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§1. Introduction.

In this paper we consider a mathematical model which represents
the competition order of two antibodies to one antigen in asthmatics.
Our problems in the mathematical form are derived by H. Mikawa and
M. Mimura and others through their piled discussions and through their
medical and numerical experiments [4].

They are formulated as follows: Suppose two antibodies C; and C,

react with one antigen C; to form the products Cs and C; respectively
(1.1) Ci+Ci—Cs

(1.2) C+Ci—C;

and C; reacts with C; to form C; and Cs,

(1.3) C3+Ci— C+Cs.

Here it is assumed that C; and C, are diffusible and Cs, C; and Cs
are non-diffusible and the all reactions (1.1), (1.2) and (1.3) are all of
second order.

We denote by u;(x,t) the concentrations of C; at the place x=
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(%1, %2, ---, %,) and at time ¢ for j=1,2,...,5. Then these processes

can be expressed in the following degenerate diffusion system;
(1.4) U;=DodU+D,F(U)
where

Uzt(ub Uz, U3y Uy, u5)

1 00 00 —d, —d, 0
010 00 0 d; —ds
Do=|0 0 0 0 0 Di=| 0 —d, ds
00 0 00 —d; 0 —dj
00 0 00 d, dy 0

and
FU)="(u1u4, urus, usus)

and all the coefficients di;, d; and ds; are positive constants and 4
means the Laplace operator.

It is known that our system represents an idealized model of the
fibre-regent system when dy=d;=0 [1].

Here we deal with our system as an initial value problem. Since
the behavior of us(x, t) is completely determined by those of u;(x, t)

for j=1, 2, ..., 4, it is sufficient to consider the following system;

(1.5) U=DydU+ D,F(U) in £,=R"x(0, )
(1.6) U(x, 0)=0(x)
where

U='(u1, U2, U3, lL4)

1000 —di —d; 0

01 0 0 0 dy, —ds
D0= Dl'_

00 0 0 0 —dy ds

o 0 0 O —d, 0 '—ds
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FU)="(uru4, urus, uzuy)
and
O(x)="($1(x), $2(x), 0, ds(x)).

From the point of view of chemistry, we shall treat the case of
non-negative initial data throughout this paper.

Our paper consists of two sections. In the first section we discuss
the relations between the initial data and the asymptotic behavior of
the solution of the problem (1.5) and (1.6). (See THEOREM 2.1.)

Another section is devoted to study the semilinear elliptic equation
(1.7) du=a(x)(1—e™)— f(x)

derived from our problem (1.5) and (1.6). There we discuss the exi-
stence, uniqueness and the non-existence of the solution of (1.7). (See
THEOREM 3.2, 3.3 and 3.4.)

As for the Cauchy problem (1.5) and (1.6), for any non-negative
initial data (@1, @2, B3, ¢s) E B X B> X B' X ', we can find a unique
non-negative, global solution (u1(x, t), u2(x, t), us(x, t), us(x, t)) such
that

(ul(x> t)a U2(x, t), u3(x) t)’ u4(x, t))eg?(gzxgzxgl Xgl)

NEYRB® x B° x B° x B°).

(See Mimura [ 3].) Here #™ is the topological vector space of uniform-
ly continuous and bounded functions in R" together with their deriva-

tives of order up to m.

§2 Asymptotic behavior.

We will derive some sufficient conditions to be imposed on the
initial data under which whether or not us(x, t) and u4(x, ) will tend
to zero as t—>oo,

In order to state our results, we prepare two lemmas which are

so-called “comparison theorem”.
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Lemma 2.1 Consider the following three Cauchy problems (P,),
(P2) and (P3) in R2,:

(Py) Ui=DodU+D,F(U) U(x, 0)=0(x)
(P2) Vi=DoydV+DF(V) V(x, 0)=0(x)

(Ps) Wi=DodW+DsF(W) W(x, 0)=0(x),

where
—d —d 0 -D —-D 0
0 d —d 0 D —D
D,= D=
0 —D D 0 —d d
-D 0 —D —d 0 —d

and d=min(d,, dz, d3) and D=max(d,, ds, d3). Then it follows that

for non-negative O(x),
i) vilax, t)=ui(x, t)=wi(x, t)=0
i) vi(x, )+ velx, £) = ui(x, t)+uslx, t) Zwi(x, t)+w(x, t) =0
i) wi(x, ) Ftwix, t) = us(x, t)+us(x, t) =vs(x, t)+ov4(x, t)==0
iv) wy(x, t) = ug(x, t) =v4(x, t) =0.

Proof. We can prove Lemma 2.1 by using the following simple
difference scheme Sch(D;),

m+1,J m,J ”

uy Y —uy’ 1

et SRS S A 1 =___h Z: Ti T+u1 (dlu?“']uz"']-l— dzurln+l.lu'3n,!)
m+1,J__ . m,J n

Uz U™ _ 1 Z Ti T-‘#- mJ__ (daum+l J m] d, um+1 J mj)

k h? {5

m+1,J__ m, ]

= (dsu7*Tuf! = dyuf*HTuf )

m+l,J . m,J
Uy T UL _(dluTu,Jurln.J_l_ dsu?“’ju’z"’])
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and the initial data
UO’]:w(Jh)=(¢1(jlhs th’ "',jnh), ¢4(j1h; th, ttty jﬂh))’
.k 1 .
with k and h satisfying 27 <735, . Here ul =u;(jrh, joh, -, mk)
(i=1, 2, 3, 4) for n-tuple of integers (j1, j2, ---, j») and for a non-nega-

tive integer m, h and k£ are the mesh sizes in x and ¢ directions re-

spectively and T4 is an operator replacing j; by ji#1, that is,
T:,;:um,]: u(jlh, ceey ji—lh, (],i‘ 1)h, ji+1h, [REDY ]nh, mk)—u"”].

Considering the problems (P;) and (P3;) by the difference schemes
Sch(D;) and Sch(D;), we find for any J and m

D oo Zup/ Zuwl 20

i) ol +op! ZuPlul 2w 4wyl =0
i) i/ +wpl Z e+ upl 2 op o 20
iv) wi! =up! =opl >0.

From these inequalities, Lemma 2.1 can be proved. (See Mimura [3].)

Lemma 2.2 Consider the following Cauchy problem
uy=du—duw
w,= —duw
in R, with the initial data
u(x, 0)=us(x)

w(x, 0)=wy(x).

If Go(x) = uo(x) =0 and wo(x) =o(x) =0, then u(x, t)=u(x,t)=0

and w(x, t)=w(x, t) =0, where d and d' are positive constants and
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u(x, t) and w(x,t) are the solutions with the initial data and #,(x)

‘wo(x).

Proof. The proof of this lemma is easy and hence is omitted.

Now consider the following equations obtained from (Pj3),
D —
(2.1) wl—T(w3+w4) += dw,

(2.2) (ws +wa); = — d(ws +wyw,.

Integrating (2.1) and (2.2) from 0 to ¢ with respect to ¢, we have

(2.3) wi(x, t)——Z—(wa(x, 1)+ walx, t))—¢1(x)+%¢4(x)

ZSLW3(x, T)df
24)  wslx, )+ wix, t)=¢4(x)exp(—dS:w1(x, 0)de).
Eliminating ws(x, ¢) and wy(x, t) from (2.3) and (2.4), we obtain
@5 il =D g@exs(—a{ wix, Dde) i)+ D-pu(x)

t
= So dw,(x, T)dr.

Lemma 2.3 Supposing that the initial data ¢, ¢2 and ¢4 of (P3)
are all constant. If ¢, g%mgo@slaw), then for the corresponding

solution wy, it holds that

S:wl(x, t)dt=+ oo,

Proof. The solution W of (P3) is unique and hence it is indepen-
dent of x. Thus (2.5) implies
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D g D ,
(2.6) wl(l)_*d——¢4 exp(—d owl(f)df —¢1+ T¢4—0-

Now assume

S:wl(t)dt< + o0,

dw
Then by wy(¢)=0 and \‘d—tllgM(=const.), we can see that w;(¢)—0 at

as t—>oo. Letting t—>o0 in (2.6), we obtain
D = —
'—d—¢4{1—exp(_dSOWI(t)dt)}—¢1.

This contradicts to ¢; 2_—2——(]54 =0 unless w;=0.

Lemma 2.4 Supposing that the initial data ¢1, ¢2 and ¢4
of (P;) are all constant. If %¢4>¢120, then for the corresponding

solution vy, it holds that

S:vl(x, t)dt < + oo,

Proof. Since the proof of this lemma is analogous to that of
Lemma 2.3, it may be omitted.

Here we can refine Lemma 2.3 and Lemma 2.4 as follows.

Lemma 2.3 Let ¢.(x), ¢:(x) and ¢4(x) be the initial data of

B Z Dsupp()Z0  ($:(x)=0),

then the corresponding solution wi(x, t) satisfies

S:wl(x, t)dt=+ oo for all x.
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Proof. Consider the following system obtained from (P3),
0w, —
(2.7) T = dw; — D(w3 + w4 )w;

-—5%—(11& +w4) - — d(w3 + W4)’LU1.

(—3— supgs (%),

and denote the corresponding solutions by (w:i(x, t), ws(x, t)
If

Consider pairs of the initial data (@;(x), ¢s(x)) and

sup ¢4(x)>
+wy(x, t)) and by (#,(x, t), wa(x, t)+ @w4(x, t)) respectively.

$1(0) 2 -2 sup (),

then by Lemma 2.2, we have

wi(x, t) = (x, £)=0

and
w3(x, t)+wi(x, t)=ws(x, t)+ws(x, t)=0.

On the other hand, since (2.7) is independent of ¢»(x), we can apply

Lemma 2.3 and obtain that

Swu‘;l(x, t)dt=+ oo,
0

Hence we see that

g:wl(x, t)dt =+ oo,

Lemma 2.4’ Let ¢\(x), do(x) and ¢4(x) be the initial data of

%inf $a(x) > p1(x) =0,
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then the corresponding solution v,(x, t) satisfies
g v1(x, t) dt < 4 oo,
0

Proof. 1t is sufficient to consider two pairs of the initial data
(¢1(x), p4(x)) and (%i?f da(x)—e, ixnf¢4(x)>, where ¢>0 is sufficiently
small so that —% il;lf da(x)—e=d1(x).

Together with these facts, we have the following proposition on
the asymptotic behavior of the solution of our problem (1.5) and (1.6).

Proposition 2.1 Let U(x, t)="(ui(x, t), us(x, t), us(x, t), us(x,
t)) be the solution in the Cauchy problem (1.5) and (1.6).

D if $u) Z 0 sup ()20, then

lim u3(x, t)=0 and lim uy(x, t)=0 for any =x,

 dmded t

W) if %igf ba>61(x)=>0, then

lim (uz(x, t)+ u4(x, t))0 for any x.
{—o0

Proof. According to Lemma 2.3, we can see lim(w;(x,t)+
t—o0
wy(x, t))=0 from (2.4). Thus it follows lim(us(x, t) +usx, t))=0
t—o0

for any x from iii) of Lemma 2.1 and hence
lim us(x, t)=0 and limug(x, t)=0
 dndd 100

by the non-negativity of U. ii) can be proved easily by Lemma 2.4’
and by iii) of Lemma 2.1.

Next we investigate more precisely ii) of Proposition 2.1.

Lemma 2.5 Supposing that the initial data ¢, ¢2 and @4 of (P3)
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are all constant. If
bt =D g> 45> 920,
d D
then, for the corresponding solution wo,
S:wZ(t)dl =400
holds.

Proof. Consider the following equations obtained from (P3):

0 D _

(2.8) W<WZ+TW3>-‘- AWZ
o . _

(2.9) —é‘t—W4—- - d(w1+w2)W4.

Integrating (2.8) and (2.9) from 0 to ¢ with respect to ¢, we have
D t
(2.10) ws (e, )= ot -2 ws(, l)=SOsz(x, r)dr

(2.11) wy(x, t)=0¢, exp(— dS;(wl(x, 7) +wq(x, z'))) dt

from (2.8) and (2.9). Eliminating from (2.10) by (2.4) and (2.11), we

obtain

(2.12) wa(x, £ —¢2+_3_¢4 exp (- dS:wl(x, r))dz‘ x

t
X {l—exp(——dgowz(x, f))}d‘r=0.
Now suppose that

S:wz(x, t)dt< + oo,
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then, as is the case of w,(x,t), we can see wy(x, t)—>0 as t—>oo, and

letting t—>oco0 in (2.12), we obtain
(2.13) — s+ —%(}54 exp <—dg0w1(x, t)dt) X
X (1— exp(— dSO wy(x, t)dt>=0.

We remark here that Sowldt exists by Lemma 2.4. Thus from (2.6)’
and (2.13), we have

D ~ _
—¢2t (——d ¢4—¢1){1—6XP(—dSowz(xa t) d‘)} =0
. . D
and this contradicts to ¢;+¢; z—d ¢4 =0.

Lemma 2.6 Supposing that the initial data ¢, ¢ and ¢y of (P3)
are all constant. If

L g>4i+h:=0,
then it holds for the corresponding solution v,

S:vz(t)dt< + oo

The proof of this lemma is similar to that of Lemma 2.5.

Refine Lemma 2.5 and Lemma 2.6 as follows:

Lemma 2.5 Let ¢1(x), ¢o(x) and ¢4(x) be the initial data of (P3)
with

$(2)+ $a(x) = --sup 4u(x) Z —2-inf $u(x) > () 20,
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then the corresponding solution wo(x) satisfies

S:wz(x, t)dt=+ oo Sfor all =x.

Proof. Consider the following system obtained from (P3),

(2.14) D (o w02) = Aas F 103) — Dlaoy + w3
(2.15) %W4= —d (w4 wz)w,

and pairs of the initial data ($:(x)+@2(x), @s(x)) and (%S’L‘lpqh(x),

sup ¢4 (x)) and denote the corresponding solutions by (w:(x, t)+w:(x, t),
x
wy(x, t)) and by (@,(x, t)+w:(x, t), ws(x, t)) respectively. If

é1(x) +¢z(x)2%sgp Pa(x),

then by Lemma 2.2, we have

wl(xa t)+w2(x’ t)g'wl(x) t)+'fi)2(x, t)

and
14';4(x, t)Zw«;(x, t)*

By Lemma 2.3, we obtain
S:wz(x, t)dt=+ oo,
and hence
[ tnte, )+ s, D} di=+ oo,

On the other hand, we know already
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[ unta, e <Aoo
by Lemma 2.4’ and therefore

S:’u)z(x, t)dt= 4 oo.

Lemma 2.6/ Let ¢1(x), ¢2(x) and ¢u(x) be the initial data of

A int u(x) > h1()+alx) 20,
then the corresponding solution vy(x,t) satisfies

S:vz(x, t)dt< + o0

for all x.

Proof. Tt suffices to consider pairs of the initial data (¢1(x)+da(x),
¢4(x)) and (—f)—inf ¢4(x)—¢, inf ¢4(x)> where ¢>0 is sufficiently small
x x

d .
so that —D—mf¢4(x)—eg¢1(x)+¢z(x)-
x
Summing up all the results obtained above, we attain the following

theorem :

Theorem 2.1 Let U(x, t)="(ui(x, t), uz(x, t), us(x, t), us(x, t))
be the solution in the Cauchy problem (1.5) and (1.6).

D I h@=D s p)Z0,  then for any =,

t—oo

lim us(x, t)=0 and lim u4(x, )=0.
t—roo

i) IF §1(x) +9a(x) = -Dsup $u(x) Z - inf $4(x)> ()20,
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then lim uz(x, t)5=0 and lim uy(x, t)=0.
 Sndid t—o0
i) I o inf G () >h(D (>0 and  gulx) =0,

then lim uz(x, )0 and lim us(x, t)2¢0.
t—o0 =00

Proof. i) is nothing but i) of Proposition 2.1. ii) is proved as
follows: first note that (P;) indicates

t
03(x, )+ va(x) = da(x) exp (—Dgovl(x, ©)dr).
Since S:vl(x, 7)dt <+ oo by Lemma 2.4’, we have

lim (va(x, )+ 04w, D) =) exp (=D v1(x, D)) 0.
00 0
On the other hand, since
t
wi(x, ) =u(x)exp (—d{ {wi(x, D+, O}ar),

we see lim wy(x, t)=0 by virtue of Lemma 2.5. With the aid of iii)

fooo

and iv) of Lemma 2.1, we get

1}_{{1° us(x, )0 and lti_I}l uy(x, t)=0,
Next by Lemma 2.4" and Lemma 2.6’, we have
S:vl(x, t)dt< + oo and S:vz(x, t)dt < + oo,
Hence, with the aid of i) and ii) of Lemma 2.1, we can see

S:ul(x, t)dt< 4o  and S:uz(x, t)dt < + oo,
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On the other hand, it follows from (P;) that
t t
wiCxy ) =da(x) exp (—da wa, t)dt——dggouz(x, ),

and this shows that lim u4(x, t) exists for all x and it does not vanish.

t—o0

Next note the following relation which can be derived from (P1),

(u3)i= —dauiusz+ dsusuy,

then we have

usz(x, t)=exp (— ng;m(x, r)dr) X

X {dsg:)lm(x, us(x, T)exp (dzg;ul(x, 0) do‘)} dr,

and we see that lim us(x, t) exists and does not vanish.

1o

Remark. There will arise naturally the question whether or not
the following occurs:

lim us(x, £)=0 and  lim u4(x, t)=50.
o0

t—o0

As for this question one can say that if

d_

Dir;f¢4(x)>¢1(x)_2_0 and  ¢x(x)=0,

then the situation above is true and that if ¢,(x)=<0, then it never

occurs.

§3. On some semilinear elliptic equation.

In this section we assume the diffusible matters ¢,(x) and ¢s(x)
are of class L' and the non-diffusible matter ¢4(x) is of class #'. It
will be natural from the chemical meaning.

Remember (2.5) and a similar relation for »:(x, t):
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d t
va(a, 1) —f-da(xdexp (= D 01(x, )de)— i)+
d t
+2-6u() = doi(, D).
0

If we assume

S S”vl(x, t)dtdx < + oo,
R")o

we obtain
(3.1) Aw=_§—¢4(x){1—eXp(— dw)} — do(%)
(3.2) do=—L-$(2){1~ exp(— Do)} — (=)

in the sense of distribution,

where

w(x)=S:w1(x, £)dt

and
v(x)=S:v1(x, 1)dt.

Thus, observing Lemma 2.1, it will be interesting to investigate
whether or not (3.1) or (3.2) has a solution for given ¢,(x) and ¢4(x).
We study the following semilinear elliptic equation,

(3.3) du=a(x)(1—e™*)— f(x),

which is of same type as (3.1) and (3.2), with a(x)€ Z', a’?=a(x)=>0
and f(x)(=0)e L'(R").
We call that is u(x) a solution of (3.3) if and only if w(x) is of
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class L*(R") with u(x)==>0 and satisfies (3.3) in the sense of distribu-

tion.

Remark. If f(x)=0, then it can be proved that (3.3) has only
trivial solution. Therefore we assumed that f(x)2s0 in what follows.
We consider the sequence of functions {u,(x)} defined by the fol-

lowing equations:
(3.4) du,—a’u,=a(x)(1—e ) —a’u, ,— f(x) (u=1,2,...)
uo(x)=0.

As for the above sequence {u,(x)}, we have

Proposition 3.1 Each u,(x) is non-negative and of class L*(R"),

and moreover u,(x) is monotone increasing in L.
In order to prove Proposition 3.1, we prepare some lemmas:

Lemma 3.1 Put k(x)=f‘1[—m§mz—}, where | & |2=¢£24

£2+4 -+ €2 and F' denotes the inverse Fourier transformation, then it
follows

i) k(x) depends on only |x|=vVxd+xi+ -+x2 and k(x)>0
ii) k(x)e L'(R"™)

iii) llkllu(m):%

. dk
lV) W < 0.

We denote by K the convolution operator with its kernel k(x),

Eo)0)= | Kx—0e(dy.
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Lemma 3.2 Let ¢(x) be of class L*(R"), then we have

. 1
i) ”K¢”L‘(Rn)§*&_2‘||¢||L'(R")
especially for non-negative ¢,

1
“K(P”L‘(R"):'a—z ||¢HL‘(R")

D) KB 1 < 5 18]l =nl ol 1caey
for any B(x) in L=(R").

Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. If u, 1(x) is of class L'(R") and non-
negative, then we see that a(x)(1—e “1)—a’u,  is also of class L'(R")
and non-negative. We have u,(x)=(Kf)(x)—K(a(1—e “s1)—a’u, )(x)
and it is of class L'(R") and non-negative. On the other hand, we can
easily see that ui(x)=(Kf)(x) is of class L'(R") and non-negative.
This shows that each u,(x) is of class L'(R") and non-negative.

Next, from (3.4) we have for x#=1, 2, ...,

Ay —u,) =y —u)=a(x)(e a1 —e ) —a*(u, —u,_1),
hence
A(u/z+1 - ul‘)_az(u#+1 - u#) :(uy_ u’;a-1)(a(x)e_u”+o(u”_u”'l)"az)

for some 0 satisfying 0<0<1. Thus if we see u,—u,_1==0, then we can
obtain u,41—u,=0. On the other hand, u;—uo=u;==0. This com-
pletes the proof.

In treating our equation, it is sufficient to consider the scheme
(3.4). In fact we have

Theorem 3.1 A necessary and sufficient condition in order that
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(8.3) has a solution is that
llu,.HLl(Rﬂ)éM

where {u,} is of constructed in (3.4) and M is a constant independent

of u.

Proof. Necessity: Let u(x) be an arbitraly solution of (3.3), then

we have
dv,—atv,=—v, . (a? —a(x)e *rou—uL)

for u=1,2, ..., where v,=u—u, and 0 satisfies 0<6<1. This shows

v,2>0, since vo=u—uo=0. Thus
”uu”L'(R")gHu”L‘(R")
for u=1,2, ...
Sufficiency: Assume that
luullzirm < M,

then since u,(x) is monotone increasing in x, we see that lim u,(x)

Il—'eﬂ
=u(x) is of class L'(R") in virtue of Beppo Levi’s theorem. It is
easy to see that u(x) satisfies (3.3) as a distribution.

We give a sufficient condition for the existence of solution of (3.3),

which can be stated as

Theorem 3.2 For some positive Q(<a?), mE§=m{x; a(x)<Q} <
+ oo, then there exists a solution u(x) of (3.3).

For the proof if this theorem, we shall have to prepare some lem-
mas.

Lemma 3.3 For any fixed positive number 7,
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_ 1
o= mBor Sak(x)dx< a?

where the supremum is taken for all measurable sets in R" with its

measure mB <.

For the proof of this lemma, it will be sufficient to note Lemma 3.1.

Lemma 3.4 Suppose ¢(x) be a measurable function in R" such

that
i) 0<g(x)<a?
i) mE%: _s=m{x; ¢(x)=a’—S}<+oo

for some S with 0< S<a® Then we have

sgpgmk(x— o (yNdy<l1.

Proof. We note first
&=, k= DeDdy+(, . Ha—ne(dy
Hence

o F @Ay

R™—E,

&=, k= pdy+@—9)]

—(a?— S)/a’+ sg Bx—y)dy

E%:

—@-s)ya+s| _, kpdy.

X—La

Thus by virtue of Lemma 3.3, we have

sup(K§)(x)= (@~ §)/a’+ sgpg o, My <L.

xX—La?
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Lemma 3.5 Put w,=u,—u,1 for u=1,2, ..., then w, are bound-

od, if ﬂg[_%-]—l-l

Proof. Remember u,=Kf+K(a’u,-1)—K(a(x)(1—e 1)), then

we have that,
w,=a’Kw, 1+ K(a(x) (e "1 —e " 2)),
hence we have
0<w,<a’Kw, :

and that 0 <w, <a’* VDK“f. Since Fourier image of a** VK*f is

integrable when ﬂg[%} 1, a**~DKHf is bounded and so are w,.

Lemma 3.6 Under the assumption on a(x) in Theorem 3.2, put

sup w,(x)= A, for /zg[—g—:'-l-l, then A, 1= cA,, where c is a con-
stant with 0<c<1.

Proof. Since w,=K(a*w,_1+a(x)(e “+-1—e *s-2)), we obtain
w, <K((@®—a(x)e ™ w,_1).
Thus, when ﬂgl:—g—il-l-l we have

w1 = AK (@ —a(x)e™) < A,K (o —a(x)e™),

where u=lim u,. On the other hand, from
H—roo

(35) ( oa—emix<( reas,

it follows that a(x)(1—e™*) is of class L'(R" by virtue of Beppo

Levi’s lemma.
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Now consider the following two sets E¥={x; u=N =0} and

E* " ={x; a(x)e "< T, 0< T<a’}. We have
1- e‘N)SE,, a(x)dx< + o0

by (3.5). Since a(x) is not integrable in any measurable set of infinite
measure from the assumption of Theorem 3.2, we see mEy <+ oo for
YN>0. If x belongs to CEFNEF™, then T=a(x)e “=a(x)e V.
Thus choosing T and N such as e¥T<(Q, we may assume

m(CE§NEF* ™)<+ oo
by the assumption on a(x) and then we see
mE{* ™ <mE}+m(Ef* “NCEX< + oo

from E£* " =(E{* “NE})J(EL “NCE}). Therefore, if we replace ¢(x)
and S in Lemma 3.4 by a’—a(x)e™ and T respectively, we have, for
= [%]+ 1,

w1 Zcd, (0<e<])

and hence 4,,1<cA4,.

As an immediate consequence of Lemma 3.6, we obtain,
Proposition 3.2 The sequence {u,} defined by (3.3) satisfies
(2]
u(x)S A+ 5 K'f
=

for u=1,2, ..., where A is a positive constant.

Now we can prove Theorem 3.2 as follows;
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5
Proof of Theorem 3.2. Consider the set Ef={x; glx)= X K'f=
s=1

B} with an arbitrary positive constant B. Since g(x) belongs to
L'(R™), it follows

mCE§ < + oo,

If y belongs to EENCEG, then u(y)<A+B and a(x)=Q. Hence, if
y belongs to E§NCEQ, it follows

(36) Pu,()+alx)e ™) S u,(y) Q™)

1

=
— A+B

{a*(4+B)+Q(e 4P =D} uuly)

Remember again,

3.7 u,,(x)=Kf+K(a:zu,‘_1-I-a(x)(e'““—‘—1))
<Kf+K(@u,+a(x)(e ™ —1)).

Consider the second term in (3.6),

(3.8) K(@*u,+a(x)(e*—1))

k(x— y)[@Pu () +a(y)e ™ —1)]dy+

SE%ACEZ

kE(x— ptuy+a(y)(e—1)1dy

SR"—(E}’,ACE‘,S)

= A}r 5 {az(A+B)+Q(e‘A‘B—1)}S cxg(F = uNdy+

E$N

k(x— y[tu(p+a(y (e —1)]dy.

+
R"—(E$NCEQ)

Observing (3.7) and (3.8), we have
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u,(x)dx <

S EZNCEG

<1

1 —A-
S o O+ g AT B 4QEe P} ()

u,(x)dx
SRH-(E,”,ACEg) W)

and hence we have

Ql—e 458 1
GO R Ve OIS g |, @

u,(x)dx.
SR"—(EgnEz) ”( )

On the other hand, since
(3.10) m{R"—(E§NCEZ)} =m(CEF\UEJ) < + oo,

it follows

udx <Am(CERVEQ)+ SR" g(x)dx

SR"—(ng\CEz)

from Proposition 3.2. Together with (3.9) and (3.10), we have

[ urdz<mca, B0, ),

where M is a constant independent of u4. Because of Theorem 3.1,
Theorem 3.2 is proved.

As for the uniqueness of the solution, we have

Theorem 3.3 If the problem (3.3) has a solution, then it is

determined uniquely.

Proof. Let v(x) be an arbitrary solution of (3.3) and u(x) be the
solution obtained as a limit function of u,(x) in our scheme (3.4), then
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we have first

(3.11) 0 <w< K(a*w)

with w=v—u. In fact, since we can easily v—u,=0 by the same
technique used in the proof of Proposition 3.1, we have immediately

w=0. Next we note that w satisfies

(3.12) dw—ca*w=(a(x)e " —a®)w

where 0 satisfies 0<6<1. Thus we have

(3.13) w=K({(a?—a(x)e * ")w) < K(a*w).

From (3.11) it follows that for any positive integer k,

(3.14) 0<w=<a’K*(w).
if we note
2 k
FLat* K w))=( g porzrr) #Lvl
then, for sufficiently large k, we have
(3.15) KA FTa K )] d

=L arrimmge ] dex ol

Hence we obtain

(3.16) I=Sws

aZ k
=S, L arramrere ] 4 il

and letting k— oo, we see w=0 by the well-known Lebegue theorem.
This shows that our problem (3.3) can not have any solution more
than one.

As for the non-existence of solution we have the following;
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Theorem 3.4 Let a(x) (0=a(x)<a?) be of class L'(R") and

el < F Il gy

then there exists no solution of (3.3).

Proof. Using
u,=Kf+K(*u, +a(e *1—1)),

we have by Lemma 3.2
1
(3.17) SR" u(x)dx — Sm u-1(x)dx =?SR" (flx)—a(x))dx+

1 _
+ETSRna(x)e u”-ldx.
Hence
(3.18) [ @ = s ndez L area.
R™ a Rn
Suppose there exists a solution of (3.3), then it follows

Sm(u,,(x%u,._l(x))dx—w as pg—»oo,

because SR u,(x)dx has to converge as g#—»co. Thus then it follows

(3.19) SRna(x)e‘“dx=0

with u(x)=Ilim u,(x).

If m(su,;; a(x))<0, then by (3.18) u(x)=-+cc on supp. a(x)
except a null set and this contradicts to that u(x) is of class L*(R,).
If m(supp. a(x))=0, by (3.17) we have

u
”u/t”Ll(R"')=?”f”L‘(R")3
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and then
leull Lrcrmy—> 00 as p—>oo

since || f]|z1r»y=¢0. Thus according to Theorem 3.1, there can not
exist any solution of (3.3).
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