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We investigate questions of the following kind: Let 7/ be an ideal
of a Cohen-Macauley local ring (R, m). Suppose /=aNb, where
b has height >». Find conditions on / and a which will imply properties
of b. We prove among other things (2.2) that if the number of gen-
erators of / is at most », and if a is a complete intersection, then b can
be chosen so that R/b is Cohen-Macauley. (On the other hand, if
I=a;Na;Nb, where a,, a, are complete intersections, depth R/b
may be too small (cf. (2.5)). This generalizes Macauley’s unmixedness
theorem, which may be considered the degenerate case a=R .

Our method, which is quite elementary, was originally developed
to answer some questions raised by Mumford about the critical locus
of a map of smooth schemes. These applications are in section 5.
Then, in analyzing our proof, we found that it was related to a result
of Dubreil [1]. We have arranged the presentation around Dubreil’s
theorem.

Notation and terminology. By a local ring, we mean a noetherian
local ring. Dimension (in symbol, dim) for a ring will mean the Krull
dimension of the ring. Depth means, not as in [7], the length of a

maximal regular sequence. We note here that if 4/ is a finite module
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over a local ring R and if homological dimension of M (in symbol,
hdg M) is finite, then hdg M+depth M=depth R.

1. Dubreil’s the‘orem.

We work throughout with Cohen-Macauley local rings R, say of
dimension 7. Deductions in the non-local case will be clear.

In a generalized form, Dubreil’s theorem [1] is the following:

Theorem (1.1): Consider an ideal I=(a, ..., ar) genevated by
» elements, of the form aNb where a and b are pure height r and have
no assoctated primes in common. Under these civcumstances the

depth R/b and homological dimension hdg R|b depend only on a.

In other words, if 7/'=(ai, ..., ar)=aNb’ is another such ideal,
then depth (R/b")=depth (R/b). There is a degenerate case to con-
sider, namely that b=ZR. In this case the proof shows that for any
b's£R as above, depth (R/b")=n—r.

Corollary (1.2): With the notation of theorem (1.1), suppose a
is a complete intersection and that b%=R. Then R[b is Cohen-Macauley.

Following Dubreil, we may introduce the notion of a chain a,
ay, ... of pure codimension 7, proper ideals: In such a chain, a;Nas+
is a complete intersection, and aj, a;+; have no common associated

prime. We obtain

Corollary (1.3): Let ay,0,, ... be such a chain. Then
depth (R[a;)=depth (R]as) for odd s. If a\ is a complete intersection,
then Rlag is Cohen-Macauley for every s.

These assertions are all due to Dubreil [1] in the case of homoge-
neous ideals of nonsingular varieties.

Let a, b be as in theorem (1.1). We will (tentatively) call the ideal
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a relatively Cohen-Macauley if R[b is Cohen-Macauley. Thus a
complete intersection is relatively Cohen-Macauley.
Before proving these results, we recall a well known result on

homological dimension and depth.

Lemma (1.4): Let T be a local ring and let
0—A4—>B—>C—0

be an exact sequence of finite T-modules. Then:
(1) One of the following (i) ~(iii) must hold:
(i) hdrz4<hdr B=hdsC,
(ii) hdr B<hdr A=hdsC—1,
(iiiy hdzC<hdz A=hdr B.
(2) One of the following (i*)~(iii*) must hold:
(i*) depth A>depth B=depth C,
(ii*) depth B>depth4=depth C+1,
(iii*)  depth € > depth 4 =depth 5.

(Actually, (1) is very well known. (2) follows from (1) by the
following argument: First, we may reduce to the case where 7" is com-
plete. Then 7 is a homomorphic image of a regular local ring 7°*.
Then we have (1) with 7* in place of 7. Since 7* is regular, hdr* 4
is finite and depth 4A=dim 7*—hdz* A4, etc., and we have (2).)

Proof of (1.1) and (1.2): We fix the ideal a. Note that an ideal
I=(a, ..., ar) will be of the form aNb as above (possibly with b=R)
if and only if 7 has height » and the elements ay, ..., @, form a system
of generators for a locally at every associated prime p of a. It follows
immediately that the “‘exchange lemma’ holds for our situation, i.e.,
that if /=(a,...,ar)=aNb and /' =(ay, ..., ar)=aNb’ satisfy the
hypotheses, then so does /' ={(ay, ..., ar—1, a;), provided that the

generating set (a1, ..., a;) is adjusted appropriately. On the other
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hand, if the generating sets of the two ideals /7, /' have an element in
common, say @r=ay then we can replace R by R/(a;) and proceed by
induction on 7 to show depth (R/b)=depth (R/b"). Thus we are
reduced to the extreme cases =0, 1. The case »=0, ie., /=(0),
is trivial since then b is uniquely determined by a.

Consider the case »r=1. We have /=(a)=aNb and 7' =(a’)
=aNb’, and we may suppose that b and b’ have no associated
prime in common. If they do, we relate the ideals to a third one,
I"=(a"y=aNnb"”, where, say a”"=a (moda) but " is not in any

associated prime of (0), b, or b’

Lemma (1.5): Let /=aNb be an ideal, and let aEa be an

element which is not in any associated prime of b. Then

R[b=5 (a)/1 N (a).

Proof: The isomorphism sends 1 to a. Thus we need to show
that xae / implies x &b (the converse being clear). Let b=q; N ... Nqe
be a primary decomposition. Then xa&q; but a€ radq;. Thus
x&q;, hence x&b, as required.

Now consider the exact sequence
0 — 7 — I4+7"— jUNT) — 0.
We have /4+/7'=7/+(a’), and &’ is not in any associated prime of b,

by assumption. Thus 7'/(/ N/")=R/[b by the lemma, and so the se-

quence is isomorphic to a sequence
0 — R — (/+7]) — R[b — 0.

Since depth R =n_>depth M for any finite R-module 4, applying
Lemma 1.4, we have depth (R/b)<depth (/47'), with equality if
depth (/+7')<n. The same is true when b’ replaces b. Thus
depth (R/b) = depth (R/b") if depth (/+7") < ».  Suppose
depth (/4+7")=n. Then depth (R/b)>n—1. If bR, dim (R[b)=
n—1, hence depth (R/b)=#»—1, which handles this case and completes
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the proof of the assersion on depth; The assertion on homological

dimension is given similarly.

Proposition (1.6): Lez a be an ideal of height v having (r+1)
generators. Suppose Rla is Cohen-Macauley and that a is generated
by » elements locally at every associated prime p. Then a is relatively

Cohen-Macauley.

Proof: Since ais generated by » elements locally at every associ-
ated prime p, we may choose a generating set (@, ..., @r+1) in such a
way that /=(ay, ..., ar)=aNb as in (1.1). Then @y cannot lie in any

associated prime of b.  Thus lemma (1.5) gives us an exact sequence
00—/ — a— Rlb — 0.

Since 7 is a complete intersection, both R// and Rja are Cohen-
Macauley.  Therefore the exact sequence 0—/—R— R[/—0
shows that depth /=n—»+1, and, similarly, deptha=»n—»+1. By
the above sequence, depth (R/b)>n—r, as required.

Example (1.7): Rational triple points of surfaces are defined by

3 equations in 4-space ([9]), and hence are relatively Cohen-Macauley.

2. Residual intersections of lower dimension.

In this section we need a condition asserting that the number of
generators of an ideal is not too large, for which we introduce the
following terminology. Let a be an ideal. The set C,=C,(a)C
Spec R of points p such that a requires at least » generators locally at
p (.e., that a® £(p) is of rank >7) is a closed set. Define

ci(a) = codim (V' (a) N Cy(a))

¢i(a) = codim Cy(a), if > 1.

Here, we define the codimension of the empty set to be co.
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Definition: We say that an ideal a satisfies G5 if ¢;=¢i(a)>7

for /=1, ..., s.

For example, an ideal a of height » satisfies Gy, since ¢;=7 for
i=1,...,r—1,». A complete intersection a of height » satisfies G...
The values of ¢; are ¢y=...=¢,=7, and cry1=cps2=...=o00. So

does an ideal generated by (»41) elements, as in (1.6).

Theorem (2.1): Lez a be a relatively Cohen-Macauley ideal of
height v, let s be an integer >v, and let [=(ay, ..., as) be an ideal
satisfying either of the equivalent conditions

(i) [/=anb, where height b>s.

(ii) [=a at every point of Spec R of height <s.

If a satisfies Gs—, then

(a) depth (R/I)>n—s, and

(b) I can be written in the form I[=aNb* where height b* >,

no primary component of b* contains a and R[b* is Cohen-

Macauley.

Note that if height (a+4-b)>s, then the ideal b* for (b) is uniquely

determined and b=b*,

Corollary (2.2): The conclusions (a), (b) are true if a is a com-
plete intersection, or is the ideal of (1.6).

The equivalence of (i) and (ii) is clear. We prove the theorem
by induction on s, and to start it we add the trivial case s=», being
careful to strengthen (ii) to include the condition I Ca. The con-
clusion (a) in this case is just Macauley’s theorem ([6]), and (b)

follows because a is a relatively Cohen-Macauley ideal.

Lemma (2.3): Swuppose s>r. The generators (ay, ..., as) of [
may be chosen so that I'=(a\, ..., as-1) is of the form 1I'=aNb’,
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where height b’ >s—1 and height (a4+b")>s.

Assume the lemma. We may apply the induction hypothesis to
the ideal 7. Thus depth (R/6’)>n—s+1 if b’ is chosen appropri-
ately, and in particular no associated prime of b’ has height
>s—1. Thus no associated prime of b’ contains one of a. Since
height b>s, the element as is R/b’-regular. Put b =1b"4(a).
Then height b">s and depth (R/b")>n—s. On the other hand, since

asE=a we have
I=1"+(as)=(aNb)+(as)=anb".

(If xeanb”, then x=Db'4+yas; with 6'eb’, and xra. Thus b'Eaq,
whence xe(aNb)+(as). Conversely, if ¥x=4"+yas with é'eanb’,
then x=a, hence x&aNb’.) This proves assertion (b).

Assertion (a) follows from the exact sequence
(2.4) 00— 7" — I —> (as)/I'N(as) — 0.

Since as&a but is not in any associated prime of b, the term on the right
in (2.4) is isomorphic to R/b" by (1.5). The exact sequence 0 —7'—
R — R[I'—0 shows that depth /" >#n—s42 if s>1. Therefore
depth />#n—s-+1 by (2.4). If s=1 we have /'=(0), hence depth />
n—s—+1 in this case as well. Therefore depth (R//)>n—s, as required.

It remains to prove the lemma, which is done by a general position
argument. Since a satisfies G-y, so does 7, because of (ii). Put Mv=
I(ar, ..., a) I (v=0, ...,5s—1), and denote by C7 the locus of points
of Spec R at which M* requires at least / generators. We want to
choose ay, ..., as so that

(a) codim C§>v+47 for v4i<s and i>1,

(b) codim (CTNV{))=>v+1 for v<s,

(¢) codim C{>v for v<s.
These conditions amount to Gs—, if v=0. Suppose generators chosen

so that they hold for all v'<v(<s—1). Then we can adjust a,, so
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that its residue in #/*~! is nonzero on every component of Cy ' (i >1
and i+v—1<s) and on every component of (C¥™'N V(7). It

follows that no component of C§™' is a component of C¥, hence that

codim € >min ((codim C§7'+1), codim C¥}}, §)>v+7,
if z>1 and v+:<s.

Thus (a) holds for v. Similarly,

codim (CYN V(1))
>min ((codim (C¥™'N V(Z))+1), codim C47!, s)>v+1,

and codim CY>v.  Setting v=s—1, we obtain codim C{™'>s—1
and codim (C{i'NV(Z))>s. Since /=a in codimension <[s, this

proves the lemma.

Examples (2.5): Let a be the ideal of a rational triple point at the
origin in 4-space (cf. (1.7)). Then three functions a4, s, a3 vanishing
on a will, in general, cut out the surface together with a 1-dimensional
residual intersection. When this is so, the ideal /=(ai, a2, a3) cannot
have the origin as associated prime. On the other hand, if a were
not a relatively Cohen-Macauley ideal, then 7 would always have the
origin as associated prime. An example of such an ideal is a=p;; N
P3s, where Py is the plane x;=2x;=0. The elements xx3 x»x4,
x124-Fx2x3 generate an ideal of the form aNb, where b is primary to the

origin (xy, x2, X3, x4).

Remarks (2.6): (a) The existence of an ideal /7 as in theorem
(2.1) is equivalent with the assertion that c¢s4y>s (s>7). Thus a
natural condition on a would be Gg: ¢ >i—1 for 7=2, ... s, ie.,
that ideals as in the theorem exist for every s’ such that »<{s" <s.
We do not know what is true under this weaker hypothesis.

(h) Even if a is not relatively Cohen-Macauleyv, one can still draw

some conclusions about depth (R/b) if the condition on the number
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of generators of a is strengthened suitably.

3. A criterion for unmixedness.

We can rule out embedded components for certain ideals by
strengthening the conditions on the number of generators. With the
notations of the previous section, we will say that an ideal a satisfies
G if s>r=heighta and

(1) e=r

(i) ¢ >i+1 for i=r41,..., 5.

Clearly, an ideal a satisfying G% can have no isolated component of

codimension >7.

Corollary (3.1): LZLet a=quN...Nae be a primary decomposition,
and let @ be the intersection of those 0; of minimal height r. Assume
that @ is relatively Cohen-Macauley, and that a satisfies G¥. Then
every associated prime P of a of height >r has height >s. [n par-

ticular, if a satisfies Gk then o is unmixed (i.e., a=a).

Proof: Assume the contrary, so that there is an associated prime
p of a, say of codimension s.  Since G holds, we may choose elements
ap, ..., as-1Ea which generate a locally at p, and we may moreover
suppose that /= {(ay, ..., as—1)=aNb, where codim b>s—1. Thus
(2.1) implies depth (R//)>n—s+1. Since p is an associated prime
of a and 7/=a locally at p, it follows that p is an associated prime of 7.
But then depth (R//7)<n—height p=#—s, a contradiction.

Examples (3.2): (a) The ideal a=(xx3, 2224, x124+x2x3) of
(2.5) satisfies G} but a is not relatively Cohen-Macauley and a has an
embedded component. The ideal a’'=(x? xy)CTR=4[[x,y]] satisfies
G, @' is relatively Cohen-Macauley, and a’ has an embedded com-
ponent.

(b) These results seem too weak to apply directly to general
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determinantal varieties (cf. [3, 5]), but certain cases can be treated.
Consider for instance the ideal ai defined by the minors of order £ of

the generic £X (£41) matrix

over a field K. Let 7/ be the ideal of K[{x4}]=Z~R generated by the
two minors containing the first (#—1) columns.  Then it is easily seen
that /=ag N ag-;, where ap_; is the ideal generated by the (#—1)-rowed
minors of the £X(4—1) matrix (xy) (=1, ... 4&; j=1, .., £—1).
Proceed inductively to define a; by the figure

FH

..
ol

[ .

‘0000|Ol

where q; is generated by the maximal minors of the boxed 7 by (z41)
matrix containing the upper left entry x;;. Then aqy, ..., a; is a chain
in the sense of Dubreil (cf. §1), and a; is a complete intersection.
Therefore ((1.1) and (1.3)) the associated ideal @; is relatively Cohen-
Macauley for each 7. Now suppose that there are » independent
columns in a particular matrix. Then a; is generated locally at the
corresponding prime of R by the 2—m-+1 minors containing these
columns. Since the locus of matrices whose rank is » or less has
codimension (£—m)(#—m-+1), we have ¢lay)=i(z—1) if /=2, ..,

n+1. Hence G holds for ay (and similarly for all a;), and so

Corollary (3.3):  The determinantal ideal ay is relatively Cohen-
Macauley, and Rlay is Cohen-Macauley.

4. Generalization to mixed ideals.

The previous results have natural generalizations to mixed ideals
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a. We will state these without proof. The proofs are routine extensions
of the above arguments.

Let a be an ideal of R.

Definition (4.1): An (R, a)-sequence (ay, ..., ay) is a sequence of
elements of a such that for every /< # the ideal (a1, ..., a;) is equal to
a locally at every point of codimension <7 i.e., that /y={(ay, ..., a;) =
anbs, where codim b;>>7. An (R, a)-sequence is called good if
depth R/l;>n—1 for i=1, ..., 7.

Thus the existence of an (R, a)-sequence (ay, ..., ar) is equivalent
with the condition G, for a (cf. (2.6)).

Theorem (4.2): Suppose a satisfies Gr—. Then if one (R, a)

sequence (. ..., ar) is good, so is any other.

We will call such an ideal 7-good. Thus a is oo-good if and only

if it satisfies G and is ‘‘relatively Cohen-Macauley’’.

Theorem (4.3) :  Suppose that a is (r—1)-good. Then
depth (R[I) is constant for all ideals I of the form I=(a, ..., ay)
=anb with codim b >

Theorem (4.4): Suppose that a satisfies the following condi-
tions for s>r:
(1) Gs
(ii) Ewvery associated prime b of a has codim p<» or codim p>s
(iii) a is r-good.
Then a is s-good.

Theorem (4.5): Suppose that a satisfies
(i) 67
(ii) ea=i+1 for i=r+1, ... s (notation of §2).

(iii) a is 7-good.
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Then every associated prime p of a has height p<# or height p>s.

5. Applications to critical points of maps.

In this section, we work with maps f: X — V of schemes of finite
type over a field K. There are analogous assertions for maps of
analytic or algebroid spaces, with similar proofs.

We will call f an zmmersion at x& X if the fibred product X XX
is isomorphic to the diagonal 4y, locally at (x, x) (i.e., if fis unramilf/ied
at x, in Grothendieck’s terminologyv ([4])). Assume that f is a generic
immersion, i.e., that it is an immersion on a dense open set of .X. Then
we can write the product as a scheme-theoretic union XXX =4UD
for some closed subscheme D of X>< X, whose associated }components,
at least, are uniquely determined.I The scheme D may be viewed
intuitively as the “double locus” of f. Set-theoretically, D—(DNA4)
is the set of pairs of distinct points (xq, x2) of X with f(xy) = f(x2).

Theorem (5.1): With the above notation, assume Y smooth of
dimension k, and X a local complete intersection of dimension n. Then

every isolated component of D has dimension at least 2n—*F.

Proof: If the component Dg in question is not embedded in the
diagonal 4, the bound on its dimension follows from standard dimension
theory using calculations of the type below. It is the embedded case
which requires the results of §1, §2. We choose a point x& X so that
(x, x) is on Dy but not on any component of higher dimension. Our
problem is local at x, so we may assume that X, V are complete in-
tersections in affine spaces A™, 4% with coordinates (xy, ..., xy), (¥1,
..., yw) respectively. We can, moreover, suppose that y;, ..., yx is a
regular system of parameters everywhere in Y (i.e., that the projection
YV — A% is etale). Then the map f is determined by equations fi(xy,
., xm)=y; (7=1, ..., N), and the fibred product X>1§X is the closed
subscheme {(x, x, f(x))} of A™XA™X AY=W defined by
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[ (i) the N—#£ equations defining ¥V in A%
(5.2) l (ii) the 2(m—») equations defining X' X X in 4™ x 4™

(iii) the 2NV equations fi(x)=fi(x")=yi (=1, ..., N),
where x}, xf are coordinates in the first and second factors of the triple
product.  But since yy, ..., ¥k is a regular system of parameters in V,
one sees immediately that the equations (iii) for 7=1, ..., £, together

with (i), (ii), already cut out X XX locally at the point in question.
. <
Thus XX X is defined by
v

N—~k+2(m—n)+2k=2m-+N+,—2n

equations in (2m -4V )-space.

Moreover, the diagonal 4 ={(x, Jf,f(x))} is a local complete
intersection in W. Therefore theorem (2.1) implies that XXX =
XUD for suitable D of depthZ(Zm—}—N)—(Zm—I—N—}—k—}Zn):
2n—#k, provided that dim D<2x—+4. Thus in any case dim D>

2n—#, which completes the proof.

Corollary (5.3): Let x be an isolated singularitv of an n-
dimensional variety X over an algebraically closed field K. Assume
that the normalization X of X is a local complete intersection (for
instance, that X is smooth), but that X is not normal at x. Then

the tangent space to X at x has dimension at least 2n.

For, if £ is the dimension of the tangent space to X at x, we can
find an embedding of X into a smooth 4-dimensional scheme ¥, locally
at x. Since x is an isolated singularity, we may suppose X =~ X outside
of x. Consider the map f: X — ¥. This map is finite, and an embedd-
ing except above x. Thus XXX =4U D, where D has dimension
zero. If £<2#x, then (5.1) impll/ies that D=d¢, hence that f is a 1-1
immersion. Since it is a finite map, it is a closed embedding with

image X : in other words, X=X,
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The first interseting case of this corollary is n=3: A 3-fold in
5-space with isolated singularity cannot have a nonsingular normali-
sation.

With regard to (5.1), we should remark that for a smooth variety
X the locus C of points at which f is not an immersion has dimension
at least (2n—#4—1). This is because C (the ‘“‘cusp locus”) is, in terms
of local coordinates xy, ..., xp; ¥, ..., ¥k, set of points of X at which
the jacobian g%: has rank <7, which is a determinantal variety of
codimension >£&—#n-+1 ([3]). One sees easily that C= D N4.

Now consider the case that £#=2#%, and that f has isolated critical
points, i.e., that X>I§X=AUD with D of dimension zero. Then,

following Mumford, we can introduce a measure § of degeneracy of the

map f as follows: The kernel e:

(54) 00— € — Oyxx — Oy —0
o

is of finite length, and we define
(5.5) 8(f)=gdimye.
The point is that this dimension is stable under deformation of f:

Theorem (5.6): Let S be a noetherian scheme, and let X, Y be
schemes of finite tvpe over S, wheve X is a relative complete intersection
of relative dimension n and Y is smooth, of relative dimension 2n.
Let f: X —Y be an S-map whose critical locus is of relative dimension
zero. Then the @.\’; x-module € of (5.4) commutes with base change

S1— S, and is Os-flat.

Proof: The fact that e commutes with base change is clear, since
Oy is Os-flat. To prove € flat, the key case to consider is that S is the
spectrum of a discrete valuation ring. For, by a limit argument we

may suppose S affine, of finite type over Z, and hence a subscheme of
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an entire scheme S’. Since X is a local complete intersection, it is
obtained locally at any pair of points (x;, ;) by base change from a

complete intersection X' over S’. Similarly, ¥=Y'XS§ locally
s

for some smooth scheme ¥. Then Y’ is etale over affine space, and
one sees immediately that f extends to an f': X' — Y’ in some etale
neighborhood of (x1, x2) in X. Of course, the critical locus will be of
relative dimension zero near S. Thus we are reduced to the case that
S=.S"is entire, hence to showing that the “‘local rank” of € at a point

of XXX does not drop under generalization, hence to the case that
v

S is the spectrum of a discrete valuation ring.

Consider this case. As in the proof of (5.1), we can cut out XXX
in W=AMxA™x A" locally by the equations (5.2) with =1, ..}., &
and k———2n,swhe:e A* now denotes affine S-space. Then dim W=
2m+N+1. Thus theorem (2.1) shows that, locally at any closed
point lying over the closed point of .S, the depth of X>]§X is at least

1. Therefore since the critical locus is of relative dimension 0, XX X
o

is S-torsion free. Hence € is torsion free as well, and so is flat.
Corollary (5.7): The number 8(f) is an integer.

To prove, this we may deform f arbitrarily over a henselian base
S, because by (5.6) the local contribution to 8 in the neighborhood of

a point p of X' X X will remain constant. (Since S is henselian, € will
+

split off a finite Os-module ¢ whose support above the closed point

is p, and the local contribution is %(rank €).) Thus we may assume
X smooth to begin with. Then f may be deformed into an immersion
as is easily seen using the Jacobian matrix of f. Now in this case the
product splits: XXX =4]|| D, and the symmetry of the product
induces a free Z/2 };ction on D. Therefore Op=¢ and dim x Op is
even.

Actually, it is not difficult to show that f may be deformed into a

map whose only critical points are nodes (normal crossings). For such
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a map, 8 is obviously the number of nodes. Thus in general 8§ measures
“the number of nodes equivalent to the singularity of f.

Remark (5.8): (Mumford) There is a related invariant, namely
the rank of the cokernel C:

Oy —> Oy — C — 0.

(In fact e=OyQ 0oy C.) Suppose for the moment that X is a smooth
curve. Then the image X of X in ¥ is of codimension 1, hence is
given locally by one equation. It follows easily that for a smooth
family of maps f: X — Y, the images X C ¥ form a flat family. Thus
there is an exact sequence 0—>O%—> Oy— C—0, from which one
deduces that C is Os-flat. Thus dim C does not change when we
deform f into a map having only ordinary nodes, for which direct
examination shows that dim C=36. However when X has higher
dimension, dim gz C is not invariant under deformation, because the
images X will not form a flat family! Thus 8s£dimg C in general.
Consider the case that X consists of 3 copies of P? mapping via f to 3
planes in ¥= P4 passing through a given point y. Let X be the union
of these planes, and let xy, x;, x3 be the inverse image of y. Then the
condition that a triple (¢é1, ¢, ¢3) of functions defined locally at (x,
x2, x3) lie in O C Oy is that éi(x1)=4¢i(x;) if /=2, 3 (two conditions),
and that certain relations among the partial derivatives of ¢; at x;
hold. Since the dimensions of the tangent spaces to X at x; add up
to 6, while the tangent space to O at ¥ has dimension 4, there must be
two independent relations. Thus C=0x/O% is 4-dimensional. On
the other hand, the generic map X — ¥ will have 3 normal crossings
for which dims C=686=3. Hence 8(f)=3.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
KvyoTto UNIVERSITY



(1]
(21
[3]
[4]
(51

(7]
[81
[91]

Residual intersections in Cohen-Macauley rings 323
References

P. Dubreil, Quelques Proprietés des variétés algébriques, Act. Scient. Ind. 210, Hermann,
Paris (1935).

P. Dubreil, Sur la dimension des idéaux de polynomes, J. Math. Pures et Appl. 15 (1936),
271-283.

J. A. Eagon and M. Hochster, A class of perfect detcrminantal ideals, Bull. Amer. Math.
Soc. 76 (1970), 1026-1029.

A. Grothendieck, Séminaire de géométrie algébrique 1960-61, Lecture Notes in Math.
No. 224, Springer, Berlin (1971).

D. Laksov, Concerning the arithmetic Cohen-Macauley character of Schubert schemes
(to appear).

F.S. Macauley, The algebraic Theory of modular systems, Cambridge Tract 19,
Cambridge (1916).

M. Nagata, Local rings, Interscience, New York (1962).

J-P. Serre, Algeébre Locale-Multiplicités, Springer Lecture Notes No. 11 (1965).
G. N. Tiurina, Absolute isolatedness of rational singularities and triple rational points,
Funkt. Analiz i Ego Pril. 2 (1968), 70-81, and Funct. Anal. 2 (1968), 324-333.



