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We investigate questions of the following kind : L et I  be an ideal

o f  a  Cohen-Macauley local ring (R , m). Suppose / = a nb, where

b has height > r .  Find conditions on I  and a which will imply properties

of b. We prove among other things (2.2) that if the number o f gen-

erators of I  is at most r, and if a is a complete intersection, then b can

be chosen so that R/b is  Cohen-Macauley. (On the other hand, if

/ na2nb, where a 1 , a 2  a r e  complete intersections, dep th  R/b
may be too small (cf. (2.5)). This generalizes Macauley's unmixedness

theorem, which may be considered the degenerate case a=R .

Our method, which is quite elementary, was originally developed

to answer some questions raised by Mumford about the critical locus

o f a  map o f smooth schemes. These applications are in section 5.

Then, in analyzing our proof, we found that it was related to a result

o f Dubreil [1]. W e have arranged the presentation around Dubreil's

theorem.

Notation and term inology. By a local ring, we mean a  noetherian
local ring. Dimension (in symbol, dim) for a ring will mean the Krull
dimension of the ring. Depth means, not as  in  [7], the length of a

maximal regular sequence. W e  note here that if  M  is a finite module

*  This research was done at the University of Warwick with the support of the Science
Research Council (U. K.) and the National Science Foundation (U. S. A)
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over a local ring R  and if homological dimension of M  (in  symbol,

hdR  M )  is finite, then hdR  M+depth M = depth R.

1. D u b re il 's  theorem.

We work throughout with Cohen-Macauley local rings R , say of

dimension n. Deductions in the non-local case w ill be clear.

In  a  generalized form, Dubreil's theorem [1] is the following :

Th eorem  ( 1 J ) :  C on s id e r  a n  id ea l ar) g e n e r a t e d  b y
r e lem en t s ,  o f th e f o r m  a n b w h e r e  a a n d  b a r e  p u r e  h e i g h t  r an d  h a v e

n o  a sso cia ted  p r im e s  in  c o m m o n . U n d e r  th e s e  c i r c u m s ta n c e s  th e

depth Rib a n d  h o m o lo g i c a l  d im en s io n  hd R  R ib  d e p e n d  o n l y  o n  a.

In  other words, i f  I ' , .4)=a n b ' is another such ideal,

then depth (/?/b')=depth (R ib ). T h e re  is  a  degenerate case to con-

sider, namely that b = R .  In  this case the proof shows that for any

b'  /  R as above, depth (R /f3')=n— r.

C oro lla ry  (1.2): W ith  t h e  n o t a t i o n  o f  th e o r em  (1.1), su p p o s e  a
is  a com p le te  in te r s e c t io n  a n d  tha t b  /  R. T h e n  R lb is  Cohen-Macauley.

Following Dubreil, we may introduce the notion  o f a  c h a in  al,
a2 , ... of pure codimension r, proper ideals : In such a chain, al n a14.1
is  a  complete intersection, and ai, a1+ 1  h a ve  n o  common associated

p rim e. We obtain

C oro lla ry  (1.3): L et a 1 , a2 , ... b e  s u c h  a  cha in . Then
depth (R/a1) = depth (R ia s ) f o r  o d d  s. I f  a l i s  a com p le te  in ter s e c t io n ,
t h e n  Rlas  i s  Cohen-Macauley f o r  e v e r y  s.

These assertions are all due to Dubreil [1] in the case of homoge-

neous ideals o f nonsingular varieties.

Let a, b be as in theorem (1.1). We will (tentatively) call the ideal
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a  r e l a t i v e l y  Cohen-Macauley i f  R ib  is  C ohen-M acauley. Thus a

complete intersection is relatively Cohen-Macauley.
Before proving these results, we recall a  well known result on

homological dimension and depth.

L em m a  (1.4): L e t  T  b e a  lo ca l ring  and  le t

0 0

b e an  ex ac t s e q u en c e  o f  f in i t e  T-modules. Then:

(1) O ne of  the f o l l o w in g  (j) - (iii) m ust ho ld :
(i) hd r  A < hd T B-=-hd r  C,
(ii) hd T B < h d r  A=hd T C -1 ,
(iii) h d r  C< hd r A =hcI T  B

(2) One of  the f o l l o w in g  ( i* )  - (iii*) m ust ho ld :

( i *  )  depth A> depth B=depth C,
( i i * )  depth B >  depthA =depth C+1,
(iii*) depth C> depth A= depth B.

(Actually, (1 ) is  very w ell know n. (2 ) follows from  (1 )  b y  the

following argument: First, we may reduce to the case where T  is com-

plete. T h e n  T  is a homomorphic image of a regular local ring T*.
Then we have (1) with T* in place of T .  Since T* is regular, hd r * A
is finite and depth A =d im  T* —hd T * A , etc., and we have (2) .)

P ro o f of  (1.1) and ( 1 .2 ) :  We fix the ideal a. N o t e  that an ideal

...,a r )  will be of the form a n b as above (possibly with b=R)
if and only if I  has height r and the elements a l , ..., a ,  form a  system
of generators for a locally at every associated prime tl of a. It follows

immediately that the "exchange lemma" holds fo r our situation, i.e.,

that i f  /= (a l , ar ) = a n b  and /' = ..., a r') = a n  b ' satisfy the

hypotheses, then so does I" = (a l , . . . ,  a r - i ,  4 ) ,  provided that the

generating s e t  (ai, a;.) is adjusted appropriately. On the other
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hand, if the generating sets of the two ideals I ,  I '  have an element in
common, say ar =a;„ then w e can replace R  b y  RI(a r )  and proceed by
induction on r  t o  show  depth (R/b) = depth (Rib'). T h u s  w e  are

reduced to the extrem e cases r = 0, 1 . T h e  c a s e  r =  0 , i .e . ,  I=  (0),
is trivial since then b is uniquely determ ined by a.

Consider the case r = 1. We have I = (a) =  a n  b  and I '  = (a')

a n b', an d  w e  m a y  suppose th a t  b  and b '  h ave  n o  associated
prime in co m m o n . I f  they do, w e relate the id e a ls  to  a  th ird  one,

I "  = (a") = an b " ,  w h ere , sa y  a "  a  (mod a ) bu t a "  is  n o t in  any

associated prime of (0), b, o r b'.

Lemma (1.5): L e t  I = a n b  b e  a n  i d e a l ,  an d  le t  aE a  b e  an

e l em en t  w h i c h  i s  n o t  in  a n y  a s s o c ia t ed  p r im e  of  b. Then

R lb  ( a ) I I  n (a).

P r o o f :  The isomorphism sends 1 to a. T hus w e need  to  show

that x a  /  implies xE b (the converse being clear). L e t  n n  (le

b e  a  prim ary  decom position . T hen  x a E a i ,  b u t  a  r a d  qi. Thus

x E q i ,  hence xE  b, as required.

Now consider the exact sequence

O z  i + i '  1 1 ( 1 n  I ')  —> 0.

W e have 1 + I '= 1 + ( a ') ,  and a ' is  n o t in any associated prime of b,
b y  assu m p tio n . T h u s / '/ ( /  n 1 ')=R 1 b  by the lem m a, and so the se-

quence is isom orphic to a  sequence

0 R  ( 1 + 1 ' )  — ■  R l b  0.

Since depth R  = n > depth M  fo r  an y  f in ite  R-module M ,  ap p ly in g

L em m a 1.4, w e  h a ve  depth  (R /b )< d e p th  ( /+ P ) , w ith  eq u a lity  if

d ep th  ( 1 ± I ') < n .  T h e  sa m e  is  tru e  w h e n  b '  replaces b. T h u s

depth (R ib) =  dep th  ( R / b ')  i f  d e p t h  ( / + / ' )  <  n. Suppose

depth ( / - l- / ')=  n . Then depth (R /b)> n - 1 .  I f  b  /  R , dim (R/b)=
n - 1 ,  hence depth (R /b )= n -1 , which handles this case and completes
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the proof o f the assersion on  depth ; The assertion on homological

dimension is given similarly.

Proposition (1.6) : L et a  b e  a n  id e a l  o f  h e i g h t  r  h a v in g  (r+1 )
g e n e r a t o r s .  S uppose R ia  i s  Cohen-M acauley  a n d  t h a t  a  i s  g e n e r a t e d
by r e lem en ts  lo ca l ly  a t  e v e r y  a s s o c ia t ed  p r im e  p. T h en  a i s  r e la t i v e ly
Cohen-Macauley.

P r o o f :  Since a is generated by r elements locally at every associ-

ated prime p, we may choose a  generating set (a 1, cir + i )  in such a

way that I = ( a i , b as in (1.1). Then a r + ,  cannot lie in any

associated prime of b. Thus lem m a (1.5) gives us an exact sequence

0 I  — 1  a R ib — >  O.

Since I  i s  a  complete intersection, both R I1  and /Zia are Cohen-

Macauley. Therefore th e  e x a c t sequence 0
shows that depth I = n — r+ 1 ,  and, similarly, depth a = n — r+ 1 . By

the above sequence, depth (R1b)>n—  r , as required.

Example (1.7): Rational triple points of surfaces are defined by

3 equations in 4-space ([91), and hence are relatively Cohen-Macauley.

2. Residual intersections of lower dimension.

In  this section we need a condition asserting that the number of

generators of an  ideal is not too large, for which we introduce the

following terminology. L e t  a  b e  an  ideal. The set C = C (a ) c i
Spec R  of points p  such that a requires at least r  generators locally at

p  (i.e., that a® k (p) is of rank > r) is a closed set. Define

ci (a) = codim ( V(a) ri Cl (a))

ci(a) = codim C(a), i f  i >1 .

Here, we define the codimension of the empty set to be Do.
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D efin ition : W e say that an ideal a satisfies Gs  i f  ci c i ( a ) > i
for 1=1, s.

For example, an ideal a  o f height r  satisfies Gr , since ci = r  for

1= 1 ,  . . . , r - 1 , r .  A  complete intersection a of height r  satisfies G .
The values of c i  are c1 =  =  Cr  r ,  and cr +i = cr+2= =  o‹) , So

does an ideal generated by ( r + 1 )  elements, as in (1.6).

Theorem ( 2 .1 ) :  L e t a  be a  relatively  Cohen-M acaule_y  ideal of

h e ig h t r, let s  be an in te g e r >r, and  l e t  I = ( a i , ..., a s )  b e  a n  ideal
satisf y ing  e ither o f th e  equivalent conditions

(i) I= ct n b, w here  height b > s .
(ii) /= c t  at ev ery  po in t o f Spec R  o f he igh t <s.

I f  a  satisf ies G 3 _ 1, then
(a) depth (R I I ) >n — s ,  and

(b) I can be w ritten in the f orm  I = c i  n b* , w here height b * > s ,
no prim ary  com ponent o f b* contains a and R /b* is Cohen-
Macauley.

Note that if height ( a + b ) > s , then the ideal b* for (13) is uniquely

determined and b=b*.

C orollary (2.2): The conclusions (a), (b ) are  tru e  if  a is  a com-
plete intersection, o r  i s  the ideal o f (1.6).

The equivalence o f  (i)  and (ii) is clear. W e prove the theorem

by induction on s ,  and to start it we add the trivial case s = r ,  being

careful to strengthen ( ii)  to include the condition I c  a. The con-

clusion (a )  in  this case is just M acauley 's theorem ([6 ]) , and (b)
follows because a is a relatively Cohen-Macauley ideal.

Lemma ( 2 .3 ) :  Suppose s >  r .  T h e  generators (a l , ...„ as )  o f  I
m ay  be  chosen  so  that I '  =( a l , as _ i ) i s  o f  the f o rm  l ' = a  n b',
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w here height b '  > s - 1  a n d  height (a + b ')> s .

Assume the lem m a. W e m ay apply the induction hypothesis to

the ideal I '.  Thus depth (R Ib ')> n— s-I-1  i f  b ' is chosen appropri-

a te ly , a n d  in  particular n o  associated p r im e  o f  b '  has height

> s - 1 .  Thus n o  associated prim e of b ' contains o n e  o f  a .  Since

height b > s ,  th e  elem ent a s  i s  R/b'-regular. P u t  b" =  b '+(a s).
Then height b " > s  and depth (R lb")> n—  s . On the other hand, since

as Ect we have

z=_»+(a s)_—_(ct n b')+ (a s ) = a  fl b".

( I f  xEct n b", then x  b '+ ya s w ith  b 'E b ', and x E a .  Thus b 'E a,
whence xE (a n W)+(a s). Conversely, i f  x=b' +ya s  w i t h  b'Ea n b',
then xEct, hence x E c tn b " .) This proves assertion (b).

Assertion (a) follows from the exact sequence

(2.4) 01 ' I (as)! I ' n (as )  —> 0.

Since a s E a but is not in any associated prime of b, the term on the right

in (2.4) is isomorphic to R /b ' by (1.5). The exact sequence 0
R R IP --0 -0  shows that depth I ' > n — s-1 -2  i f  s > 1 .  Therefore

depth I> n — s+ 1  by (2 .4 ) . If s= 1  we have / ' = (0 ) , hence depth I >
n— s+1 in this case as well. Therefore depth (R II)> n— s, as required.

It remains to prove the lemma, which is done by a general position

argum ent. Since a satisfies G 8 - 1 ,  so does I, because of (ii). Put M v=
Il(a i ,  . . . , a , ) I  s - 1 ) ,  and d en o te  b y  C  the locus of points

o f  Spec R  at which M "  requires at least i  generators. W e  w a n t to

choose a l , ..., a s  so that

(a) codim i  for v + i< s  and i >
(b) codim n v ( i) )  v+ 1 for L., < s,
(c) c o d im  cy>1., fo r I.) < s.

These conditions amount to G5 _1, if 1.)= 0 .  Suppose generators chosen

so that they hold for all < 1 . , ( < s - 1 ) .  Then we can adjust a,„ so
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that its residue in Mv - ' is nonzero on every component of C T ' (i>  1
a n d  i+ t)-1  < s )  a n d  o n  every component o f  (C r ' n v(i)). It

follows that no component of C r 1 is  a component of C, hence that

codim Cli> min ((codim Cr'± l), codim  C ,  s )> L H - i ,

i f  i> 1  and

Thus (a ) holds for v. S im ilarly ,

codim (CT n V(/))

>m in  ((codim (Cr l n v(i))+1), codim s) > v+1,

and codim CT> v. S e t t i n g  p= s —i, w e  o b ta in  codim C r1 > s -1
and codim (Cf - 1  n v (/ ) )> s .  Since /  a  in  codimension < s , this

proves the lemma.

Exam ples (2.5): Let a be the ideal of a rational triple point at the

origin in 4-space (cf. (1.7)). Then three functions a l , a2 , a3 vanishing

on a will, in general, cut out the surface together with a 1-dimensional

residual intersection. When this is so, the ideal /=(a i , a2 , a3 )  cannot

have the origin as associated prim e. O n  the other hand, if a were

not a relatively Cohen-Macauley ideal, then I  would always have the

origin as associated p r im e . An example o f such an ideal is a -=  112 fl
p34 , where bi j  i s  the p lane xi = x 1 = 0 .  T h e  elements x 1x3 , x,x 4 ,

x 1x4 + x 2 x3 generate an ideal of the form a n b, where b is primary to the

origin (x1, x2, x3, x4 )•

Rem arks (2.6): (a) The existence of an ideal / as in theorem

(2.1) is equivalent with the assertion that c8+1> s  (s > r). Thus a

natural condition o n  a  would be G i :  c i> i - 1  for 1 = 2 ,  ..., s ,  i.e.,

that ideals as in  the theorem exist fo r every s' such that r<s' <s.
W e do not know what is true under this weaker hypothesis.

( h )  Even if a is not relatively Cohen-Macauley, one can still draw

some conclusions about depth (Rib) i f  the condition on  th e number
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o f generators o f a  is strengthened suitably.

3. A  criterion  fo r  unmixedness.

W e can  ru le  ou t embedded components for certain ideals by

strengthening the conditions on the number of generators. W ith the

notations of the previous section, we will say that an ideal a  satisfies

G s
+  i f  s> r= h e ig -ht a  and

(i) cr  = r
(ii) c1 > i + 1  fo r  i= r + 1, s.

Clearly, an ideal a  satisfying G oo
+ c a n  have no isolated component of

codimension > r.

Corollary (3.1): L e t a=a i n n a , be a prim ary  decom position,
and  le t a- b e  the intersection of  those q i of  m inim al height r. A ssume

th at  d . is re lativ e ly  C oh en -M a ca u ley , an d  th at  a  satisf ies G t. T h e n

ev ery  associated prim e p  o f  a  o f  he igh t > r  has he igh t > s .  In  par-

ticu lar, i f  a satisf ies G oo
+  th e n  a is unm ix ed (i.e ., a= d).

P ro o f : Assume the contrary, so that there is an associated prime

of a, say of codimension s. Since G s
+  holds, we may choose elements

a 1 , ,  as _, Ea which generate a  locally at p , and we may moreover

suppose that I =  as-1 )=  a n b, where c o d im  b > s -1 .  Thus

(2.1) implies depth ( R I I ) > n — s + 1 .  Since p is  an  associated prime

of a and / = a  locally at p, it follows that 1:) is an associated prime of I.
But then depth (R II )< n — h eigh t p = n — s, a  contradiction.

Exam ples (3.2): (a) T h e  ideal a =  (x  x  x x  x x 1 of\__ 1_ 3 , - 2 - 4 , -1 - 4 - 2- 3, _
(2.5) satisfies Got but a is not relatively Cohen-Macauley and a has an

embedded component. T h e  ideal a '= (x 2 , x y )cR = k [[x , A ]  satisfies

G ,  is relatively Cohen-Macauley, and a' has an embedded com-

ponent.

( b )  These results seem too weak to apply directly to general
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d e te rm in a n ta l varieties (cf. [3 , 5 ]) , but certain cases can be treated.

Consider for instance the ideal ak defined by the minors o f order k  of

the generic k x (k + 1 ) matrix

X jj

  X l c k + 1  I

over a field K .  Let I  be the ideal o f  K [{ x ii} ]= R  generated by the

two minors containing the first ( k - 1 )  columns. Then it is easily seen

that / = a k  n a k _ i, where ak_ i  is the ideal generated by the (k -1 ) - r o w e d
m inors o f th e  k x ( k - 1 )  matrix ( x i i )  (i = 1 , k ;  j = 1 ,  k - 1 ) .
Proceed inductively to define a i  by the figure

where a i is generated by the maximal minors of the boxed i  by (1+1)
matrix containing the upper left entry x 1 1 . T h e n  a l , ..., ak  is a chain

in  th e  sense o f  D u b re il (cf. § 1 ) ,  and at i s  a complete intersection.

Therefore ((1 .1) and (1 .3)) the associated ideal d i  is relatively Cohen-

M acau ley  for each i. N ow  suppose that there are m  independent

columns in a particular matrix. Then a k  is generated locally at the

corresponding prim e of R  by the k — m + 1 minors containing these

columns. Since the locus of matrices whose rank is m  o r  less has

cod im ension  (k — m)(k — m +1), we have ci(ak)---- i (1 — 1 )  i f  i = 2, ...,

n + 1 .  Hence G t  holds for nk (and similarly for all ai ), and so

Corollary (3.3): The d e te rm in a n ta l id e a l  ak  is  r e la t iv e ly  C oh en -

M a ca u le y , and R lak  is  C oh en -M a cau ley .

4. Generalization to mixed ideals.

The previous results have natural generalizations to mixed ideals
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a. We will state these without proof. The proofs are routine extensions

of the above arguments.

Let a  be an id ea l o f R.

Definition (4.1): A n (R, a)-sequence (a l , . . o r )  is  a sequence of

elements of a such that for every i < r  the ideal (ai, a i) is equal to

a locally at every point of codimension < i  i.e ., that = (a i , a i ) =
a Fl bi, w h ere  c o d im  b i> i.  A n  (R , a)-sequence is  c a l le d  g o o d  if
depth R / / 1 > n - 1 f o r  i=1 ,

Thus the existence of an (R, a)-sequence (a l , ar)  is equivalent
w ith the condition G r

-  for a  (c f. (2.6)).

Theorem (4.2): S uppose a  satisf ies Gr _ i . T h e n  if  one (R,
sequence (a l . ...,a r ) is good, so is any  other.

W e will call such an ideal r-g o o d . T hus a i s  ca-good if an d  only
i f  it satisfies G „„ and is  " re la tiv e ly  Cohen-Macauley".

Th eorem  (4.3) : S u p p o s e  th a t  a  is  ( r-1 ) -g o o d . Then
depth (R h)  i s  constant for all id e als  I  o f th e  f o rm  I  - - ( a i „
=  a fl b w ith  codim b> r.

Theorem (4.4): Suppose t h a t  a  satisf ies the f ollow ing condi-
tions f o r  s > r :

(i) Gs-1
(ii) Ev ery  associated prim e p of a has codim p r  or codim p > s
(iii) a  is r-good.

T hen a  is s-good.

Theorem (4.5): Suppose th at  a satisfies
.( i ) G;-E

(ii) >  i+  1  f o r  i=r+1 , . . .„ s  (notation o f  § 2).
(iii) a is r-good.
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T hen ev ery  associated p rim e  p of  a h as height p  < r  o r height p > s.

5. Applications to critical points of maps.

In this section, we work with maps f : X  Y  of schemes of finite

type over a field K .  T h e r e  are analogous assertions for maps of

analytic or algebroid spaces, with similar proofs.

We will call f  an im m ersion at :rE  X  if the fibred product X x X

is isomorphic to the d iagonal _1- , locally at (x , x ) (i.e., if f  is unramified
at x , in Grothendieck's terminology ([4])). Assume that f  is a  generic

immersion, i.e., that it is an immersion on a dense open set of X . T h e n

we can write the product as a scheme-theoretic union X  x X  =  U  D

for some closed subscheme D  o f X  x X ,  whose associated components,
Y

at least, a re  uniquely determined. The scheme D  may be viewed

intuitively as the "double locus" of f .  Set-theoretically, D— (D nzi)
is the set of pairs of distinct points (x i , x 2) of X  with f ( x i ) = f ( x 2).

Theorem ( 5 .1 ) :  W ith  th e  abov e  notation , assu m e  Y  sm ooth of

dim ension k , an d  X  a local com plete intersection of  dim ension n. Then

ev ery  isolated com ponent o f  D  h as  d im en sio n  at least 2n— k.

P r o o f :  If the component D o in  question is not embedded in the

diagonal d, the bound on its dimension follows from standard dimension

theory using calculations of the type b e lo w . It  is  the embedded case

which requires the results o f § 1 , § 2 . We choose a point xE  X  so that

(x , x )  is on D o but not on any component o f higher dimension. Our

problem is local at x ,  so we may assume that X ,  Y  a re  complete in-

tersections in affine spaces A , with coordinates (x i , ..., x , ) ,  (y i ,

y ,v )  respectively. W e can, moreover, suppose that y i , y k  i s  a

regular system of parameters everywhere in  Y  (i.e., that the projection

Y-÷ Ale is etale). Then the map f  is determined by equations f i (x i ,

x m ) = y i  ( i= 1 , N ) ,  and the fibred product X  x X  is the closed
Y

subscheme  { (x , x  , f  (x ))}  o f A m x  An ' x  A N = W  defined by
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( i ) the N — k equations defining Y  in  AN

(5.2) ( ii)  the 2(nz —  n) equations defining X  X X  in AtmX Atm

(iii) the 2N  equations f i(x ')=  f i(x ")=y  (i= 1 ,N ) ,

where x;, x ' are  coordinates in the first and second factors of the triple

product. But since Y i , y k  is a regular system o f parameters in Y,

one sees immediately that the equations (iii) fo r  i =1, k, together

with (i) , ( ii) , already cut out X  x  X  locally at the point in question.

Thus X  X X  is defined by
Y

N — k+2(m — n)+2k=2m +N +k-2n

equations in  (2m+N)-space.
Moreover, the d iagonal J = { (x, x , f (x ))1  i s  a  lo c a l complete

in tersection  in  W . Therefore theorem (2.1) im plies that X x X =
Y

X U D  f o r  suitable D  o f  depth > (2m+ N ) —  (2 m +  N  —2n)=
2n— k, provided that dim D < 2 n — k. Thus in  any case dim D >

2n— k, which completes the proof.

Corollary (5.3): L e t  x  b e  a n  i s o l a t e d  s i n g u l a r i t y  o f  a n  n-
d im en s io n a l  v a r i e t y  X/ o v e r  an  a lg e b r a i c a l l y  c l o s e d  f i e ld  K .  A s s u m e

th a t  th e  n o rm a liz a t io n  X  o f  X7 i s  a  l o c a l  c o m p l e t e  i n t e r s e c t i o n  ( f o r

instance, t h a t  X  i s  sm o o th ) ,  bu t th a t i s  n o t  n o rm al a t  x. Then

the  tangent s p a c e  t o  fc  a t  x  h a s  dim ension a t  l e a s t  2n.

For, if k is the dimension of the tangent space to X  at x, we can

find an embedding of into a smooth k-dimensional scheme Y, locally

at x .  Since x is an isolated singularity, we may suppose X A  outside
of x. Consider the map f :  X —  Y .  This map is finite, and an embedd-

ing except above x. Thus X  x X U D , where D  has dimension
Y

zero. I f  k<2n , then (5.1) implies that D = 0 ,  hence that f  is  a  1-1
immersion. S ince it is a  finite map, it  is  a  closed embedding with

image X :  in other words, X = . .



320 M . A rtin  a n d  M . Nagata

Th e first in terseting case of th is  co ro llary  is  n = 3 :  A  3 -fo ld  in
5 - s p a c e  w i th  i s o la t e d  s in g u la r i t y  c a n n o t  h av e  a n o n s in g u la r  n o rm a li -
zation.

W ith regard to (5.1), we should rem ark that for a smooth variety
X  the locus C of points at which f  is not an immersion has dimension

at least (2 n — k -1 ).  This is because C (the "cusp locus") is, in terms
of local coordinates x i , x n ; y l , ..., yk, set of points o f X  at which

Oy
the jacobian --3-x  h a s  r a n k  < n ,  w h ich  is  a  determ inantal varie ty  of

codimension > k — n + 1  ([3]). One sees easily that  C = D fl J.
Now consider the case th at k=2n, and that f  has isolated critical

points, i. e ., that X x X = z i U D  w ith  D  of dimension zero. Then,
Y

following Mumford, we can introduce a measure 8 of degeneracy of the

map f  as fo llo w s : The kernel €:

(5.4) 0  — ±  E 0 X x  X OA'

i s  o f fin ite length , and we define

(5.5) 8 ( f ) =  .7- C h M K  E.

The point is that th is dimension is stable under deformation of f :

Theorem (5.6): L e t  S  b e  a  noetherian s c h em e ,  an d  le t X , Y  be
s ch em e s  o f f in i t e  t y p e  o v e r  S, w h e r e  X  i s  a r e la t iv e  com p le te  in te r s e c t io n

o f  r e la t i v e  dim ension  n  a n d  Y  i s  s m o o t h ,  o f  r e l a t i v e  dim ension  2n.
L e t  f :  X -->-Y be an  S-map w h o s e  c r i t i ca l  locus i s  of  relativ e dim ension
zero. T h en  t h e  0 x x x -module E  o f  (5 .4) com m utes w i t h  base change

Y

S , an d  is  O s -fla t.

P r o o f :  The fact that E  commutes with base change is  clear, since

Ox is O s -flat. T o  p ro v e  E  flat, the key case to consider is that S  is  the

spectrum o f a  discrete valuation r in g . F o r , b y  a  lim it argument we
m ay suppose S affine, of finite type over Z , and hence a subscheme of
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an entire scheme S '. S in c e  X  is  a local complete intersection, it is

obtained locally at any pair of points (x i , x 2)  by base change from a

complete intersection X '  o ve r  S '. S im i la r ly ,  Y =  Y' x S  locally

for some smooth scheme Y. Then Y '  is etale over affine space, and

one sees immediately that f  extends to an f ' : X '  Y ' in some etale
neighborhood of (x l , x 2)  in X .  Of course, the critical locus will be of

relative dimension zero near S .  Thus we are reduced to the case that

S = S ' is entire, hence to showing that the "local rank" of c at a point

o f  X  x X  does not drop under generalization, hence to the case that
Y

S  is the spectrum o f a  discrete valuation ring.

Consider this case. As in the proof of (5.1), we can cut out X  x X
Y

in  W = A m x A m X  A N locally by the equations (5.2) w ith  1=1, k

and k  =2 n , where A now denotes affine  S -space . Then dim

2 m ± N ± 1 . Thus theorem (2 .1 ) shows that, locally at any closed

point lying over the closed point of S , the depth o f X  x X  is at least
Y

1. Therefore since the critical locus is of relative dimension 0 , X  x X

is S-torsion free. Hence c  is torsion free as well, and so is flat.

C oro llary (5.7): T h e  n u m b e r 8 ( f )  is  a n  integer.

T o  prove, this we may deform f  arbitrarily over a  henselian base

S , because by (5.6) the local contribution to 8 in the neighborhood of

a point p  o f X  x X  will remain constant. (Since S  is henselian, E  will
Y

split off a finite 0 5 -module c o whose support above the closed point

is p ,  and the local contribution is --(rank  c o ).) Thus we may assume

X  smooth to begin with. Then f  may be deformed into an immersion

as is easily seen using the Jacobian matrix of f . N o w  in this case the

product splits: X  x X=Z111D , and  the symmetry o f th e  product
Y

induces a free Z/2 action on D .  Therefore 0 D ,-, c  and dim A - OD  is

even.

Actually, it is not difficult to show that f  may be deformed into a

map whose only critical points are nodes (normal crossings). For such
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a map, 8 is obviously the num ber of nodes. Thus in general 8 measures
"the number o f nodes equivalent to the singularity of f " .

Remark (5.8): (Mumford) T here is a related invariant, namely
the ran k  o f the cokernel C:

y x C O.

(In  fact E O x ®  0 y  C.) Suppose for the moment that X  is a smooth
cu rv e . T h en  the image o f  X  in  Y  is  o f  codim ension 1, hence is
g iv en  lo ca lly  b y  one eq u a tio n . I t fo llo w s ea s ily  th a t fo r  a  smooth
family of maps f :  X —>- Y, the images .212  c  Y form a flat family. T h u s
th e re  is  an exact sequence 0  OÎ—> Ox — >  C -0 , from  w hich  one

deduces th at C  is O s -flat. T h u s  d im  C  do es n o t change when we
deform f  in to  a m ap  hav ing  on ly  o rd inary  nodes, fo r  w hich  direct

exam ination  shows th a t d im  C  = 8 .  H ow ever w hen A ' has h igher
dimension, dim K  C  is  n o t  invariant under deform ation, because the

images X ' w ill not form  a flat f a m ily ! T h u s  8  /  dim K  C  in  general.

Consider the case that X  consists of 3 copies of P 2 m app ing via f  to 3
planes in  Y = P 4  passing through a given point y .  Let be the union

of these planes, and let x i , x 2 , x 3  b e  the inverse image of y. Then the

condition th a t a trip le (0 1 , 0 2 , 03 )  o f functions defined locally at (x i ,

X2 , x 3)  lie  in  OÀ
, E  Ox  is  th a t 0 1 (x 1 )= 0 i(x i)  if i= 2 , 3  (two conditions),

and th a t certain relations am ong the partial derivatives o f 0 i a t  x i

h o ld . Since the dimensions of the tangent spaces to  X  a t  x i add up
to 6, while the tangent space to 0 " , at y  has dimension 4 , there must be
two independent relations. T hus C= O x / OA,  i s  4-d im ensiona l. On

the other hand, the generic m ap X  Y will have 3  normal crossings
for w hich dim K  C = 8 = 3 .  Hence 8 (f)= 3 .
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