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§ O. Introduction

In the investigation of the sample function properties of the
complex Brownian motion, the Fourier analysis plays a dominant role
to discuss generalized harmonic analysis or frequency problems. For
our purpose, we prefer the complex white noise rather than the
complex Brownian motion, since probabilistic properties in question
of the former are somewhat simpler than those of the latter. Thus,
we are naturally led to discuss the Fourier transform of sample func-
tions of the complex white noise which are, of course, generalized
functions.

Our discussion, therefore, starts with the general set-up of the
complex white noise ( 1 .) .  L e t E be a 6-Hilbert nuclear space which
is included densely in L 2 (R1 ) , and let E, be the complexification of
E .  The complex white noise gives a  probability measure I), which
is Gaussian, on the space E7 the conjugate space o f E ,.  We then,
in § I, come to the inf inite dimensional unitary  group U (E ,) which
is the collection of all the linear transformations on E, leaving the L 2 -
norm invariant. Here, it should be noted that the basic space E, must
be chosen so that the Fourier transform is a linear isomorphism of the
space E,; namely the Fourier transform is a member of U (E ,).  We
also wish to topologize the space E, by using the differential operator
D  which is invariant (u p  to  multiplicative constant) under the
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Fourier transform. Indeed, this is possible. Take E = S  the Schwartz
space of C- -functions which are rapidly decreasing at infinity.

Intimate connection arises between the unitary group U (S ) and
the m easu re  of the complex white noise. It is proved that each
g *  the conjugate of g E U (S ,)  acts on S;I'  and I) i s  invariant under
the action g * .  Further detailed probabilistic approach will be reported
by the present author [3] .

Coming back to the unitary group U(S,), we can not set aside
the shift, the conjugate of which determines the flow of the complex
Brownian motion. The shift forms a one-parameter subgroup of U (S ).
Another one-parameter subgroup can be obtained by observing the
Fourier transform of fractional order which has been developed by
N. Wiener [IL]. W e  are interested in the finite dimensional Lie sub-
group of U (S )  which contains the above one-parameter subgroup
and has nice algebraic properties. Such a subgroup does exist as is
prescribled in § 2.

The last section (§ 3) is devoted to a heuristic approach to find
a finite dimensional Lie subgroup o f  U(S,) together with some re-
marks for other developments.

§  1 .  Complex white noise and unitary group U(E,).

Let E  be a real a-Hilbert nuclear space which is included densely
in 1,2 (R 1 )  and let E *  be the dual space o f  E .  On the space E*
we can introduce a probability measure p,, such that the characteristic
functional is given by

62
(1 )  d,u‘r(x)=exP[—  11E112 1, E E ,2
where <.x, O , x E * , M E , is  the canonical bilinear form and 11 11
denotes the L 2 (R1 ) -norm. T h e  measure p ‘, is called the measure of
(rea l) white noise with variance a'.

We now complexify E  and E *  in a usual manner:

E ,=E +iE ,
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Obviously E ,  is  a  vector subspace o f the complex Hilbert space
L (R 1), and C=E+ivEE,($, vEE ) and z= x + iy G (x , y eE*) are
linked by the following canonical form

(2) <z, C> = (<x, E> + v>) + <x, + <y, E>)-

Now we are ready to introduce the measure I) o f  a  complex
white noise. Let i t  and t i  be the measure of real white noise with
variance 1/2. Then the product measure y = p  X  A ' can be introduced
on the space E 7 . Thus obtained measure space (E7, B, y) or simply
denoted by (E7, 1 , )  is called the (standard) complex white noise,
where B  is the a-field generated by all the cylinder subsets of E 7 .
With this measuse y on E 7 each element of can be thought of
as  a  sample function o f th e  derivative of the standard complex
Brownian motion. As is expected, we can see that the systems
f<z, C>; cG E,}  and {<z, C>; Ce E,) o f random variables on the space
(E7, y) are both complex Gaussian systems.

We then define the infinite dimensional unitary group. Consider
the collection U (E) o f all linear transformations on E .  satisfying
the following two conditions:

i) g  is a homeomorphism of E„
ii) gCI= CII for every

It can easily be proved that U (E ,) becomes a  group under the
product

(g 1 g 0 C  gi (g2C).

Definition. The group U ( E )  is called the infinite dimensional
unitary  group. If no confusion occurs, we call U (E ) simply the
unitary group.

For any g  in  U(E,) we can define the adjoint g *  through the
canonical form in such a way that

(3) <z, gC>=<g* z, C> for every zeE7, CEE,.

The operator g* defines a linear isomorphism of E 7 .  The collection
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{ g*; gEU (E ,)}  again forms a group, call it U* (E7). For the g*
we have

e g :=( g ,g ,) * ,

which asserts that U" (E') is anti-isomorphic to the group U(E,).
We now come to a basic theorem to illustrate a relation between

the complex white noise and the unitary group U(E,).

Theorem 1. For every g E U (E ,) , it holds that

(4) g* old = 1) .

Pro o f . Since the a-field B is generated by the cylinder subsets of

E 7, it suffices to show that

{<2, C>; CE  E,} and {<z, gC> ; Ce E,}

have the same probability distribution. In other words, it is enough

to prove that for any finite number of C,' s, 1<k<n, (<z, C1> >• • • , <2 , C”>)
and (<z, gC,>, • < z ,  g-c„>) have the same probability distribution on

R " .  This assertion is, however, an easy consequence o f th e  defini-

tion of and of the expression (2).

C oro llary  The operator U, on 1,2 (E7, p) given by

(5) U,g9(z)=Ço(g*z), y9E1,2 (E7,v)

is unitary. The collection 'll(E ,)= { U ,; gE U (E ,)}  i s  a  group
isomorphic to U * (E ) .

We can speak o f  a  topology to be introduced to the unitary
group U (E ,)  b y  th e  u se  o f 'V (E, ). Another topologization of
U(E,) may be possible by introducing the compact open topology.
However, topology does not play any important role in  this paper,

so detailed discussions on this subject will be given in another paper.
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§ 2. Subgroups o f U(S,).

As is emphasized in § 0, we have special interest in the Fourier
transform 9. In  order to apply 9 to a  sample function of the
comple white noise we first let g  be in U (E ,) (see expression (3)).
Such a  requirement that g e U ( E )  may or may not be satisfied
according as the choice of the basic space E .  Another requirement
arises when we discuss infinitesimal generators of one-parameter sub-
group o f U (E ,), where we are given differential operators on E,.
Thus we require that the countable Hilbertian norms I „ ,  n > 1 ,
determining the topology of E  and E , must be defined in such a way
that

(6) EEE,

with some second order differential operator 'D .  Finally, we expect
that D  and 9 are formally commutative:

D 9 =9 D

Elementary observations lead us to take the Schwatz space S
as the basic space E  and

el' D —

d u 2
 ( u 2  +1).

The countable norms defined by (6) with the above differential ope-
rator determines the usual topology o f  S .  Thus it is proved that

Proposition 1. The Fourier transform  g  is  a  member o f  U(S,).

With the choice of E =S  we try to find interesting subgroups
o f U (S ,). As soon as the unitary group U(S c ) is defined, one may
think that finite dimentional unitary group U (n) is embedded by a
suitable choice of a finite dimensional subspace of S,. Of course, this
is true. However our interest centers entirely on the one-parameter
subgroups o f U(S,) which are related with the Fourier transform.

Being inspired by the Wiener's work, we first consider the so-
called Fourier-Mehler transform. Let 9 9  be defined by
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(7) (g 0C) (u) = K 00C (u) =SK 0(u, v) C (v) dv,
where

fuvK (u , v) = {7r (1 — e2i19)}  ' 12 exp  —  ( u 2  ± v 2 ) + l .
2 tan 0 s m  0 J

The operator g 0  is well defined except the cases o 0 ,  n/2, n, 37r/2
(mod, 2 n ) ,  respectively.

Proposition 2. g o extends to a continuous, periodic one-parameter
subgroup of U ( S )  such that

(8) F9. g o + o ,  g o " ,  0"--= 0 4 -0 (m od . 2n)
(identity) as 8—.0.

P ro o f. Take a  system of functions

En (Pt) = (2"n! i/Tr ) - '/zH„ (u)expL—  v t
2

2 1 ,

the Hermite polynomial,
n=0, 1,2, ......

Elementary computations prove that g o  can be applied to th e  func-
tions En with the results

(9 ) (goE „)(u )-----ei"°$„(u ), 0 + 0 , n n  3 n  n = 0  1 •••2 "  2 "   •
It is noted that each En belongs to S. and that the En's form a com-
plete orthonormal system in  1,(R 1). Therefore, we first prove that,
by using (9 ), g o extends to a  one-parameter group satisfying the
relation (8) for every n  and then prove that g o acts o n  th e  entire
space S. homeomorphically. It is obvious that IlgoCil = holds for
every 0  and C. Thus our assertisn is proved.

Sometimes, g o is called the Fourier-Mehler transform. With a
particular choices of O =n/2 and 0=37c/2 we see that the Fourier trans-
form g  and its inverse g -1 are embedded in our one-parameter group

{go}.
We are now ready to apply g :  to any sample function z  of the

complex white noise as follows:

<g:z, C>= <z, gon ,
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in particular

<gz,E„>=e - i"°<z,E„>,

which tells us certain sample function property of the complex white
noise (or the complex Brownian motion).

R ecall that the importance of the flow {T ,)  of the complex
Brownian motion on the measure space (E7, v ) which comes from
the shift {S,} defined by

(10) S,C (u) = C(u —  t), —0.0<t<00.

Obviously {S,} is  a one-parameter subgroup of U(S r ). The flow { T,)
is obtained by taking the adjoint of S ,: T ,= SP. By the use of the
Fourier transform a  third one-parameter subgroup of U ( S )  arises
from the shift. Define ni  by

(11) —0 0 < t < 0 . ,

namely
(irtC) (u) = e'"`C (u).

Observing the Weyl commutation relation between {S,} and {n,}, a
fourth one-parameter subgroup {I,} is naturally introduced:

(12) (LC) (u) =e"C (u), — .0<t<oo,
and we have
(13) L i S t 7 1 ,

So far we have discussed four one-parameter subgroups of  U (S )
with special emphasis on Fourier transform and the shift. For further
heuristic approach it is convenient for us to  use the infinitesimal
generators o f one-parameter subgroups. Such an approach will be
discussed in the next section.

§ 3. Infinitesimal generators and their commutation relations

The infinitesimal generators o f a  one-parameter group {g,} is
ddefined as co . ,1, . We now consider such generators of the one-

parameser subgroup o f U (S ,)  which appeared in the last section.
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one-parameter group generator

Fo(  dd u2 2  u 2 +

(14) S, s= — d

du
n t in= iu •
I ti l

Let [A, B ] denote the commutator o f A  and B : [A, B] = AB— BA.
Then we have

[s, f ] —7r
(15) [n, f] = — s

[n, s] =I

Observing the explicit expressions of the above generators in (14)
and the commutation relations (15), w e notice that there ex ists a
differential operater 1- of the first order which is invariant under the
Fourier transform and is acted transversally by s  and 7r:

g  r g - 1  = — z-,
and
(16) [r,s]=— s,

[r = 7r.

The exact form of such r  given by
d1   T(17) —udu i 2

(up to constant). It is interesting to note that z- has an important pro-
babilistic meaning; more precisely the adjoint of exp [tri, — co <t<cc , ,
determines a flow  on  (,S , I)) in d u ced  b y  the Ornstein-Uhlenbeck
Browoian motion.

The last infinitesimal generator can also be introduced from r
by using the generator of the Fourier-Mehler transform. Set

=  1 (18) [7, f ] ,2

then we are given new cnmmutation relations as follows:
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[a, f ]  = 2r,

[a ,  S]

[a, m] = — s
[r, a] =21 . I

The algebraic property for these generators are quite simple as is

indicated in the following theorem. From the commutation relations

(15), (16) and (19) we can prove

Theorem 2. T he vector space A  spanned by {/, s, t, f , r , a} is closed
under the product [  ,  ] ,  that is , A  f orm s a L ie  algebra. i i )  The
radical of  A  is  the ideal generated by { I, s, n}

Before closing this section, some concluding remarks are in order.

1. Although we have briefly mentioned probabilistic meaning on
the one-parameter subgroup corresponding to each one of the genera-
tors, some further interpretation can be given from the point of
view of probability theory (c. f. [3] ).
2. We have discussed finite number o f generators so that we can
find a  finite dimensional L ie subgroup o f  U(S,), by stressing the
importance of the Fourier transform and the shift. There are, of
course, other approaches to find interesting subgroups (for example,
see [4] ).
3. A  subgroup of U (S )  consisting of all finite dimensional unitary
transformations is also interesting to be investigated. For one thing,
such a  group has close connections with the infinite dimensional
Laplacian operator or with the infinite dimensional harmonic function.
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