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§1. Introduction

Let us consider a linear partial differential equation
(1.1) alx, Nulx)=Y a,(x)0"u(x)=f(x), xER". *)
IvT<m

Let S be a hypersurface in R” defined in a neighborhood of xo€ S
by
(1.2) ¢(x)=0; ¢,(x)=(01¢(x), 020(x), ---, Dugp(x)) #0.

We say that S is a double characteristic hypersurface of the

operator a(x, 0), if ¢ satisfies the following conditions:
h(x, ¢.)=0, ¥ €S,

(1.3) %/L(x, ¢.)=0, x€S, i=1,2, ..., n,

02
2 Wh(x, ) |#0, xE€S,

1,7

where A(x, $)=| Sia,(x)é.
vi=m

*) In this article we use the following notations:

a 0 0 0
o stands for r e and 0;, d,, 9, stand for a0 ox and y respectively. In

the case where 0d; u(y), we often represent it simply by a°u(y). ’
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In this case the initial-value problem of (1.1) with data on S can
be reduced to the following initial-value problem of (1.4) with data on

x=0(x € RY), by a suitable change of variables

(1.4)  xamo(x, y)0ru ﬁﬁa;iwm_l.a(x, V705 uAan-1,0(x, OT u

ai,o(%, )0L05 u=1f(x, ),

iS<m—2,|@|+i<m

where x € R', y€ R”"l,la]ZiZI)am_g,a(O, 0)|=~0.

Now, our problem is the initial-value problem of (1.4) with data
on the hypersurface x=0. In this article we treat our problem only
within the class of real analytic functions, more precisely we assume
that the coefficients, initial data and solutions are all real analytic in

the neighborhood of the origin.
At first let us observe the following fact:

If there are given the initial data
(15) aiu(03 y):uj(_)/)> ]20) ]-a tety m,—3,

there exists a solution u of (1.4), and such a solution is not unique.

In fact, there exists a real non-zero vector 7=(71, -+, 7a-1) such
that

Ia;rzam—z,a(o; 0):77a + 0,

and we consider the following Goursat problem to (1.4):
Ou—¢u-2)(0, =0  (j=0,1,2,...,m—3)
<0, 77>j(u—¢m—3)<y,7l>=0:0 (]:03 1)

m—3 0 0
— 4 . — ... - :
where gom_g—p};loup(y)x /ply <0, p>=m o B R o/ Dymt’ This

u(x, ) gives surely a desired solution of the problem (1.4)-(1.5).

Concerning the Goursat problem, we refer to Hoérmander [2],
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p. 116-119%%)

Let us consider further the following initial data

(1.6) 5u(0, Y=u(y), j=0,1,2,..,m—2
or
(1.7) 07u(0, Y=u;(y), j=0,1,2,.., m—1.

In these cases, the solution does not exist always without some
additional conditions.

At first, let us consider the problem (1.4)-(1.6) in the case where
(1-8) am,O(Oa y)Eam—l,O((); y)EO

The necessary condition for the existence is easily obtained as follows:
Let

u(x, y)=1§0up(y)x”/P!

be a solution, then putting this in (1.4), and comparing the coefficients

of x° we have

(1.9) .g;_za;,a(O, ¥ 005 ¢(0, )= f(0, y)

1
idlajsm

where
m—2
e(x, ¥) =Eoup(y) x?/pl.

Let us show that this condition is also sufficient. For this purpose,

*¥)  We note that Theorem 5.1.1” still holds when defining 4 as the set of
multi-indices in the sum on the right-hand side of (5.1.1) such that a<(0) 0.
In fact, when A4 is thus defined, instead of
D#U(z)=3 ac(z")eol@=eB Da [(2)+ F (2),
aEA
we consider the following equation:
DAU(z)=TF a%(z")erta)=0é) D« [(z)
aEA
+ Z aa(z’) erlola)-o(®) Da U(Z)+F(Z),
lal <181
o @
Where all the coefficients a“(z”) appearing in the second summation vanish at the
origin. Thus we can claim the same existance theorem under this assumption.
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let uo(x, y) be the solution of the following Goursat problem to (1.4)
with data

0i(uo—¢) (0, )=0  (j=0,1,2,..., m—3)
<0y 7> (o= @) cypm0=0  (j=0,1)

(1.10)

Now we can show that 87 2ue(0, Y)=un-2(y). In fact, let

uoz':g:u,,( PPl o) A" (=24 T usy) 5*/p!

=g 4 !
¢m—2'|;>;_1up(y)x /P s
then the same relation as (1.9) holds for @, _».
This implies, denoting

L(}’, a) :|aZ|E<zam_2'“(0’ y) 0;'

(1.11) L(y, ) fim-2(0)=L(3, ) tm-2().
On the other hand,
<0, 7> (wo— )= <0, 1>/ (in-2—un-2) 2" 2/ (m—2)!
-i;%:ﬁf@, 77>ju,,(y)x”/p!
implies
(1.12) <O, 9> (fimz—tm-2)<yy>=0=0,  j=0, 1.
This shows, together with (1.11), Zm-2(y)=um-2(y), which completes

the proof. Finally, let us note that the solution is not unique.

The purpose of this article is to investigate the situations when

we remove the condition (1.8).

§2. Statements of Theorems

Let us recall the condition (1.8). The following theorem shows
that, if we assume am,0(0, y)=0, then the condition a,_1,0(0, y»)=0 is

a reasonable assumption.
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Theorem 1.

In the case where am (0, y)=0, if an-1,0(0, ¥) 0, the ploblem
(1.4)-(1.6) has not always a solution; more precisely, there exists
an initial data (1.6), such that the initial value problem (1.4)-(1.6)

has no analytic solution in any neighborhood of the origin.

However, if we assume a,,0(0, 0)0, we have the following

analogue of fuchsian theorems.

Theorem 2.

In the case where a,o0(0, 0)~=0 and moreover for all non-
negative integers p, we have pa,,o(0,0)+an_1,0(0, 0) %0, then there
exists always a unique solution for the initial value problem (1.4)-

(1.6).

Theorem 3.

In the case where ay o(0,0)5=0 and moreover if for some non-
negative integer po we have poan,o(0, y)+an_1,000, y)=0, then a
necessary and sufficient condition concerning the initial data for the
existence of the solution of the problem (1.4)-(1.6) is the following

compatibility condition:

05us(y)
2.1 ;',le) us(}-/)_ '('f) ) _y—Ly‘—
> “s:k%fm la o) (s —m)! +10§=1 k+s=1§'~m g taly )(s—m+1)!
s(}’)
(%)
+k+s=§+m—am 1o 4 (s—m+1)!
k=1
Oyus(y) _
(k) o)
_t'+<|%:]<2m k+szﬂu +i ( ) (_g l)' .f (y),

where aj,5(x, y)= Za"" (p xt, flx, p= Zf(")(y)x and Um_1, Up, -,
Umsp,—2 are umquely determined by the zmtzal data {uo, w1y -y Um_3}.

In this case the solution is not unique.
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Remark.

We note that in the case of (1.8), the problem (1.4)-(1.7) can be
also reduced to the Goursat problem. In fact, in this case we choose
(o=7:2:u,,(y)x”/p!, and in addition to (1.9), we have only to impose the

following second compatibility condition:

la;__lam—l,a((x y)aalt;:¢-1(y) +ax Ay, 1'0(0> y) um—l(y)

+axt( ;_zai,a(x, }’) a;a;l ¢(xa }’))x_o=9xf(0, y)

i+lalsm

But Theorem 2 could not be reduced to the Goursat problem. In fact,
in this case we do not have a similar relation as (1.9) concerning

um-2(y), so the similar reasoning could not be applied to this case.

§3. Proof of Theorem 1
At first we consider the case where
(3.1 an-1,000, 0)=0, am_1,0(0, y)7=0.

In this case we can find easily the initial data which we assert. In
fact, let

(3.2) u(x, D= 3 uy()+"/p!

be the solution of (1.4). Then, in view of the coefficients of x° we

should have
(3.3) am—l,O(Os y) u'm—l(y) +Ia|Zézam—2,a(Oa }’) 0 um-Z(y) =f(0, y)°
If we put y=0, then

(3.4) la‘]/:ézam—z.a(o’ 0)o< um—z(o) =f(0, 0).

Since by the assumption >} |aw-z,4 (0,0)[ %0, uu_2(y) is not arbitrary,
laj=2
which proves the Theorem.

Next we consider the case where

(3'5) am-—l,O(O, 0)7&0'
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For the sake of systematic treatment, by changing the notation, we

write (1.4) in the following form:

(3.6) 2 ai(x, ¥)0L0yu+ f(x, y)=0.

i+1vi<m
By expanding each coefficient a;,(x, ¥),
(’i)

ain(x, y) =2 ail(y) e,

and taking account of the assumption, we can assume without loss of
generalify that
1) al(f(z],)o(_’)’) Ear(nl,)o(y) =0,
3.7 2) af,.(y)=0 for |v|=1,
3) ali(N=—1, a2, (»=0 for k=>1.
Now we consider the formal solution of (3.6),

(3.8) u(x, y) i);_gp(y) x?/pl.

We want to show that we can choose an initial data un,_2(y) in such a
way that the formal solution (3.8) never converge in any neighborhood

of the origin. At first, let us remark that the coefficient of x? of
ai.(x, y) 0§0§§>;_;tp(y)x"/p!)

is
kgoaﬁ-’i’(y)a"uqu-k(y)/((]—k)!

where, in the summation, the terms corresponding to ¢—#k<0, should
be replaced by 0.

Thus, taking account of (3.7), we have the following relations:

Ugym-— 1/q ! =kz>:2a§,f,’o(y) u”m_k/(q —k) !

+ Z Z a:‘r{zll,v(y) 0" uq»t—}n—l—k/(‘]_k)!

Ivi=1 k21

(3.9) +3 T a®,. (00" wgemas/(g—k)!

1vI<2 k20
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n 2a®(9)0% wgrioa/ (q—E) + fo(D/q),

i+ < m k=0
<
(¢=0,1,2,...); where f(x,y) =p§0f,,(y)x"/p!.
More precisely,
“'"—1(3’)zlpézﬂﬂf:?lg,»(y)avunpz(y) +f0(_)))
U/m(y) Z (lm 2 v(y)a Uy — 1(y)+ Z "l(lll) 1.»(3’)0vunz_1(}’)

+ Lg“(y, a) um—'.‘.(y) +f1(y)

uq+m—l(y) = (]ézal(r?)-z,u(y) 0"+ (]lvéla;(nlll,,(y) 0
(3.10) +q(q_1)a;ﬂ2),0) Ugim-2

cq+2

+ jZ=:3L.(iq)(ya 6) uq+m—j+fq,

(g=0,1,2,...), where L{#(y,0) is differential operator of order <j.

Now we can show, by induction on ¢, the following ralations:

(3.11) uq+m—1(y) :|(»|Z=:2a;'?lz'"(0) av)q+1 ltm-z(y)

"q+z(_')’> 0) z(y)+-9’““(y, a){fo, fl’ Ty fq}s
(‘]:O) 1, 2, )s
where #4%., is differential operator of order 2¢+2, whose coefficients
corresponding to the homogeneous part of order 2+ 2¢ are all zero at
the origin, and ,S,”“” is also differential operator of order <(2g.

By the assumption of the double characteristic, there exists an
7€ C" ! such that

(3'12) Z am 2 9(0)7] =1.

lvi=2

Now we define

(313) um—Z(y) :p§0a2p0i02p< Y 7> ZD,
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where a(0<a<1) is a fixed constant, and the arguments 6;,(p=0,
1, 2, ...) are defined recurrently in the following manner:
At first,

(3.14) (3 il (0)07)*  Hatt 2ttty > 2012

|v]=
=elf 3 (2g+2) 1

Note that, since the coeflicients of order 2¢+2 of #47,.(y, 0) vanish
at the origin, we see that £49,,(0, 0)u,_2(0) depends only on the
terms }g'_, in (8.13). So we define 03,,2 by (assuming that 6o, 03, ---,
024 art:(;lready defined) :

q .
(3.15) O2q+2=arg (L41),(0, 0) (p§0a2petr)z,,< Y > )| y-0

+ D fo, fro e fo |5-0).

Thus we have

(3.16)  |ugim-1(0)]>1(Z aif2;,.(0)0) 7 (@™ e 2y, p > 2042) ||

lvl=2
= (2q+2)\.

On the other hand,

(3.17) u(x, 0)=23 up(0)2x?/pl.
pem—2
Thus,
(3.18) lup(0)/ptl a2+ 4(@2p—2m+4)!/pl.

This implies, by Stirling,

(3.19) W |u,y(0)/pll Za*N@p)!/pl—>+ oo, when p— 4 oo,

Thus, (3.17) is not convergent in any neighborhood of the origin,
which proves the Theorem.

§4. Proof of Theorem 2

At first we consider the following fairly simple equation;
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(4.1) X0 u+0) tu=cx?0Tu+x ) ai(y)0.0
iSm—1
ilvi<m

3 00105 u (),
i<

where ¢ is a constant and m_>2; all the coefficients are assumed to

be analytic, more precisely,

ar
< (ILZ)l'_“T M for | y|<a

(4.2) 0%, ()|, [0%0;

v

Let us consider the following initial-value problem
(4.3) 0iu(0, ¥)=0, i=0,1,2, ..., m—2.

We shall show

Lemma. The problem (4.1)-(4.3) has a unique solution u(x, y) in
a neighborhood of the origin.

Proof. Let
(4.4) u(x, )= 23 us(y) 5°/p!
be the formal solution of (4.1)-(4.3). Then we have

(4’5) (l]+1) Ugym-1= (](q 1)¢“q+m—"+(] Z aw(y)a Ugyi-1

<
& % szu()’)a Ugiiy (]:1’ 2y vo0y
i+lvism
(4.5) um-1(y)=f(y).
We assume that
0 (1< AL 4,

ot

and we claim that the following estimates

!
(4.6) 10%uy()] <L2P*;#& corial 4
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hold for any « and for any p(Z>m—1), if we choose the constant C
sufficiently large. We show this by induction on p. At first we see
that (4.6) is true for p=m—1 if we choose C>max(l, 1/0); we
assume that (4.6) is true for p=m—1, m, ..., g+m—2, and we show
that (4.6) is true for p=¢-+m—1. For this purpose, we use the fol-
lowing lemma due to Mizohata ([4], p. 275): Let a(x) and b(x) be

analytic functions satisfying

Voo (r+1vD! )
[0 a(x) ]| < (/»‘()5'7'_/4’ (k>1)

where r and s are non-negative integers, then
. | .
(94aC by | < LD i1y a/cre.

Let us remark that, in the actual case, we shall use this lemma only

for r=0 and k=3, so the last estimates become:
!
1 4a) b} | < CELEDL S 4,

This remarked, under the assumption C_>max (1, 1/p), we have

(2g+2i—2+ v+ a])!

|0 {a:i.(y) 6;uq+i——l}|< (g+i—1)!

X C3q+3i—3+|v|+|a1_3_ AM
2 .

Since {+ |v|<{m, the right hand side is estimated by

Qqg+i—24+m+|al)!
(g+i—1)!

C3q+2,‘_34 m+|d|_§_ AM
) .

On the other hand,

2¢g+m—2+i+|a])!  (Q2¢g+2m—2+|a|)!
(g+i—1)! o (g+m—1)!
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(gFm—1) i (g+1)
(2q+2m—2+|a|) ...... (2(1+77l—1+L+|C‘(|)

< 1 @g+2m—2+|al)!
SSTgmei (g+m—1)!

Since i< m—1, we obtain finally,
(4.7 |6a{uiv(}’)avuq+i—l} I

(2(]+217L—2+ |a|)| Cr3(q-¢»m~1)+ln‘|<_3 ¢ j” )A.

< (g+m—1)!

In the similar way, we get

Qg+2i+|v|+|al)!
(g+0)!

Ia‘t{biv(y)ayuq+i}|< 63q+3i4|»1+mlx_g’_MA

(2q+m+i+ |C}i|)' Caq+2i+m+|a| X—3— AJM

(g+)! 2

Since :<(m—2, this last expression is majorized again by

(2¢+2m—2+|al)! C3rm-Driaio-1 3

(g+m—2)! _Z—MA‘

Thus we get

2¢+2m—2+|al|)!
(g+m—1)!

CB(q+m_1)+|a|

1 agp. oo
(4.8) Fla {bu(y)a uq+x}|<

X (-—g—m %—) A.

Finally,

ql¢—1) .. Q2¢+2m—4+|al)!
e a1 u‘q+m—2|<(1 (q+m_2)!

CS(:/+m-2)+|a|A
q+1

(4.9)
2g+2m—2+|a|)!

(g+m—1)!

< Ca(q+m—1)+lal(1/2C) A.

The above estimates (4.7), (4.8), (4.9) show that (4.6) is true for
p=q+m—1, if we choose C large, namely for example, if C>n"
x max (1, 1/p, 3mM, c).
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From (4.6), we see easily that the formal solution u(x, y) defined
by (4.4) has the estimates of the form

10205 u(x, y)|<(g+|a])! C**'*'4,

for |x|<d, | y|<<a if we choose § small, and C’, 4" large.

The proof is thus complete.

Proof of Theorem 2.

Without loss of generality, we can assume that the initial data
are all zero. For the proof we consider the following equation, equi-
valent to (1.4):

(4.10) x07u +a(y) 0;”'1u=9«|: Zi am-1,a(%, )07 10 u
dr<|

“*‘.Q;:_Zai.a(ﬁﬁ y)a:':a? u+f(xs y)'

iflaidm
Then the assumption in the Theorem means
a(0) & {0, —1, —2,...}.
Let us consider the formal solution

(4.11) u(x, )= 2 usly)"/pl.

Since the uniqueness is obvious, we have only to show the convergence
and the analyticity of (4.11).

In view of the recurrence formulas between upy_1, Upy---; W€

choose a majorant A(y) such that

1 1
w=ita) < A

for all positive integers. Such a function exists, because if we choose
0 small, then in the complex domain |7;|< 0 (=1, ..., n—1),

n
SR =1 +a(m)

Now let M/(l——g—)(l—ﬂ-—p_tM> be a common majorant of

remains bounded (with respect to n).
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am-1,a(%, ¥), ai,a(x, ¥) and f(x, y), then the formal solution
Ulx, y)= 2 Up(y)«"/p!

of the equation

(4.12) xa;"U+0;”"1U:A(y)<1 )(1 1+y2+ +yn1>

x(x 3 077105U+ X 0102U+1)
- e

is a majorant of (4.11). More precisely,

up(NLU(y)  (p=m—1,m,...).

On the other hand, (4.12) is a special case of (4.1). In fact, this

equation can be written in the form

< ——)( 07 +07)U=B() (x 3 97705U+ 3 9505 U+D).
iaidm
Owing to the Lemma, we see that U(x, y) represents a convergent
series in a neighborhood of the origin, this proves that u(x, y) is an

analytic solution of (4.10) in the neighborhood of the origin.

§5. Proof of Theorem 3

We consider the following formal solution of (1.4),

(5.1 u(x, ¥) =§0up(y)x"/1)!

Using (1.4), (5.1) we see easily that (2.1) is a necessary condi-
tion.

Taking account of the assumption of theorem we see that wu,_i,
Ums -5 Umsp,—2 are determined by the initial data (1.6). If wm.p_1 is
given, Umip, Umsp,+1, --- are determined. We will show that the con-
vergence of (5.1), if initial data (1.6) satisfy (2.1) and wumip-1 is

given.
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For the proof we use the following equation (5.2) instead of (1.4).

(5.2) 207U —po0y 'u=2x 2 am_1,a(x, y)0; 10 u
la<1

+ 2 aia(x, 0705w+ f(x, y).

i<m-2
i+|al<m

The initial data are
(5.3) 0iu(0, y)=u;(y) i=0,1,..., m—2.

The formal solution is

(5.4) (e, 9)= 5 () /!
Using (5.2), (5.4) we obtain
(g—m—po+1) _ % 1 @
(5:5) (g—m+1)! ue(2) _la;Q Mqu_tfm_l,a(y) (p—m+1)! Oy us(y)
, 1 a .
+i<§—2 p+i=qu+1+%§.]')a(y) (p—i)! % up(y)-l_f(q +1)(}’)
irlaidm
g=>m—1

where a;,5(x, )= 5 aff () 3 [ (e, )= 5 () 5™
We account of the following initial value problem (5.6)-(5.7).

(5.6) x@?*’p"“u—}-(po-l-l) a:HI)au_Poa;Mpou

=00 x 2 an_1,a(x, ¥) 07 05u
laT<1

+_§n_gi,a(x3 y)aéaff u+f(xa y):l

ai<m
(5.7 0;u(0, y)zut(y) i=0,1,.., m+PO_1
when =0, 1, ..., m—2, u;(y) is the same as (5.3),

when i=m—1, ..., m+po—2, u;(y) is that we obtain
by (5.5), and wm.p,-1(y) is arbitraly.

The formal solution of the initial value problem (5.6)-(5.7) con-

verges by theorem 2. and this formal solution coincides with the formal
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solution corresponding to the initial value problem (5.2)-(5.3). g.e.d.

At the end, the author wishes to thank Prof. Mizohata, for his

valuable suggestions.
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