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In recent years, there have been many results about rings
and their various types of ring of quotients including the case of
classical quotient ring. However all significant results are so far
limited to the case where the singular ideal is identically zero.
The difficulty in the general case lies in the nonclosed property
of the singular ideal. In this paper we study some of the pro-
perties of the closure of the singular ideal of a ring R and the
relations between the rings of quotients of R and the rings of
quotients of factor rings of R.

Let R be a ring with identity element 1. If S is a subset
of R and xR, we denote x7(S)= {r&R|xr=S}. We also denote
the right and left annihilators of S in R by 7(S) and /(S) respec-
tively. The singular ideal (right singular ideal) J(R) of R is
defined as J(R)= {r&R|v(r) is an essential right ideal of R}. The
closure K(R) of J(R) is defined as K(R)= {k€R|k7'(J(R)) is an
essential right ideal of R}. K(R) is a two sided ideal in R and
is the unique maximal essential extension of J(R) in R as right
R-module. Let R=R/J(R). Since the inverse image of an essential
right ideal in R is essential in R. 12(\15), the image of K(R) in
R, contains the singular ideal J(R) of K. It is not true that
they are equal always. In the case where J(R) is essential in R,
K(R)=R whereas J(R)=+R.

Lemma 1.1. The following statements are equivalent

1. KR)=J(R)

2. k,k,eK(R) there exists r& R such that (kk,)re J(R),
ky e J(R) if k& J(R).
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3.k, ke K(R), k& J(R), ky'(J(R))C(k.k,)(J(R)) properly.
Proof. Verifications follow the definitions directly.

Theorem 1.2. If R satisfies any one of the following con-
dition then K(R)=J(R).
1. J(R) is closed, i.e. K(R)=J(R).
2. The cannonical mapping of R onto R preserves essential
right ideals.
3. K*R)CJ(R).
J(R) is prime and is not essential in R.
5. If A is an essential right ideal containing J(R) in R then
its image in R is essential in R.

o~

Proof. 1., 2., and 5. are obvious. 3. follows 2. by lemma 1.1.
For 4., let A be a nonzero right ideal of R such that AN J(R)=0.
Then ANK(R)=0 and AK(R)=0. Hence K(R)=J(R). In other
words in a prime ring either K(R)=0 or K(R)=R.

If R—TI’?) = J(R) then consequently J(R) can not be essential in
R. But it is still too difficult to study under the assumption
where J(R) is not essential only. In this paper we always assume
IEEF?) —=J(R) unless stated otherwise.

Lemma 1.3. k= K(R). If k*"&J(R) for all natural number n,
then the following two sequences of right ideals of R are strictly
increasing.

L kT (JR)c () (J(R))C -

2. v(k)cyEHc---

Proof. If ke J(R) then there exists »& R such that (kk')r= J(R)
and kir&J(R). At the same time there exists { R such that
k+trt=0 and kirt=0.

Theorem 1.4. If R satisfies the a.c.c. on annihilating right
ideals then K(R) is nil.

Proof. Since J(R) is nil if R satisfies the a.c.c. on annihilating
right ideals.

Consequently, if R is a right noetherian ring then K(R) is
nilpotent.
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Lemma 1.5. acR, if there exists a natural number n such
that a"< J(R) then

1. y(1—a)=0

2. v(@)c(1—a)R for all i, the inclusion is proper unless a’=0.

Proof. Let x€v(l1—a), x=a"x. If x+0 then xRN y(a")=*0.
There exist 7, 7R, 0f+r=x7 and a"»=0. But r=xr'=a"xr'=
a"r =0. Contradiction. From 1-a'=1—a)(1+a+ - +a")C
(1—a)R, v(@')c(1—a)Rc(1—a)R and y(a")c(1—a")Rc(1—a)R. If
a"=0then (1-a")R=(1—a)R=R. If a"+0 then (1—a")RNa"R=0.
There exist 7,7 in R such that (1—a"w=a". r—a*(r+7)=0.
rV=r+r—a*(r+v)=1—-a")r+r)e(l—a")R. Thus v(a") is con-
tained in (1—a™R and hence in (1—a)R properly. Now suppose
a'+0. If i<n, then y(a')Cy(a")<(1—a"Rc(1—a)R. If a"=0 then
(1—a@)R=R and v(a’)+R. If a"+0 then v(a')Cvy(@")<(1—a")R
C(l—a)R. If izn then a'J(R) and v(a')<(1—a ) Rc(1—a)R.

Corollary 1.5.1. If k= K(R) then

L (A—B)(JR)=JR),

2. K(R) contains no nonzero idempotent,

3. for any i, () '(J(R))c(1—k)R+ J(R). If k*"€J(R) for some
n then (1—k)R+J(R)=R.

Proof. By our assumption K(R)=J(R), ke K(R), (1—k)yr&J(R),
if and only if (1—E)#=0. By the lemma r<jJ(R). It is a well
known fact that J(R) contains no nonzero idempotent. If ke K(R)
and k’=k. Then (1—k)k=0, k= J(R) and k=0. 3. follows from
2. of the lemma.

Theorem 1.6, If R satisfies the a.c.c. on annihilating right
ideals then ke K(R):

1. v(1—£k)=0,

2. (1—k)R=R.

Proof. Since k= K(R), there exists »n such that k"< J(R) and
k is a nilpotent. Therefore y(1—k)=0 and v(k)=R=(1—Fk)R.

In some sense an element e¢=R, &"< J(R) for some natural
number # can be called a generalized nilpotent element of R.
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Lemma 1.7. If eR is a minimal right ideal of R where
e=é’, then K(R)c (1-e)R.

Proof. eRJ(R)=0. Otherwise eRC J(R) and (eR)’=0. Thus
JIR)c(1—e)R. kEK(R), k=ck+(1—e)k. kk'(J(R))=ekk '(J(R))+
(1—e)kk ' (J(R)). ekk ' (J(R))ceRN(1—e)R=0. eke J(R) and hence
ek=0. k=(1—e)ks(1—e)R.

Lemma 1.8. N is any maximal rvight ideal of R. If kEN=0,
ke K(R), then k is nilpotent.

Proof. If K& J(R) then k7'(J(R))< (k) (J(R)). But Nc
k7'(J(R)). This implies (¥*)7'(J(R))=R. Now y==kc J(R). If yis
not a nilpotent then y(y)<v(y*). But then contradicts the maxi-
mality of N. Hence k is nilpotent.

If M is a right unitary R-module and N is a submodule of
M. A.W. Goldie defined the closure ¢/(N) of N in M as c/(N)=
{xreM|x7*(N) is an essential right ideal of R} [1]. The singular
submodule J(M) of M is defined to be the closure of the zero
submodule. Goldie proves that for any submodule N, clcIN=
clelcl(N) [1]. Hence c/(J(M))=clcl(0)=clclcl(0) = clcl(J(M)). If we
let K(M)=c{(J(M)) then c/(K(M))=K(M). Inthecase where M=R
then K(R) is closed. Consequently, J(R)=0 where R=R/K(R).

Lemma 2.1. T is a right ideal of R, T & K(R), then there
exists a right ideal N, 0=NC T such that NN K(R)=0.

Proof. Let teT, t&K(R) then ¢t Y(K(R)) is not essential.
There exists a nonzero right ideal W of R such that WN ¢ '(K(R))
=0. N=tW will do.

Lemma 2.2. If J(R) is semi-prime then K(R) is semi-prime.

Proof. Suppose A’C K(R) and Ad¢ K(R) where A is a right
ideal of R. By the above lemma there exists a nonzero right
ideal N in A such that NNK(R)=0. N*cA’c K(R)\NN=0.
Nc J(R)c K(R). Contradiction.

Corollary 2.2.1. If R is semi-prime then K(R) is semi-prime.

Proof. As above N?=0 implies N=0.
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Theorem 2.3. If K(R) is semi-prime then K(R)=v(W) where
W is a right ideal of R.

Proof. Let W=3N; where N;NK(R)=0. Since N;K(R)=0
for each N;, WK(R)=0. Suppose there exists y R such that Wy=0
and y& K(R). There exists a right ideal N, 0% NcC yR and
NNK(R)=0. NcW, N°)c WNc WyR=0. NcK(R). Contradic-
tion. Thus y(W)=K(R).

Corollary 2.3.1. If K(R) is semi-prime and R satisfies the
maximal condition on annihilating right ideals then R=R/K(R) is
semi-prime with maximal condition on annihilating right ideals.

Proof. Since K(R) is itself an annihilating right ideal and
the inverse image of an annihilating right ideal of R in R is an
annihilating right ideal in R.

A right ideal A in R is said to be uniform if every nonzero
right ideal in A is essential in A.

Lemma 2.4. If N is a uniform right ideal in R then N is
uniform in R where N is the cannonical image of N in R.

Proof. Let T,, T, be nonzero right ideals in N and
T.={xeN|ze T}, T,={xeN|z=T,}. There exist nonzero right
ideals T4, T4 such that T/cT,, T{cT,and T/NK(R)=0, i=1,2.
Since N is uniform, T{N T4=0. This implies 7,N T,+0 and N
is uniform.

Corollary 2.4.1. If R has a uniform right ideal N and
NG K(R), then R has a nonzero uniform right ideal.

Lemma 2.5. A is a right ideal R. A is essential in R, if
and only if, there exists a right ideal NC A, NNK(R)=0, and
N+ K(R) is essential in R.

Proof. 1f there exists NCA such that NNK(R)=0 and
N+ K(R) is essential in R. xe K(R), there exists a right ideal 7,
xT+0and xTNK(R)=0. xTN(N+K(R))%=0. xt=n+k, 0f£n=N,
ke K(R). xf=n=+0. N is essential in R. A is essential in R
follows from Nc A.
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Conversely, if A is essential in . Let N be a maximal right
ideal contained in A such that NN K(R)=0. A+ K(R) is essential
in R since it is the inverse image of A. If N+ K(R) is not es-
sential in R, then there exists a nonzero right ideal T< A+ K(R)
such that TN(N+K(R))=0. First we claim TNA=+0. Since
O0*teT, t=a+k, ac A, ke K(R). There exists dek(J(R)) such
that {dec K(R). td=ad+kd. There exists d’c v(kd) such that
tdd’ € K(R). tdd'=add’+£0, TNA+0. Let W=TnNA. Then Wn
(N+K(R))=0. But NCW+NcCA and (W+N)NK(R)=0. This
contradicts the maximality of N. Hence N+ K(R) is essential in R.

Corollary 2.5.1. If A is an essential right ideal in R then
A is essential in R.

Proof. Since there exists NC A such that N+ K(R) is essential
and NN K(R)=0.

Lemma 2.6. a=R, if y(a)=0 then v(a@)=0.

Proof. If are K(R) and r&K(R). Let de(ar)'(J(R)) such
that »de K(R). Now arde J(R), ardD=0 for some essential right
ideal D of R. Since y(a)=0, rde J(R)Cc K(R). Contradiction.

Corollary 2.6.1. k= K(R), /(k)*+0 and v(k)=+0.

Proof. «(k)+=0 follows the lemma and K(R)*+R. [(k)+0
follows K(R)=+R.

Lemma 2.7. A right ideal C containing K(R) in R is closed
in R, if and only if, C is closed in R.

Proof. 1f C is a closed right ideal in R, then C is clearly
closed in R. If C is closed in R and xLcC, xR and L is an
essential right ideal of R. Since I is essential in R and C con-
tains K(R). x=C and C is closed.

Since J(R)=0, either chain condition imposed on the set of
closed right ideals of R implies the other [2]. By the above
lemma this property also holds in R. In [2] we proved that if
the a.c.c. holds for the set of closed right ideals in R, then @R
is an essential right ideal of R if 4(@)=0. In this case & has an
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inverse in the maximal ring of right quotients of K. Thus we
have the following theorem.

Theorem 2.8. If the set of closed right ideals of R satisfies
the maximal condition then :

1. a=R, if y(a)=0 then aR is essential in R. Or equivalently,
for any b& K(R) there exist v, v €R such that ar—br'e K(R) and
br' & K(R).

2. a=R, if v(a)=0 then axes K(R), yac K(R), if and only if,
xe K(R) and ye K(R).

If A is a right ideal of R and f=Homg(A4, R). Let W=f(A)
and W be the inverse image of W in R. Choose N to be a
maximal right ideal in W such that NNK(R)=0 and A =
{ae A|f(a)e N}. For each a'€ A, the inverse image of A in R,
ad—adecA —fl@)=ncN. Since NN K(R)=0 there exists a unique
ne N whose canonical image in R is #. Let f be the composite
mapping from A’ to N defined by :

f(@) =n where 7= f(a) or
fd)=Ff@a), adceA.
It is routine to verify f&Homj(A4’, R).

Lemma 2.9. A is an essential right ideal of R, if and only
if, A is an essential right ideal of R.

Proof. Suppose A is essential. a= A, and @=+0. If f(a)=0,
then ae A’ and aRNA’' 0. If fla)=b=+0. Suppose b=0b+ K(R), then
be W and b&K(R). Let T be a nonzero right ideal in R such
that TNo(K(R))=0. If bTNN=+0 then there exists =T and
neN such that bt=n. f(af)=Ff(a)f=bf=n=+0. O+afc A’ and
hence GRNA’+0. If TN N=0. First we claim that (bT+N)N
K(R)=0. Since if there exist x€bT, n= N, and k= K(R) such that
x+n=k=+0(x+0and n+0). Let dek™'(J(R)) such that xd & K(R).
xd+nd=kd. Let gev(kd) such that xdge K(R). xdg+ndg=0.
This shows dT N N=+0. Contradiction. Therefore, (bT + N)N
K(R)=0. But bT+Nc W and bT+ N contains N properly. This
contradicts the maximality of N. Hence TN N=+=0. Thus we
have proved that for each O+a=A, aRNA'+0. Since A is
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essential it is sufficient to conclude A’ is also essential.

Theorem 2.10. If fe Homz(A, R) where A is an essential
right ideal if R, then there exists an essential right ideal A’ in
R containing K(R) and f& Homg(A', R) such that f(d)=f@) for
all deA.

The concept of dense right ideal in a ring R was introduced
first by Y. Utumi [4] under a different name and was later modified
somewhat by J. Lambek [3]. In the case J(R)=0, dense right
ideals and essential right ideals coincide. Utumi calls a ring S
a ring of right quotients of R if R is a subring of S and for
each g S, ¢7'(R)={reR|greR} is a dense right ideal of R and
q¢(¢7'(R))=*0 if ¢#+0. He also proved that for any ring R with
identity element has a unique maximal ring of right quotients
Q [4]. Each ¢g=@Q, g can be realized as a R-homomorphism of
a dense right ideal of R into R [3], [4]. If J(R)=0 then @ is
a self right injective regular ring [2]. It is easy to show that
a€R, a has an inverse in @, if and only if, v(a)=0 and «R is a
dense right ideal of R. If M is a multiplicatively closed subset
of regular elements of R and satisfies the right Ore’s condition
(as M, bR, b '(aR)N M+0), then aR is dense, ac M, and Qu=
{xa'|xER, ac M} cQ is the classical right quotient ring of R
relative to M. For the sake of completeness, we mention some
of the properties of dense right ideals here again.

Definition. A right ideal D of R is dense in R if for all
7, 7, in R, 7,%0, r,7;(D)=*0.

Theorem 3.1.

1. If Dis a dense right ideal of R then D is essential and
I(D)=0.

2. If Dis adense right ideal of R and S is a ving of right
quotients of R, then for any q< S, q (D) is a dense right
ideal of R.

3. Intersection of any finite collection of dense vight ideals
of R is dense.

4. Considering R as a right R-module, let I be its injective
hull and H= Homgp(I, I) then a right ideal D of R is dense,
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if and only if, he H, hD=0 implies hR=0.
Proof. Proofs can be found in [3].

Lemma 3.2. S is a ring of right quotients of R. A right
ideal C of S isessential in S, if and only if, CNR is an essential
right ideal of R. If A is an essential right ideal of R then AS
is an essential right ideal in S.

Proof. 1If A is an essential right ideal of R, then it is obvious
AS is an essential right ideal in S. Suppose C is an essential
right ideal in S. O%r&R, »rSNC=+0. There exists ¢S such
that 0%rg=C. O=+rqq '(R)YC*RN(CNR). CNR is essential in R.

Corollary 3.2.1. If S is a ring of right quotients of R and
C is a right ideal of S, then the closure cl(C) of C in S is {xE S|
x " Y(C) is an essential right ideal of K}.

Proof. Follows the lemma directly.

Corollary 3.2.2. If S is a ring of right quotients of R, then
JRY=J(S)NR and K(R)=K(S)NR.

Proof. Follows corollary 3.2.1 directly.

Corollary 3.2.3. S is a ring of right quotients of R. If C
is a closed right ideal in S then CNR is a closed right ideal in
R. If A is a closed right ideal of R then A*= {xeS|x'(A) is
an essential right ideal of R} is a closed right ideal in S and
A*NR=A.

Proof. cl(CNR)ccl(C)=C, if C is a closed right ideal in S.
reRNc(CNR), reRNC. CNR is closed in R. For any right
ideal A of R, A*NR=closure of Ain K. Thus if A is closed in
R then A*NR=A. If g&€SNcl(A*) then ¢"'(R)Ng '(A*)=B is an
essential right ideal of R. Since gBCA*NR=A, g A* and A* is
closed in S. A* is a right ideal of S follows from the fact that
S is an essential extension of R as a right R-module.

Notice that if C is a closed right ideal in S then C=(CnNR)*.
Thus we have a natural correspondence between the closed right
ideals of R and S. If A is a closed right ideal of R then:
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A—-A*¥ - A*NR = A.
If C is a closed right ideal in S then:
C—->CNR—-(CNR* =C.

Since re RN K(S), if and only if, »€ K(R). We can consider
R=R/K(R) as a subring of S=S/K(S). 0=%g<S, g=q+K(S) with
g K(S). Let D be a dense right ideal of R such that ¢DcR.
Since g K(S) there exists de D such that gd&K(S). 0+gd=
gd+K(S)eR. S is a ring of right quotients of R.

Let @ be the maximal ring of right quotients of R and W
be the maximal ring of right quotients of R. We have shown
that W is a ring of right quotients of @=Q/K(Q). It is inter-
esting to ask under what condition @ = W? Or equivalently, under
what condition every ring of right quotients of R is an image of
a subring of @?

D-condition: A right ideal D in R is dense in R if it is an
inverse image of an essential right ideal in R where R=R/K(R).

Obviously D-condition is equivalent to that every essential
right ideal containing K(R) in R is dense.

Lemma 3.4. The followings are equivalent.

1. D-condition.

2. If A is an essential right ideal containing K(R) in R, then
I(A)=0.

Proof. Trivial.
Theorem 3.5. If R satisfies D-condition then Q=W.

Proof. Let we W then we Hom (4, I?) where A4 is an essential
right ideal in R(A=w '(R)). By theorem 2.10 there exist an es-
sential right ideal A’ containing K(R) in R and f=Hom,(A’, R)
such that

fl@) = w(@) = wa’ for all ¢ in A’.
D-condition implies A’ is dense. There exists g= @ such that

gd = f(a) for all d€A’. qa’'=ga =wa for all @ € A’.  Since
J(R)=0, g=w and Q=W.
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Theorem 3.6. Assume the D-condition and the maximal con-
dition for the set of closed right ideals are satisfied in R. If
acR, v(a)=0, and aRDK(R), then a has an inverse in Q.

Proof. If aeR, v(a)=0, then by theorem 2. 8 aR is essential
in R. The inverse image of aR is aR since aRDK(R). By D-
condition @R is dense and hence a has an inverse in Q.

If R is a semi-prime ring then ¢ is obviously semi-prime.
Suppose A is a right ideal in @, AN K(Q)=0, and f€Homg(A4, Q).
Define 7: A—-Q by f(a)=f(a) where a=a+K(Q), acA. fe
Homg(A, Q). Since W is self injective. So if Q=W there exists
g=Q such that f(a)=ga for all ac A. If =g+ K(Q) then f(a)=
qa+k, where k, € K(Q). f(a)K(Q)=f(aK(Q))=qaK(Q)+kK(Q).
Since aK(Q)Cc AN K(Q)=0. k,K(Q)=0. Let T={k=K(Q)| there
exists ac A, f(a)=qa+k}. T is a right ideal of @ and is con-
tained in K(Q). Hence T°c TK(Q)=0. If R is semi-prime then
T=0 and f(a)=ga for all ac A.

Theorem 3.7. If R is semi-prime and satisfies the D-condition,
then for any f& Homo(A, Q), where A is a right ideal of Q and
ANK(Q)=0, there exists q=Q such that f(a)=qa for all ac A.

In order to obtain more properties about R and @ from the
informations of R, @, and W, we must know more about K(Q) in
related to K(R) and J(R). For instance, under what situation K(Q)
will be nil?

J-condition: D is a dense right ideal of R, f&eHomg(D, J(R))
then the kernel of f is an essential right ideal of R.

It is clear that J-condition is equivalent to that ¢q=@, ¢RN
Rc J(R), if and only if g J(Q).

Theorem 4.1. If every dense right ideal D of R contains an

element a such that v(a)=0 and aR is dense, then R salisfies the
J-condition.

Proof. feHom (D, J(R)) where D is a derse right ideal of
R. Let ¢g=@Q such the gd-=f(d) for all de D. Let a= Dsuch that
v(a)=0 and @R is dense. ga=j<=J(R). a has an inverse ¢! in



430 Edward T. Wong

Q. g=ja'e]J(Q). ker(f)=v(q)N Dis an essential right ideal of R.

Theorem 4.2. If R satisfies the J-condition then :

1. If Dis a dense right ideal of R then the image D of D
in R=R/J(R) is dense in R.

2. S=S/J(S) is a ring of right quotients of R where S is a
ving of right quotients of R.

3. If J(R) is closed in R, i.e. J(R)=K(R), then J(S)=K(S)
where S is any ring of right quotients of R.

Proof. For 1., let 240, & R. Z=x+J(R) and y=y+ J(R).
y (D)=B is a dense right ideal of R. xBd J(R). Otherwise
x€ J(R) and £=0. There exists b= B such that ybe D and xbes J(R).
D is dense in R. For 2., Since J(R)=J(S)NR, R=R/J(R) can be
considered as a subring of S=S/J(S). ¢S, =g+ J(Q). D:c/]‘\‘(-k)
is a dense ring ideal of R by 1. D=0, if and only if, g= J(S).
Since gDc R, S is a ring of right quotients of . For 3., g= K(S),
g (R)CK(S)NR=K(R)=J(R). ¢<]J(S). ~

Recall that at the begining, we assume J(K)=K(R). From this
we can prove J(R) is closed in R, i.e., K(R)=J(R). If R satisfies
the J-condition and S is a ring of right quotients of R, then
S=S/J(S) is a ring of right quotients of R. If R also satisfies
the J-condition, then of course J(S) would be closed in S. Con-
sequently, I/{?é)z J(S). qK(S), A=q ' (J(S)) is an essential right
ideal of R and contains J(R). If we assume the property 5. in
theorem 1.2 holds in R then A would be essential in R and
g=J(S). From now on we assume R has such property. That is,
if A is an essential right ideal containing J(R) in R then A is
essential in R.

~ T ——

Now suppose g€ K(S), then A=¢ '(J(S))=v(7) is an essential
right ideal of R. If ¢’ J(S) then ¢’Dd J(R) where D=g '(R).
Let d=D such that 0%g'd in R. Since A is essential in B, there
exists f€R such that §df+0 and §g7di=0 in R. Since ¢'dtcR,
g dteJ(S). If we let r=dt then ¢'r& J(S) and ¢¢'reJ(S). Con-
sequently, if g K(S) and ¢*&J(S) for all natural number #, then
the following sequence of right ideals of R is strictly increasing

q7'(J(8))<(g")(J(S) <
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x€J(S), v(x)<v(x?*) if x+0. Thus if x is not a nilpotent,
x€ J(S), then y(x)<y(x*)<--- is a strictly increasing sequence of
right ideals of R.

Theorem 4.3. If R satisfies the J-condition and the maximal
condition on right ideals, then J(S) and K(S) are nil ideals where S
is any ring of vight quotients of R.

Proof. q=K(S), there exists n such that ¢"=J(S). ¢ is a
nilpotent follows ¢” is a nilpotent.

Theorem 4.4. If R satisfies the D-condition, the J-condition,
and the maximal condition on right ideals, then acR, a has an
inverse in Q if ¥(a)=0 where Q is the maximal ring of right
quolients of R.

Proof. If aeR, y(a)=0, then v(a2)=0 and aR is essential in
R=R/K(R) by theorem 2.8. Therefore @ has an inverse in W,
the maximal ring of right quotients of R. By D-condition there
exists g=@ such that ag=1+%k for some k= K(Q). Since k is
nilpotent by the previous theorem, ¢ has an inverse in Q.
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