (L] —y

(3°) Proof of the Markov property of (P,). The Markov
property of (P,) is proved by the same method as Stroock-
Varadhan [13], but we give another proof as follows. In order
to show the Markov and the strong Markov properties of (P,),
it is sufficient to prove the following fact.

Proposition 7. 1. Let us set u=u(f) for feL(R). Then
e u(x(7)) =E,[ Sje"“ Fx()dt|F.] a.s. P x),

where 7 is {F,}-Markov time™ and F.={AcF: AN{T<¢}
e, t>0}. Also, the above equation is valid when we replace = by

16) This Proposition is suggested by Krylov [7].
17) If 20 and {r<t}EF, for any {>0, then r is called {&F,}-Markov time.
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{F . }Y-Markov time and F, by F,.. >

Proof. The following formula is verified from (3.2) using
the formula on the stochastic integral;

(1) e g(x(n) = EL| e (= A)gl()at/F.] as. PA"x)
for any ge C¥(R). Let us set f=(—T\)I: where he C3x(R). Then
u=m(f)=Kf=GhreCR).

Hence from (7.1)

o
T

e u(x(7)) = E,[f e fla(t)dt/F ] as. P(%x).

Therefore if H is a bounded &.-measurable function, then for
F=U-T)h heCyR),

ELHe™ Ko f(x()] = ELH| e f(x(t)dr].

On the other hand, E.[He ™ K, f(x(7))] and E.[H Sfe'“ f(x()dr]
are bounded linear functionals on L/R). Therefore forall feL AR)
ELHe™ K fx()] = ELH{ e fayar].

Thus we proved the proposition, Q.E.D.

§8. Remarks
In this section we will give some supplementary remarks.

(1°) Space-time case.
Let a(¢, x) be a measurable function on E such that

lla—cll= sup |a(t, x)—€|<—L
thER Ap

for some p>2 and constant ¢ and set

Af(t %) = ait F(t, )+ alt, ¥) g’; A(t, )+ Bf(t, %)

18) 9",*=Q'EF,,.
18) Fr. ={AeF: An{r<t}eF ., 120}
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for feCi(E), where B is the infinitesimal generator of 1-
dimensional symmetric Cauchy process. Then, we can prove that
Therem 6.1 is valid in this case.

(2°y Multi-dimensional case.

Let a(x)=(a/(x), afx), -, an(x)) be measurable mapping on
R¥ such that

lle—cil = max Ila.-—C.~||<L
ISiISN AP

for some p> N and constant vector ¢=(c,, ¢,, -+, ¢y). The operator
A is defined as follows

Af(x) = 33 alx) =)+ BAx)

for feCi(RY™) and x=(x,, x,. -, xy)ERY, where B is the infini-
tesimal generator of N-dimensional symmetric Cauchy process.
Then Theorem 6.1 is valid in this case.
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