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The theory of transformations of Finsler spaces has been studied
by several authors and many results have been obtained. (See, for
example, [6] , 1 ) p . 199; [23] , p. 172; [27] , p. 1 8 1 .)  Almost all of the
authors a re  concerned with th e  so-called extended point transfor-
mation composed of a point transformation Tc' -= xi+ X l(x )d t of the
manifold M and y =y'+6, X '(x )y ldt, where X 1 (x ) are components of
a tangent vector field X on M and y'=  x. When the extended point
transformation is treated in the tangent bundle T (M ), we have the
tangent vector field

X= X' (x)Waxi + (a, x'(x))yja/ayi

on T (M ), which is called the complete lift of X  [28] or the derived
vector field from X  [16] , p . 187.

There are, however, some authors who a re  concerned with the
generalizations of the extended point transformation. For instance,
the present author introduces the notion of linear transformation of
the tangent bundle [11 , 12 , 14 , 16 ,] . It is shown that the tangent
vector field on the tangent bundle appearing in the case of the linear
transformation is written as the sum of tangent vector fields X  and

1 ) Numbers in brackets refer to the references at the end of the paper.
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X *  X ( x ) y '/ ay'

where X 1
3 (x ) are components of a tenso e Id of (1, 1)-type on M.

Moreover there are some authors [17, 18, 19] who consider an
infinitesimal transformation X-1 = x 1 + X `(x , y )dt, where X i(x, y) are
components of a vector field X  in a sense of the differential geometry
of spaces of line-elements. A reasonable formulation of such a trans-
formation in a global viewpoint is the starting point of the contents
of the present paper.

After the basic concepts of Finsler connections are given in the
first section, we shall define the concept of a V-transformation in
the second section. The definition is quite similar to the one of a
V-connection introduced by the present author, which was called an
F-connection at first [15] . In the third section, the theory of infini-
tesimal V-transformations are developed by using a  general Finsler
connection. T h e  fundamental theorem o f  infinitesimal V-transfor-
mations is proved in the fourth section: The tangent vector field
on the tangent bundle appearing in  the theory o f  infinitesimal V-
transformations is written as the sum of the tangent vector fields

X ,= X' (x, y)/ax  + ( 8; X i(x , y ))y ' /ayi,
and

X.= X ' (x , y )y 5 a/ay 1,

where X°(x, y)(resp. X ',(x , y ))  are components o f  a  vector field

(resp. tensor field of (1, 1)-type) in a sense of the differential geometry

o f  spaces of line-elements and Nki(x, y)6, are the partial

differential operators with respect to a non-linear connection with the

connection parameters Nk,(x, y). Therefore it m ay be said that a

V-transformation is  a  natural generalization o f an  extended point

transformation and a linear transformation, because the X, (resp. Xp)

is of the similar form to the X  (resp. X * ) .  Since the components

o f  tensor fields appearing in the differential geometry o f  spaces of

line-elements are functions of variables x ' and y' in general, it seems
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proper to deal with the V-transformations in the theory o f transfor-
mations of such a space.

It is quite interesting and important problem to study the
behavior o f  some geometric objects under V-transformations. The
isometric V-transformations o f Finsler metrics will be discussed in
the final section of the Part I  o f the present paper. The Part II
will be concerned with the behavior o f some special Finsler connec-
tions under V-transformations.

§ 1 .  Introduction to Fins ler  connections

Let L (M )= (L, 7VL, M, G ) be the bundle of linear frames over a
differentiable n-manifold M , where nL : M  is the projection from
the total space L  on the base space M  and G =G L (n , R ) is  the
structure group. The tangent bundle T (M ) =  (T , nr , M, V , G) over
M  is the associated bundle with L (M )  having the real vector n-space
V with a  fixed base (e1, •• • , e„) as the standard fibre on which G
operates, where nr  :  T-->-M  is the projection from the total space T
on M . Then the projection nT induces the principal bundle ni- 1 .L(M )
over T ,  called the Finsler bundle o f  M  and denoted by F (M ) =
(F, ni , T, G ), where ni  : F-1  T  is the projection from the total space
F  on T .  The total space F  is given by F  {(y, 2 ) E. T x  LInT(Y)
=7rL(z)} and diffeomorphic to  the product manifold L x V  by the
mapping

(1. 1) c  :  ( y ,  z )  E  z ' y )  EL  x V,

where z ' : T--1-T7 is the inverse of the admissible mapping a : v E V
I - ->zVE T. The diffeomorphism C is composed of two mappings n2

(y, z)E F■—>-zEL and e  : (y , z)EF i--->z 'yEV . The former 7r2 1S the
so-called induced mapping, while the latter e  is called the element of
support which plays an important role in the Finsler geometry.

The present author has written the monograph "The theory of
Finsler connections" [16] in 1970. Several concepts and results given
in the monograph will be used in the present paper without special
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reference. We shall, however, sketch the outline of the theory for
the latter convenience.

(1. 2 )  Definition. A  Fin sle r connection F r  o n  a  differentiable
manifold M  is  the pair (J , N )  o f  a  connection r  in the Finsler
bundle F (M )  and a non-linear connection N  in the tangent bundle
T (M ).

There are other two definitions of a Finsler connection FT  equi-
valent to (1. 2) ; the one is a Finsler pair (T ', TO  and the other is
a Finsler triad (Tv, N , T h). In order to give them, we shall introduce
the necessary concepts previously.

(1. 3) Definition. A  vertical connection r- in  F ( M )  is  a distri-
bution uEF-->F„'OEF„ (the tangent space to F  at a point u) such
that for any point x E M  its restriction to  the subbundle F (x )  of
F ( M )  over the fibre 7-6 1 ( X )  is a connection in F(x ).

The subspace =  {X E E J  7L; X = 0 } C  F„ is called the induced
vertical subspace and the distribution Fi : uEF— .F„' is a kind of a
vertical connection, which is called the vertical fiat connection. The
vertical subspace F." is spanned by the fundamental vector fields
Z ( A ) , A L ( G )  (the Lie algebra of the G), while the induced vertical
subspace F.' is spanned by the induced fundamental vector fields
Y (v), v  G V , defined by 7r2' Y (v )=0  and Ei  Y (v )--S (v ), where S(v)
is  the tangent vector field on V, corresponding to v = vh e, E V and

having the constant components v'. The name "vertical flat connec-
tion" of F l is justified by the equation

(1.4) [  Y ( v i ) ,  Y ( v 2 ) ]  = 0 ,

for any v1 , v2E  V . On the other hand, a general vertical connection
is spanned by the v-basic vector fields .13"(v), corresponding to

v e V, defined by Bh(v)„— l„•a'(S(v)€ ( 0 )  at u= ( y, 2 )  F ,  where 1„

denotes the lift  to  the point u with respect to  the connection P .
Then the Cartan tensor field C of is introduced by the equation
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(1. 5) Y(v) = B "(v ) +Z (C(v)).

The Cartan tensor of the flat F i vanishes obviously.

Now we are in a position to give the second definition of a
Finsler connection as follows.

(1. 6) Definition. [21] A  Finsler pair (T", T"') o n  F  is  a pair
of two distributions u  F--)T „' and uEF---)T .' such that the latter
P ' is a vertical connection in F(M ) and

(1 ) F.=1" „he r ( 2 )  z-;r„h=r,', g ,

where F.' is the vertical subspace of F. and rg  the right translation
of F  by gEG.

It is shown that r”-r„her„,' gives a  connection in F  and N,
u= (y , z ), does a non-linear connection N .  Thus we obtain

the Finsler connection Fr = N )  from the Finsler pair (P ,
Conversely, consider a Finsler connection F r= (T', N )  and denote by
1„ the lift to  a  point u E F  with respect to  the T .  I f  we put
r„h=1„Ny  and r:=1„Ty ', where u= ( y, z )  and Ty " is  the vertical
subspace of the tangent space Ty ,  then the pair (rh, r.) is  the
Finsler pair.

To state the third definition of a Finsler connection we need
another concept as follows.

(1. 7) Definition. [15] A  V-connection T y, in L (M ) or on M  is a
family {r( ,) IVE V} of distributions r ( ,)  on L  corresponding to every
v E V, such that

( 1 )  L .=  ( ) .(1)L,v, (2 )  r ;  r ( ,) z =r ( g _i„) z , ,

where L :  is  the vertical subspace of the tangent space .1„ and 7 g

the right translation of L  by g cG .

Then the third definition of a Finsler connection is given as
follows.
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(1. 8 )  Definition. [15] A  Fin sle r triad  (Pr, N , T v ) on M  i s  a
triad of a V-connection i n  L (M ), a non-linear connection N  in
T (M ) and a vertical connection p  in F(M ).

Consider a Finsler tr iad  (T v , N , T v ). Then 17= {XEF,j2t X
E N,, it; X E r,,„,u = (y, z), y= zv} together with the T" gives a Finsler
pair (Th, T'"). Conversely, if a Finsler connection F r  =  ,  N ) =
(T h, I'') is  g iv en , the family y  o f  Poo defined  by r ( ,) , u

(zv , z ), is  a V-connection and thus we obtain a Finsler triad (1"1,,
N ,

As we have seen, the v-part Ty of a Finsler connection FT =
1- ' )  is spanned by the v-basic vector fields ./3"(v) of the vertical

connection r" ,  w h ile  its  h-part Ph is now  spanned by the h-basic
v ector f ields B h(v ), corresponding to v  V, defined  by Bh (v) „=
1„• 1,(zv), where u= (y, z )  and 1„ (resp. y )  denotes the lift to  u
(resp. y )  with respect to I '  (resp. N ).

We shall describe the above contents in term s o f coordinates.
Let U be a coordinate neighborhood of a coordinate (x `) of the base
manifold M . The 7 6  U )  is  the coordinate neighborhood of the total
space T  o f T (M ) in which the coordinate (x', y ')  of a point y is
such that y= y 'a/8 x '. N ex t rcE'( U) i s  the coordinate neighborhood
of the total space L  o f L (M ) in which the coordinate (x ' z „') of
a point z  is  such  that z= (z,' /ax'), a=1, • • • , n. Then n j ' • (U )

7r; 1 n i, 1 ( U )  is  the coordinate neighborhood of the total space F  of
F (M )  in  which the coordinate (x`, y', z„`) of a point u  ( y, z )  is
such that y= (x', y') and z = (x', z2).

Now the v-basic vector field 13' (v), corresponding to v= G V,
is written in the from

(v) = z„' v° (a / ay' — , a / a z i , ) ,

and C 5
1 (x, y) in the above are the components of the Cartan tensor

field C and also the connection parameters of P .  The h-basic vector
field Bh(v), corresponding to v=21' e, V , is written in the form

Bh(v)= z„ v' ( /ax' — N',a/ayl— eFklia/azi,").
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If we consider a Finsler connection F r as the Finsler triad (T v , N,
P ') ,  then Fk ii (x, y) in the above are the connection parameters of
T, and N i i (x, y) the ones o f N.

The components of the element of support e are equal to y' at
a point u= (x 1, yi, z„'). In general a tensor field K  o f (r, s)-type in
a sense of the differential geometry of spaces of line-elements is the
entity having n"+" components K5 ,'::: ( x ,  y ) and thought of as a mapping

K :  ( t h e  tensor space of ( r ,  s)-type constructed from V)
satisfying the equation K- r g = g 'K .  Such a tensor field K  will be
called the Finsler tensor field of (r, s)-type. The element of support
e is  a Finsler tensor field of (1, 0) -type. Let us consider a Finsler
tensor field K  of (1, 0)-type, for brevity. T h e r e  are well-known
three kinds of covariant derivatives given by

K i i = a; Ki— Nk K i+ K k Fk ii

(1. 9)' K ili=b;K i+K k Ck i ,

Kill i =6 3 Ki.

These are the components of the respective Finsler tensor fields 4h K,
K  and J°K defined by

(1.9) dh K (v) = Bh (v) K, K (v ) = B "(v )K , A° K(v) = 17 (v) K.

As to the v-covariant derivative Se of the element of support e, it
is shown that

(1. 10) d'e(v) = v+ C (e, v),

while the Finsler tensor field D  of (1, 1)-type arises from the h-
covariant derivative

(1.11) dhe(v) = D (v),

and called the deflection tensor field. The components D 3 o f D are
given by Di ,=ykFki,—AT' i .

The structure equations of a Finsler connection are written
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[B" (l), .13*(2)] = Bh (T(1, 2)) +.V R 1 (1, 2)) + Z(R 2 (1, 2)),

(1. 12) [Bh (1) , B '(2)] B h (C  (1, 2)) +.V / 3 1 (1, 2)) + Z(P 2 (1, 2)),

[13' (1), Bh (2)] = Bh(S1(1, 2 ))+ Z (S 2 (1, 2)),

where we wrote the letters 1, 2 merely instead of v z , vz E V. In the
structure equations, T , C  (the Cartan tensor field), 1?1 ,  P 1 and S 1

are called the torsion tensor f ields, while 122 ,  P 2 an d  S 2 are the
curvature tensor f ields. If the Finsler connection is such that D= 0
and C(e, v) =0 for any vE  V, then

(1. 13) R1(1, 2) =122 (e., 1 , 2 ) ,  P 1 (1, 2) = /3 2 (e, 1, 2),

S 1 (1, 2) = S 2 (e, 1, 2).

Finally, we shall refer to Cartan's Finsler connection C T  [4, 7,

13] . Let L (x ,y )  be a Finsler fundamental function. Then we con-

struct the so-called fundamental tensor field g=z 1V L 2 / 2 ;  the CT  is
uniquely determined by the four axioms

(1.14)
(1 )  d h g - = S g= 0,

( 3 )  S 1 =0,

(2) T = 0,

( 4 )  D =0.

The Cartan tensor C= trg/2 of C T  satisfies C(e, v)=C(v , e) = 0  for

any v E V and the connection parameters F,',, N i ;  and C 3
11. o f  CT

are used to be written as F*,',„ yhT*,` , and C .11. respectively.

§2 . Theory o f  V-transformations

It was seen in the first section that the connection parameters
F , ',  of a V-connection T v defined in  (1. 7 ) were functions of (xh)
and ( y h ) .  The condition (2) in (1. 7) is a little different from the
well-known condition Trg l -%= T „ . of a  linear connection ,  while the
condition (1) in (1. 7 ) is the same with the one of the I '  [10, 20] .
It may be said that F j

ik turn out to be the functions o f not only
(x ") but also (y 1.) as a  consequence of the condition (2) in (1. 7).
We now lay down the following definition which is closely related
to the condition (2) in (1. 7) as a matter of form.
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(2. 1) Definition. A  V -transformation itv  o f  a  differentiable n-
manif old M  is the family {a ( ) 1V e V} of transformations p( ,)  of the

total space L  of the bundle o f linear frames L (M ) over M , cor-
responding to every element y of the standard fibre V  of the tangent
bundle T ( M )  over M , such that the relation

g  • go o = p ( g - i  o •

holds for any right translation T g  of L  by g EG.

The property "positively homogeneous" is essential for geometric

objects in  spaces of line-elements. Although we shall not confine
ourselves in the present paper to deal with the geometry o f such
a space, we have to pay attention to this property o f  our V-trans-
formations throughout the present paper.

(2. 2) Definition. A  V-transformation pv of M  is called positively
homogeneous if itc,,o= poo holds for any y e V and any positive number
1-ER+.

From a given V-connection F v  , the unique non-linear connection
N  is derived by the equation Ny =a'o r ( o „  y= zv, where a„ : zEL
1--->zvE  T  is the associated mapping [15] . Such an N  is called the
associated non-linear connection with F v  . T h e  deflection tensor
field D  of a Finsler connection F T  ( [ 'r ,  N, Fr) vanishes if and only
if its non-linear connection N  is associated one with F v  . In  like
manner we shall obtain the unique transformation of T  from a  V-
transformation as follow.

(2. 3) Definition. Let pi, = twoy E V} be a V-transformation of M.
Then the transformation p  of the total space T  of the tangent
bundle T ( M )  is derived from ,ut, by the equation

POO = ay Poo(z) = (moo (z)) v, zv E T.

This is called the associated transformation with pv.
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Owing to the condition in (2. 1), it w ill be easy to  show that
the above p  is well-defined by the equation in (2. 3), independent of
the choice of the point (z, y) E L  x V  such that y = zv.

(2. 4) Proposition. I f  a  V -transformation p v  i s  positively homo-
geneous, the associated transformation p with pv satisfies the equation

p ,  where rh : y E T — ry E T  is  a  homogeneous transfor-
mation o f  T  by rER +.

It is here remarked that when we are concerned with the homo-
geneity property of geometric objects, the space T  should mean the
set of a ll the non-zero tangent vectors to M  throughout the present
paper. The proof of (2. 4) will be easy.

In order to derive from pv  a transformation i i  of the total space
F  of the Finsler bundle F ( M ) , it is convenient to do a transfor-
mation p* of the product manifold L x V  beforehand.

(2. 5) Definition. The l i f t  p *  of a V-transformation p v o f  M  to
the product manifold L  X V  i s  the transformation of L x V  defined
by

p* (2, y) = (p ( ,) (z), v), ( z ,  v )  E  L  x  V.

It is  n o ted  th a t the first component z  of the point (z, y ) is
transformed in connection with the second one y, while y itself is
f ix ed . The following proposition will be easily proved.

(2. 6) Proposition. I f  a  V -transformation pv is positively homo-
geneous, the lift p* o f pv to L x V  satisfies p* • rh* = rh* p*, where
rh* : (z ,v )EL x V 1— ).(z ,rv )EL x V  is a homogeneous transformation
of L x V  by rER +.

The notion of our V-transformation may be rather complicated,
because it is not a transformation but a family of transformations.
The following proposition w ill g ive it a clear character.
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(2. 7) Proposition. A  necessary and sufficient condition for a
transformation p *  of L x V  to be the lift of a V-transformation 12v
of M  to L xV  is that p* satisf ies

(
1

) 7
:  At

*
 = (2) * *

E  •  11
*

 -

w here 7: : (z ,v )EL x  17 1—>(zg,g- ly ) E L x V  is  a  rig h t translation
o f  L x V  by  g G  and e *  : ( z ,  y ) E L x V 1 —> y E V  i s  a  canonical
Projection.

P ro o f . I f  p *  is  the lift o f pv , then (2 ) in (2. 7) is obviously
a consequence o f (2 . 5 ). While (1 ) in (2. 7) will be easily verified
by (2. 1) and  (2 . 5 ). Conversely, i f  At* satisfies the conditions (1)

and (2) in (2. 7), we shall first construct the transformation p ( ,)  o f

L , corresponding to v E V, by

(2. 8) — ••  [ 3;"

where we used the two mappings

: LxV-->L, (2 , y ) 1 - > 2,

2 1 ->  (2 ,  y ) .

The family p v = { poo l  G  V } as thus obtained is certainly a V-trans-
formation o f M , because

T  g  moo =  g  • 7r: • .1-l*  • [3: = T C :  /i
*

 •  7 : •  [3:

_=_ 7r: • 12
*

 • -  •  7 g / 2 (  C I .0 • 7  .

The lift of this p v  coincides with the original p* , because

(p ( „) (z ), y) (n: • p* • 13: (2) , y ) = (n: p* (z , 2)), e* (z , 2)))

= (n: • p* (2, y ), e* • p* (z , 2))) = (z , y ).

This completes the proof.
We are now in a position to derive the transformation Ti of the

total space F  o f F(M ) from a V-tansformation p v  o f  M  as follows.

(2. 9) Definition. T h e  lift of a Vtransformation p v  o f  M  to
the total space F  of the Finsler bundle F ( M )  o f M  is  the trans-
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formation of F , defined by the equation 72=c- 1 •g*•e, where e is  the
diffeomorphism F--J,X V  given by (1.1) and i t * is  the lift of /.iv to
L x V .

Then we shall translate the condition (1 ) and (2 ) in (2. 7) into
the languages of the Finsler bundle F ( M )  by means of the diffeo-
morphism c and obtain

(2 . 1 0 ) Theorem. A necessary and sufficient condition for a trans-
formation 7.2 of F  to be the lift of a V -transform ation p i ,  of M  to
F  is that 72 satisfies

(1) . 2 -g• p=7.2•7 g  , (2) e •7i = e,

where 7 g  i s  the rig h t  translation of F  by  g G  and e  : F—.V . is
the element of support.

The theorem will immediately follow from the facts that e =

e
*
 • e, n 2 =- n: • e and z-g = c- l• 7 :  •  e. Similarly (2.8) will be translated

into

(2.11) P oo=  712 • tt

where c'• : z E L  2 ) E F .  Moreover, in  virtue of the
transformation LE= • h* •e : (y, z) E F  (  ry ,  z )  G F  by r ER+ ,  Pro-
position (2. 6) is translated into

(2 . 12 ) Proposition. I f  a  V -transform ation gv  is positively homo-
geneous, the lift 72 of g v  to  F  satisfies 72•,1-1—,H•72.

The lift Tc to F  will be given by an alternative and more con-
venient expression without use of the product manifold L x V  as
follows.

(2 . 13 ) Proposition. The lift 72 of a V -transform ation p v  to F is
written as 72= (p • n i , p(6)• n2  where p  is the associated transformation
of T  with p v  and 14E) i s  the iransform alion go,)Egv , corresponding
to the value V  =  e (u )  of the element of support e  at a point



V -Transformations of Finsler spaces 491

P ro o f . At a point (zv, y) EF, we have from (2.9)

ni•T a(21), 2) = iv  C- 1  (1 .1 (, ) (2 ) y ) =  (P ( v ) ( 2 ) ) V  =  ,a(zv),

n2 • 71(2V  , 2) = n2 • C 1 ( # (, )( 2 ) , y )  = p o o (Z ) .

If we pay attention to e (2 1 ) ,1 ) )= y , the proof is complete.

We now return to the consideration of more simple transfor-

mations than V-transformation. First, a  necessary and sufficient
condition for a transformation Tu of F  to be the one derived from a
transformation of the base manifold M  is that satisfies the following
four conditions [16] , p. 198:

(2.14)

Vg  • 12 g

e•Ta= e,

S„• ,u =-Tg• S„

Oh • Tuf  O h .

geG ,

vE V,

Here s, :  (y, z) F i- - .( y +z v ,z ) E F  is  a  transformation o f  F  cor-
responding to u E V and 0" is a V-valued 1-form on F  which is called
the h-basic form and defined by 0h=0.7.4, where 0  is the well-known
basic form on L  [20] . Secondly a theory of linear transformations
has been developed by the present author [11, 12] ; [16] , Ch. VI.
A linear transformation g  is by definition a transformation of T  such
that ,u is fibre-preserving and linear on every fibre. Then the trans-
formation of F  is derived from p .  Such a transformation Tu of F
is characterized by the first three conditions of (2 . 1 4 ) . Therefore
the concept of a linear transformation seems to be a natural generali-
zation of the one of a transformation of the base manifold M.
Moreover the concept of a V-transformation seems to be a  natural
generalization o f th e one o f a  linear transformation, because the
conditions in (2. 10) are nothing but the first two o f (2. 14).

In the case of a linear transformation p ,  the transformation g  of
the base manifold M  is induced such that n r . •  P = I i • n r .  Then, com-
paring the transformation p  with the one derived from ,u, we obtain
the concept of a special linear transformation called the rotation [11] .
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On the other hand, in  the case of our V-transformations, if the
associated transformation g  with a V-transformation pv  is fibre-preserv-
ing, then a generalization of the rotation will be obtained in the
following.

(2. 15) Proposition. A  necessary and sufficient condition for the
associated transformation p  o f T with a V -transformation p v  to be
fibre-preserving is that ni.• Pc,)=771.• P(,) holds fo r  any y1 , y2 E V.

P r o o f .  Assume that the above condition be satisfied. I f  we
take two points y, , i= 1 ,  2, of a fibre 76: 1 ( X )  and put t), = z- iy, E V for
a point z  nT, 1 (X) , we see ni.• Pcv,)(z)=IrL• g ( „,) ( z ) ;  it then follows
from (2. 3) that

i r  /2 ( =  71r (  ,u ) ( 2 )  y 1 )  =  77L. ( 11(,1) ( Z) )  =  n t ( ti 0 ,2)( 2 ) ) ,

so that

(2.16) n r•  P (Y 1 )= 7 tr•  1 1 (.7 0 ,
 if n r ( Y i )  = 7ET(Y2)•

This shows that p  is fibre-preserving. The converse will be easily
proved.

From (2. 16) we see that the p  induces the transformation p  of
the base manifold M  such that

(2.17) /1  7 rT  -  Tcr .1_z.

Consequently we obtain the differential IL  of it, a transformation of T,

and the n-ple differential p "  of p ,  a transformation of L  [16] , p. 187.
It is seen from (2. 3) and (2. 17) that

7 L (P (v ) ( 2 ) )  = n r (1 1 (2 1 )) )  =  •  n L (Z ) ,

which implies that two points p ( ,) ( z )  and , f ( z )  o f L  are on the
same fibre, so that there exists a unique g E G  such that p ( z )

= p '( z ) g .  From this fact we are led to

(2. 18) Definition. If a V-transformation p v  satisfies the condition
in (2. 15), we obtain the family a y = {croo lv E  V }  o f the mappings
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aco: L--->G, corresponding to every v e V , such that

P(v)(z) i f  (2) a w ( z ) .

The av is called the deviation of such a V-transformation ,uv.

In the case of a linear transformation, we have obtained the

important property of the deviation, that is (44. 3) of [16] . More
generally, we shall show

(2. 19) Proposition. The deviation av  satisfies

a ( ,)  7g  — •  a (v ) g e G ,

where g 1 denotes the inner automorphism  of G  by g - 1 .

P ro o f. It follows from  (2. 1) that Tg • P ( g )  ( 2 )  =  p ( o )  • 7 g  ( 2 )  for
z E L , which, owing to (2. 18), is written in the form

g ( l e ( z ) a ( g o ( z ) )=  l e ( 2  g ) a ( ,) ( z  g ) .

Since k e" commutes with the right translation V g ,  this proves the
proposition immediately.

The equation in  (2 . 18 ) is rewritten in  th e  form  p ( „) (z ) =
ti"(z a ( v) ( z ) ) ,  which leads us to

(2 . 20) Definition. The family of transformations p, = { 19( 0 1 V E V}
of L  given by p( o (2)—za( )(z ) for z E L , is called the V -rotation of

M, Provided that the family av {auo VE V ) of the mappings a ( ) :  L
-->G satisfies the condition in (2. 19).

The V-rotation p v  is certainly a kind of a V-transformation, be-
cause it follows from (2. 19) that

Tg • p( ,) (z)— z(a ( ,) (z)g)-----((z g )a ( g -i ) (z g))-- p( g - i ) - rg (2 ) .
-

I t  has been shown [16] that any linear transformation is  the
composition of the derived one from a transformation of the base
manifold M  and a rotation. On the other hand, in the case of our
V-transformation, this situation has been shown only when the con-
dition in (2. 15) holds. I f  we consider a general V-transformation,
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the similar situation will occur when we shall treat the infinitesimal
V-transformation, which will be proved in (4. 5).

§ 3 . Infinitesimal V-transformations

We shall be concerned with a one-parameter group of V-transfor-
mations pvt two, y  V }  o f M  with the parameter t. Then the
tangent vector field X,. of the total space F  of the Finsler bundle
F ( M )  is induced by the lift 72, of mv, to F .  Tut is the one-parameter
group of transformations of F .  The X,. will be called the infini-
tesimal V -transform ation. It follows immediately from (2. 10) that

(3. 1) Theorem. An infinitesimal V -transformation X m is charac-
terized by the two equations

(1) r;Xm=-Xm, geG , (2) X,h(e) =O.

The equation (1 )  is also written in the form

(1)' [X ,„ Z(A )] =0,

where Z (A ) is  a fundamental vector field on F.

If X ,, is  a  infinitesimal linear transformation, it follows from

(2. 14 ) (3 ) that X , satisfies the above (1), (2) and moreover

( 3 .1 )  ( 3 ) [X-m, Y(v)] =0,

where Y (v ) is  the induced fundamental vector field [16] , p. 201.

Next, i f  X ,, is  a  infinitesimal transformation derived from a  one-

parameter group of transformations of the base manifold M ,  it
follows from (2. 14) (4) that X,. satisfies the above (1), (2), (3)

and moreover

(3. 1) ( 4 ) Lmoh= O.

Here and throughout the present paper the notation ...f m will denote

the Lie derivative with respect to X,h.
Assume that a general Finsler connection F r be given on M.

Then with respect to F r the X,. is written in the form
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(3.2)B h ( v „ ) + 1 3 '( w m ) + Z ( A „ , ) ,

where v, and iv„ a re  V-valued functions on F  and A,„ is  an L(G)-
valued function on F, which are determined by X .

(3. 3) Theorem. In  the equation (3. 2), vm and wm a re  Finsler
tensor fields o f  (1,0)-type and Am i s  a  Finsler tensor field of
(1,1)-ty pe. Among them there is the relation

A m (s) = D(v m) + w m + C(E, w m),

where D  (resp.C) is the deflection tensor (resp. Cartan tensor) of
the Finsler connection under consideration.

P ro o f. At a point u E F  we have from (3.2)

=B h(g - 1 (v„)„)+13"(g'(w m)„)+Z (ad(g - 1 )(A )„).

Then (3. 1) (1) gives (v,h)„g =g - 1 (vm)„, (w m)„,=g - 1 (wm )„ and (A m)„g

a d (g ') (A m) „ ,  which prove the first half of (3 . 3 ). Next (3. 2),
(3. 1) (2), (1. 10), (1. 11) and Z(A)E= —A  lead us immediately to
the relation mentioned in  (3. 3).

(3. 4) Definition. If  every V-transformation pv ,  ( t  being fixed) of
a one-parameter group of V-transformations is positively homogeneous,

the infinitesimal V-transformation X ,  induced by /L i, is called posi-
tively homogeneous.

(3. 5) Proposition. I f  a n  infinitesimal V -transformation X „ is
positively homogeneous, then X, is (0)p.-h. in the sense o f (22. 6)
o f  [16] .

P ro o f. If we consider a real-valued function f  on F, it follows
from (2. 12) that

(rH'Xg )f=  lim (f J4-7.4 —f . ,H )/ t = (lim (f —f )/ t) .,H ,

which implies r1--11 X m =X „ and the proof is complete.
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(3. 6) Proposition. Assume th at  an inf initesim al V-transforma-
tion and a Finsler connection FT be positively homogeneous. Then,
in the equation (3. 2), v„ and A „ are (0)P.-h., while w„ is (1)p.-h.

P ro o f .  The Finsler connection Fr is positively homogeneous if
and only if th e  h- (resp. v-)basic vector field B h(v ) (resp. /3 v(v))
is  (0)P.-h. (resp. (1)P.-h .) [16] , p. 95, namely, rH'B h (v) = Bh(v)
and rli'13'(v )=B '(rv ) for r E R +. Moreover r H'Z (A )= Z (A ) is well-
known. According to these facts we obtain from (3. 2) vp.• v „ ,
wm • r1-1 = rw,, and A„.• rH =44m , which are required results.

Now we shall be concerned with the Lie derivative ...f „  with
respect to  an infinitesimal V-transformation X „.  In  terms of
the properties stated in (3. 1) are expressed by saying

(3. 7) Theorem. The Lie derivative 2 „ with respect to  an infini-
tesim al V -transformation X „ is characterized by  the equations

(1) X „Z(A ) = 0, (2) _Cu e = O.

Let us express the Lie derivatives of the h- and v-basic vector
fields of a Finsler connection with respect to an infinitesimal V-trans-
formation X ,, by writing

(3. 8) „Bh (v) = [X,., Bk(v)] — 13h (a(v))+ (al (v)) + Z(a2 (v)),

(3.9)_1' „Bv(v)--- [X „, .13'(v)] =.13h((v))+B(f3(v))+Z([3 2 (v)),

where a, a1, [3 and are Finsler tensor fields of (1, 1)-type, while

a2 and
 3 2

 a re  th e  ones of (1, 2)-type, as will be easily verified.

Substituting from (3. 2) in the above equations and using the struc-

ture equations (1. 12) of the Finsler connnection, these Finsler tensor

fields are written in terms of the h-, v-covariant derivatives, torsion

tensors and curvature tensors of the FT  as follows:

(1) — a(v) = dh v „+ T(v, v„)+C(v, w „) — A„(v),

(3. 10) ( 2 )  —  ( v )  =  w„(v) +  (v , v „) + .13 1 - (v, w„),

(3 ) —  a 2 ( v )  =  24,(v)+ R 2 (v , y,.) +  ( v ,  w,.),
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and
(1) —19(v) = vi,(v)—C(vu, v) = .(1° v„(v),

(3. 11) (2 ) —  (v ) =  z l' wu (v) — P 1 (v , y) + Si (v, w„)— A„(v),

( 3 )  —  02(v) = d'A u (v) —  P 2 (v„, v) + S 2 (v, w„).

We shall consider (2 „13h(v))e and (..f u /P (v ) )e . For example,

it follows from (3 . 8 ) that

X „(Bh (v)e) — 13' (v)(X,,e) = Bh (a(Y ))e± Bv (a1 (0)e-1- Z(a 2 (Y))e,

Then (1 . 10), (1 . 11) and (3 . 1 )  (2 )  lead us to the first equation of

the following (3 . 1 2 ) . In like manner the second of (3 . 12) will be

obtained from (3. 9).

(3 12)
(1) „D (v ) =D (a(v ))+ C(e, (Y )) (Y) — ce(e, y),

. 
(2) „C(e, v)= D([3(v))+C(e, 0 1 ( 0 )  +1(v) _ 2 ( ,  y).

If we restrict ourselves to deal with some special Finsler connections,
these equations together with (3 . 3 ) give a  clear and interesting

result as follows.

(3 . 1 3 )  Proposition. If the Finsler connection  F r is  su ch  th a t
D=0 and C(e, v) =0 for any ye V , th en

(1) wp.= A „e, ( 2 )  al (Y) = cr2 (e, y ), (3 ) 0 1 (v )  = j 3 2 ( ,
 y),

fo r  any V G  V .

In some sense this may be thought of as the analogue of (1. 13).
The condition for Fr mentioned in (3. 13) is not a strong restriction,
because the well-known Finsler connections due to  Berwald, Cartan
and Rund satisfy the condition. Its geometric meaning was made
clear in  [16] , Ch. IV.

We shall turn to treat the so-called Jacobi identities satisfied by
Lie products of the X ,. and two basic vector field:

[X ,„ [P(1), Bh(2)] ] +  S 1 2  {  [B h (1 ) , [ P ( 2 ) ,  X ,.]] =0,
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[X„, [Bh(1), Bh(2)] + [B"(1), [Bh(2), X u ]
+ [B '(2), [X,,, B "(1 )] =0,

[X,„ [13"(1), B'(2)] ] + S 1 2 { [iP(1), [B"(2), Xp.] I )  =0,

where and in the following we shall often use the notation S12 {*•*}

for brevity, which denotes the interchange of the indices 1 and 2 in
the parenthesis and subtraction, for instance,

S12 {K(E, 1, 2) } K (e, 1 , 2) - K(s, 2, 1).

The h- , v-horizontal parts and the vertical part of the above three

Jacobi identities are found easily, according to (1. 12), (3. 8) and

(3. 9). Then, equating each part to zero, we obtain the following

eight relations and a trivial relation:

(3. 14) -E,J(1, 2)+a( T(1, 2)) +3(R 1 (1, 2))

▪ S12{zra(1 , 2) - T(1, a(2)) + C(1, a1 (2)) +a 2 (1, 2)) =0,

(3. 15) C ,R 1 (1, 2) + al( T(1, 2)) +3 1 (R 1 (1, 2))

+ S 1 , {2a 1 (1, 2) - R 1 (1, a (2 )) - P 1 (1, a 1 ( 2 ) ) }  =0,

(3.16) -C,,,R 2 (1, 2) + a2 ( T(1, 2)) +32 (R 1 (1, 2))

+ S12 az (1, 2) -R 2 (1, a (2)) -P2(1,  a 1 ( 2 ) ) }  =0,

(3. 17) £,X(1, 2) +a(C(1, 2)) +3(P 1 (1, 2)) - 23(2, 1)

+  a (1, 2) - C (a (1) , 2) - T(1, 3(2)) - C(1, 3 1 (2))
+3 2 (1, 2) =0,

(3. 18) .4,13 1 (1, 2) + a(C(1, 2)) + 31 (P 1 (1, 2)) _ 2 j 3 1 ( 2 ,  1)
+ S a l (1, 2) - P 1 (a(1), 2) + S 1 (2, a1 (1)) - R 1 (1, 3(2))

- 13 1  (1, 31 (2)) - a 2 (2, 1) =0,

(3. 19) -f„P 2 (1, 2) + a2 (C(1, 2)) +3 2 (P 1 (1, 2)) -23 2 (2, 1)
+  a 2 (1, 2) - P 2 (a (1), 2) + S 2 (2, a' (1)) - R 2 (1, 3(2))

- P 2 (1, 31 (2)) =0,

(3.20) -C „S 1 (1, 2) +31 (S 1 (1, 2))

+S 12 {4'91 (1, 2) - P 1 (fi(1), 2) -S 1 (1, 31 (2)) +3 2 (1, 2)} =0,

(3. 21) ..C ,S 2 (1, 2) + [32 (.5 1 (1 , 2))

+ S12{232 (1, 2) -  (3(1) , 2) - S 2 (1, 31 (2))) =0.
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These equations give, of course, the Lie derivatives of the torsion
and curvature tensors. Moreover these will be used such that, for
instance, if X„ satisfies the differential equations a = a 1 = 0 and a2 = 02

=0, then (3. 16) show that _E„R2 = 0 is regarded as one of the
integrability conditions for cr2 = 0 , that is 4' a 2 (1, 2) — clha2 (2 , 1) =0

(c f . [8, 24, 25, 26] ).
Finally it follows from (3. 9) and (1. 5 ) that

(3. 22) _C„ Y(v) = [X„, Y(v)] = B " ((v ))(v)) + Y ( 191 (y))

+ Z ([32 (v) C (,9 1 (y )) +  „C  (y ))

In the case of infinitesimal linear transformations, it follows from
(3. 1) (3) that _C m Y(v) =0, so that (3. 22) gives = 0 1 = 0 and [32 is

equal to —

§4 . Decomposition o f infinitesimal V-transformations

In the first place we shall be concerned with the tangent vector
field X, induced by a  one-parameter group o f V-rotations pv, defined
by (2. 20), which will be called th e  infinitesimal V-rotation. Let
X, ( „)  b e  the tangent vector field on L  induced by a  one-parameter
group o f transformations poot (v being fixed) belonging to P v t . I f
we take a real-valued function f  on L  and a point zE L, then (2. 20)
gives

( X f ) = d/ dt(f (p ( ,) ,(z)))1,0=d/ dt(f (z(a ( ,) , (z ) ) )  I .

Therefore, i f  A ( ,) , ( z )  denotes the tangent vector to th e  curve t
1---->croot (z )  on G  at the un it e EG, we obtain ( Xp(t)) = Z(A (, ) ,(z )),,
th e  fundamental vector at z EL corresponding to A ( o p(z). It is
observed from (2. 9) and (2. 5) that

(X )  ( - . =)— (e- 1 ) '( ( Xp(o)., (c-i) ' (Z(Acop(z))., 0t),

where (zv, z) c - 1 (z, y) G F  and 0, denotes th e  zero-vector at v E  V.
Consequently the equation (10. 6) (3) o f  [16] gives immediately

( X p ) („ 0 =  YCA(0,(2)e) Z(14(op(2)).
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In  order to obtain the simple form of X 9 ,  we shall introduce the
mapping A , : (zv, z) F ( z )  L ( G ) ; it is concluded that

(4. 1) T heorem . An infinitesimal V -rotation X , is w ritten as

X 9 = Y (A ,(e)) +Z(A 9 ),

where A , is a Finsler tensor field o f (1,1)-type.

It remains to prove that the above A , i s  a Finsler tensor field.
In fact, this has been proved in (3. 3) ; the direct proof, however,
is  as follows. It is seen from  (2. 19) th at a (g - i„ ) ,(z g )  = g - l a cv ),(z )g ,
so  that A, • rg  (2V, z) = ad (g - 1 ) A 9 (zy, z), which shows the tensor pro-
perty of A .

Next, we shall introduce a special infinitesimal V-transformation
X 9 ,  which will play an important role in future.

(4. 2) D efin ition . A n  infinitesimal V-transformation X , is called
N -natural w ith  respect to  a given non-linear connection N  i f  X,
satisfies 76•74 Z ,B h  (v) =0, where L, denotes the Lie derivative with
respect to X , and B h(v ) i s  the h-basic vector field of an y Finsler
connection F r = (r ,N )  having the N  as its non-linear connection.

In order to justify the name "N-natural", i t  must be shown that
this definition is independent o f th e  choice o f th e  connection r
together with which the given N  consists of the Finsler connection
FT - ( T , N )  under consideration. To do so w e shall refer to the
contents of [16] , §25. If we consider two Finsler connections F r
=  ,  N )  and * F T  (* T ,  N )  w ith  the same non-linear connection
N , the h-basic vector fields are in the relation

*Bh(v)=Bh(v)+ Z(A h(v)),

where A h i s  a Finsler tensor field of (1, 2)-type. Hence (3. 7) (1)
g iv e s  ..C,*.13'(v )=.4,B h(v )+Z (Z ,A h(v )), s o  th a t  76-744* Bh (v)
—76•7r',...C,B 9 (v ) , which proves the assertion. It is noted that the
condition in (4. 2) m eans that the h-horizontal part of Z ,B h(v)
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vanishes.

(4. 3) Theorem . W e shall consider a Finsler connection Fr=
(E, N). T h e  N -natural inf initesim al V -transform ation X , w ith
respect to the N  of F r is w ritten as X ,=13h(v,)+.13'(w,)+Z(A ,)
in term s of the Fr, where

(1) tv„— 2 V „(e) -I- T(e, vp) —D(v,),
(2) A (v) = ,dh v,(v) + C(v, w„) + T(v, v a) .

P ro o f . It is observed from (4. 2) th a t .X.,, is characterized by
a=0  in (3. 8), hence (3. 10) (1) gives the equation (2 ) .  Next (3. 3)
and (2) give the equation (1 ) immediately.

As a consequence of (4. 3), it is notew orthy that X,, is deter-
mined by v„ only.

(4. 4) C orollary. I f  a  Finsler connection FF — (F,N) satisfies
T =D =0 , the N -natural inf initesimal V -transformation X , with
respect to N  is w ritten in terms of F r as

X v = B' (v) + Y  (2 v,(e)) + Z (2 v„),

where v , is a Finsler tensor field o f (1,0)-type.

The proof of (4. 4) will be easily obtained from (4. 3) and (1. 5).
It is rem arked that the conditions T= D=0 in  (4 .4 )  a re  satisfied
by the well-known Finsler connections due to  Berwald, Cartan and
Rund.

We are now in the position to mention the fundamental property
of infinitesimal V-transformations announced in the introduction.

(4. 5) Fundamental decomposition theorem. Let X . b e  an arbi-
trary infinitesimal V -transformation and N  be a given non-linear
connection. Then X ,, is expressed uniquely as X,,--- X„-FX,, where
X, is  the N -natural infinitesimal V -transformation with respect to
N  and X , is  the infinitesimal V-rotation.
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P ro o f .  We shall refer to the Finsler N-connection °FT' N )
(cf. [16] , p. 112), which is constructed from the N  only; the Cartan
tensor C  of °FD vanishes. It follows from (3. 2) and (1. 5) that

X„ =  (v„) + Y (w„)+Z(A M )
= {Bh(v„) + Y  v„(e) + T(E, D (vu) ) + Z(z1h v ) ) }
+ A "  (e ) —  T(e,v„)+D(v„))+ Z(A„—dhv„— T(8,  v ))} ,

where 8 is  the Kronecker's delta, a Finsler tensor field of (1, 1)-type.
Let us denote the term in the first (resp. second) parenthesis of the
above equation by X, (resp. X ). T h e n  X, i s  N-natural in virtue
of (4. 3) and C = O. W h ile  X , is  an infinitesimal V-rotation, because
it is observed from (3. 3) that

(A„— — T(8, v„))E = zr v„(e) —  T(s, 11,,) D (v„) ,

hence (4. 1) proves the assertion. The uniqueness of the decomposi-
tion will be easily shown.

For the sake o f clarity w e shall refer now  to the induced co-
ordinate (x', z , ' )  of F  and write down the explicit expressions of
X , and X .  F i r s t ,  Y (v) and Z (A ) are written as

Y(v) „ = v °  a/ay', Z (A) „ = A°, zr,' a/av,
where u= (x', y', z ;), (vs) and A = (A b). Th en , if we denote by
X', (x, y )  the components of the Finsler tensor field A , in (4. 1),
then (4. 1) gives the expression of X,:

(4. 1)' X,— X', (x, y)yla/ayi + X' ,(x, y) a / a z i .

Next, let us treat the N-natural infinitesimal V-transformation
If we denote by X' (x, y )  the components of the Finsler tensor field
v„ in (4. 3), it follows from (1) and (2) in  (4. 3) that the components
X ( ')  (resp. X ')  of tv, (resp. A„) are written in the form

X(')=(a,X0yl + N', X ',
Xi ,=6 ,x '+C ,'„x ( k)+17„xk,

w h ere  , =a,—Nk,b, i s  a  kind of partial differential operator with
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respect to  the non-linear connection N  as has been announced in

the introduction. Hence (4. 3) leads us to the expression of X„:

(4. 3)' Xv= X' (x, y)a/ax'+ (x , y ) )  a/ay'
+ (81 X i (x , y))z)a/av.

The tangent vector field X, (resp. X ,) on the total space T  of

the tangent bundle T (M ) given in the introduction is nothing but the

projection of the X„ (resp. X ,) on T , the tangent vector field induced
b y  the one-parameter group o f th e  associated transformations in
virtue of (2 . 13 ). If we interprete (4. 3)' in the classical sense, the
N-natural infinitesimal V -transformation is thought of as

(4. 3)" xi + (x, i)dt, = .X1 + (8, X' (x , i)) if dt.

Roughly speaking, this is generated by the Finsler vector field
X"(x, On the other hand, the interpretation of (4. 1)' in the
classical sense is that the infinitesimal V -rotation is regarded as

(4. 1)" Tc1 = x', = Xf i (x, i) if dt,

that is the infinitesimal non-linear rotation of the element of support.

We shall finally introduce a special infinitesimal V-transformation
which satisfies a weaker condition than (3. 1) (3) for an infinitesimal
linear transformation.

(4. 6) Definition. A  infinitesimal V-transformation X ,  is called
semi-linear, if 4,.17 (v ) is vertical.

We shall here deal only with a  semi-linear infinitesimal V-
rotation X —  Since the property "semi-linear" is independent of any
Finsler connection, we shall refer to the Finsler connection Fr such
that its Cartan tensor C vanishes. It then follows from (3. 22) that

Y (v ) = IP ( (v)) + Y ([31 (v)) + Z ( 132 (v )) , hence [31= 0  for the
semi-linear X. Thus (3. 11) and (4. 1) lead us to A° ( v )
It is remarked that this is consistent with (3. 3) in virtue of (3. 6),
provided that X , be positively homogeneous. Hence we obtain
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(4. 7) Proposition. A positively homogeneous and semi-linear in-
finitesimal V -rotation X .. is written in the form

Y (w) + Z (z1° w),

w here w  is a Finsler ( i ) p . -h .  tensor field o f (1, 0)-type.

In terms of the induced coordinate (x 1, y 1, z .0 o f F ,  the X , is
written as

(4. 7)' X(1)(x, y)a/ay+(6 .,X 0 ) (x, y))z .'

where X ( ') (x, y )  are the components of w , and (1 )p . -h .  If wo- in
7 )  is  the element of support e, then X„— Y(e) + Z (8 ) .  This

special X„ has been treated in detail in [14] and [ 1 6 1 ,  p. 203.
According to (3. 6) it should be remarked that, if we deal with

the positively homogeneous case, then X' ; (x, y) in (4. 1)' are (0 )p . -h.
and Xl(x, y) in (4. 3)' are (0)p.-h.

§5 . Isometric V-transformations of Finsler metrics

Let L(x, y )  be a Finsler fundamental function of an n-dimen-
sional Finsler space M , by which the length s  of a  curve t E [a, b]

x  (t) of M  is defined by the integral

s=Ç L(x, dx/dt)dt.

In the following let us assume that L  satisfies all the usual con-
ditions [23] . The fundamental tensor field g  of (0, 2)-type is given
by

(5. 1) g=.61°4°L2 /2,

which is regarded as  a  .17-valued function on the total space F  of
the Finsler bundle F ( M ) .  The relation

(5. 2) L 2  g (e, s)

holds as a consequence of the homogeneity property of L(x, y )  with
respect to y = (yi).
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(5. 3) Proposition. Let be the Lie derivative with respect to
an infinitesimal V -transformation X .  The equation .1"„L(x, y) =0

is  a consequence of the equation .f  „g(x ,y )=0.

This will be proved immediately from (3. 1) (2) and (5. 2). If

X , is  an infinitesimal linear transformation, then (3. 1) (3) means

that the operators ..f „  and 4° commute with each other according to

(1. 9) ; it follows from (5. 1) that the equation .L'4 - ( x ,y )= 0  is

derived from the equation ..C,L(x, y) = 0 .  Therefore „L =0  is
equivalent to ...f g = 0 ,  the usual situation in the case of the ordinary

theory of transformations [27] . This is  no longer the case of our

general V-transformation. For this reason we are led to the following

definition of the concept of isometry.

(5. 4) Definition. A V-transformation i t ,  is called an i s o m e t r y  of
a Finsler metric L (x , y ), if th e  lift  /2-  o f t tv  to  F  preserves the
fundamental tensor g  derived from L .  An infinitesimal V-transfor-
mation .2C, is called an isometry of L(x, y), if the equation 4 - =0
is satisfied, where i s  the Lie derivative with respect to X u .

Proposition (5. 3) shows that the above definition for .X,< to be
an isometry is generally stronger than the one given by the equation

', L= 0.

In this section we shall only refer to the Finsler connection CT
due to Cartan [4] , because Cry is metric (4 'g= d 'g= 0) and will be
convenient for dealing with an isometry. Then (3. 2) gives a con-
dition for an isometry:

(5.5) g ( v 1 ,  v 2 ) g ( A ( v i ) , v2 ) + g(A g (v,), v 1 )

for any V1, V2 E V.
In the first place we shall be concerned with an N-natural infini-

tesimal V-transformation Xv with respect to the non-linear connection
N  o f CT', which is given by the connection parameters Ni ; (x, y)
= ykT* „i i (x ,y )  in the notation of Cartan. It is well-known that this
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non-linear connection N  has been treated by several authors and
coincides with the ones of the Finsler connections due to L. Berwald
(y* Gk i [1 ] and H. Rund ( y kp* kii _ y k r-  i )  [22, 23] . It follows from
(4.4) and (1.5) that

(5. 6) A (v ) 2),(0  + C ( v ,  v (e )), VG  V ,

hence (5. 5) is of the form

(5. 7) g(4 h Y,,(Y1), y2) + g(dh vp(Y 2), v1) +2C*(v1, v2, V ,(e) 0,

for any v1 , v2 E V, where the Finsler tensor field C ,, of (0, 3)-type is
defined by C*(Yi, y2, y3) = g (C (v i , v3), v2), 2) 1 , v2 , v 3  E  V. I n  terms of
the conponents (5. 7) is written down in the form

(5. 7)'

in the notation of (1 . 9 )' and (4 . 3)', where X ,  g o  X  and X,10
X, 1 ,(x, y)yl . Therefore the condition for X , to  be an isometry

coincides formally with the one of the ordinary case [27] , p. 180.

(5. 8) Definition. A  Finsler tensor field y of (1, 0)-type with the
components X' (x, y )  is called a  K illing vector f ield, i f  (5 . 7)' is
satisfied with respect to the Finsler connection C E  of Cartan.

Next we shall be concerned with an infinitesimal V-rotation
X „.  It then follows from (4. 1) that the A g  in  (5. 5) is equal to
A p+C(A 0 (6)), so that (5. 5) is written in the from

(5. 9) g(A p(vi), v3) + g(Ap(v2), v1) + 2C *(vi, v2, AP ( € ) )  = 0,

for any v1 , Y2E V .  I f  we- use the notation in (4 . 1 )', then (5. 9) is
written down as

(5. 9)' X ,,+ X ,, +2C,r ;  X„0— 0,

where we put X, J =g,,X k i  and X,.0 = y ) y '.  It is interested to
observe that (5. 9)' coincides with the equation (2. 6) o f [9] , which
was derived by A. Kawaguchi from a different and geometric stand-
point.
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Let us treat (5. 9)' in detail. I f  we denote by Yu  (resp. Z u )

the symmetric (resp. skew-symmetric) part of .X03 ,  then (5. 9)' is

rewritten as Yi ;  + (  Y , 0 + Z,0) =0, which implies Yo =0 at once.
Hence we obtain

(5.10) - Ci r 1Z r 0± Z i 3 .

As a consequence we have

(5. 11) Theorem. There are always isometric V -rotations of the
maximal order n(n — 1) /2 in the n-dimensional Finsler space. The
isom etric inf initesim al V -rotation is given by  the equation (4. 1)'

and (5. 10), w here Z ,,(x ,y ) are the components o f arbitrary skew-
symmetric Finsler tensor f ield o f  (0, 2)-type.

I f  an infinitesimal linear transformation X, is isometric, i.e.
0  or £ , g = 0, the equation £ C = 0 holds automatically, be-

cause zr...Cm g— ...C„fg=24,C ,,. This is, however, no longer the case
o f our V-transformation in  general, because J° does not commute
with J. Consequently it seems natural to introduce stronger con-
dition than the isometry as follows:

(5 . 12 ) Definition. A V-transformation g v  is called a  strict iso-
metry of a Finsler metric L(x, y ), if the lift —i t  of itv to F  preserves
the fundamental tensor g  and the Cartan tensor C . An infinitesimal
V-transformation X is called a  strict isometry  o f L , if th e  equ-
ations ...Cm g =0  and £ X = 0  hold, where .4 ,  is  the Lie derivative
with respect to X .

It follows from (3. 2) that the equation £C=0 is written as

(5. 13) ..f„ C (v i , y2) = C(Yi, y2, +  C (Yi, y2, wp.)
— A,(C(vi, y2)) + C (A (v , 2) + C (A „(v , v 2) =0,

for any v i , v2 E V.
In the first place we shall consider an N-natural infinitesimal

V-transformation X , with respect to  the non-linear connection N  of
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the Finsler connection C I' of Cartan. It then follows from (5. 13)
that =0  is written

(5. 14) 2C(v1, y2, Y) + 4 v C ( v 1 , v2 , A0 v ( ) ) Yv(C(Yi, y2))
— C (C (Y i, v2), v ,(e))+C(dh v„(v,) +C(vi, ( ) ) ,  y 2 )

+C (d h v„ (v2) +C(Y2, Yv(e )), y1 ) =0,

for an y  v1 , v2E V . In  term s of the components (5. 14) is written
down in the form

(5.14)'+ C l k i r  Xrio— (X '  + C r i s X '10)C irk

o)Cr 'h+ (X rIk + C k r,X s i o)C ,',—  O.

If we denote by U, ;  (resp. v;,) the symmetric (resp. skew-symmetric)
part of X11.1 , the process by which (5. 10) was derived from (5. 9)'
is applied also to (5. 7)' and we obtain

(5. 15) X = — C , r ,V +  KJ.

Moreover (5. 14)' will be written in terms of X  and V ;  as

(6.16) C i j k l  X r  - EC( jI k V rO ± C i r k V r j + C ( j V r k -

Summarizing up the above results, we obtain

(5 . 1 7 ) D efin ition . A Finsler tensor field vp of (1, 0)-type is called
a strict-Killing vector field, if y , satisfies the equations (5. 7) and
(5. 14).

(5 . 1 8 ) T heorem . A  Finsler tensor f ield A , o f  (1, 0)-type with
the components X ' is  a strict-Killing vector f ield, if and  only  i f
there exists a skew-symmetric Finsler tensor field V  o f (0, 2)-type
with the components V , satisfying the equations (5. 15) and (5. 16).

W e shall turn to the consideration of an infinitesimal V-rotation

X „. It then follows from (5. 13) that = 0  is written

(5. 19) 4' C (v„ v2, — Ap(C(vi , v2 )) — C(C (v i , v,), A,(e))
+C(Ap(v i ) +C(v i , ilp(e)) , v2)
+C(Ap(v2) + C (v 2 , A ( ) ) , y1 ) =0 ,
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for any v1 , v2E V. In  terms of the components (5. 19) is written
down in the form

(5. 19)' C11,.I , X . ro — + CY, Xso)Cirk
+ (X r1 + (Xrk + X '0)C./.= 0.

If we pay attention to (5. 10), then (5. 19)' is rewritten in the form

(5. 20) C i' jIk Z rO + C ;k Z i+ C i r kZri+ C (1.Z yk = 0.

Summarizing up the above results we obtain

(5 . 2 1 ) Theorem. A  strictly  isom etric inf initesim al V -rotation
X p= Y (A p(e))+ Z (A p) is given by  (5.10) and (5. 20), w here X ' ;

(=g 'X k,)  are the components of the Finsler tensor f ield A , of
(1,1)-type and Z i ;  are the components of a skew-symmetric Finsler
tensor field o f (0,2)-type.

We shall be concerned with the case where the Finsler n-space
M  admits the strictly isometric V-rotations of the maximal order
n(n —1)/2. In this case (5.20) must be identically satisfied for any
skew-symmetric tensor with the components Z " ; this is expressed by

(5. 22) Cir i lk y +  C 5',. (r+ Ckr, a; + C1r ask

C1'1 I yr+ C 5*,,a+Cksi + C1' 5 a;,.

Putting s =k  in (5. 22) and summing with respect to s ,  we obtain

nC i ri =C i l 3 y '+C 1 (7;•± C 1 o;,

where we put C1 =C 1r„ and made use of the complete symmetry pro-
perty of C l k I h with respect to the lower indices. Contraction of the
above by g "  gives at once ( n - 2 )  Cr =giiC , ; it then follows
from C , y' = 0 that g" C11 3 = 0, hence Cr = 0  i f  n > 3 .  Therefore the
well-known Deicke's theorem [3 , 5] leads us to

(5 . 2 3 ) Theorem. I f  a  Finsler space A P o f  dim ension  n(3)
adm its the strictly  isom etric V -rotations of  the maximal order
n(n— 1)/2, then M" is Riemannian.
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Let us deal finally with the exceptional case of the dimension 2.
A s  above obtained, g" CJ ; =0 holds. A s is well-known [2] ; [2 3 ]
p. 253, the components Ci .iy of the Cartan tensor C .  of a 2-dimen-
sional Finsler space is of the simple form

CijI:
=JM iM jM y

where J  is a scalar and m'(= gi' m ,) are the components of the unit
vector orthogonal to  the element of support. It follows from m,

— y,m 1L 2 ( y i =g o y )  that

eC,1,=g"(Jm ,)1,—  L i mg=0,

which implies that there exists a  scalar K  such that j1 ; =K y ; .
According to the complete symmetry property o f  C h i; I k, we obtain
K =— J/1, 2 easily and

(5. 24) C  y i y =  ( j / L 2 ) ( n l y M i n b y k +  M y m i y i n i k

±  M y  Y  iM jM y + yhmimimk).

Substitute from (5. 24) in (5. 22) to get

(J/L 2) (min/J.31k + miY )mk+Y i mimk)(m'y'— msy)
+ Jrni m ; (m'a'k— m'a) + Jm m k(m' — (3)
+Jm ,m i (m'as; —mV;) =0.

It is easy to show that this equation is solely reduced to the trivial
equation g i f =y i y i /L 2 +m im ; . As a conclusion we obtain from (5. 24)

(5. 25) T heorem . A  necessary and sufficient condition for a
Finsler space M 2 o f  2 dimensions to admit the strictly isometric
V-rotation of the maximal order 1 is that the components C,,k o f
the Cartan tensor field C. satisfy the equation

y+C y ij ly + C y ik  1  j+C y y jli+C y ij 1y - 0,

where l '( = e l ; )  are the components of the unit vector having the
direction of the element of support.

It seems interested to study the Finsler space of general dimen-
sion such that the equation in (5. 25) holds.
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