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1. Introduction

Let & be a finite group, I(®) the set of indices of centralizers
of non-central elements of & in &, and » the number of elements
in I(®). 7 is called the conjugate type rank of &. We introduce
an ordering in I(®) as follows:let a and & be two elements of I(®).
Then ¢>b if and only if a divides 5. Let %2 be the number of
maximal elements in I(®). Then ® is called k-headed. We form
a graph C(®) of & as follows: the points of C(®) are the elements
of I(®). The (oriented) edge ab of C(®) exists, where a and &
are points of C(®), if and only if a>b. We denote the edge ab by
¢Tz. C(®) is called the conjugate type graph of &. The centralizer

b

of any non-central element of & in & corresponding to an isolated
point of C(®) is called free.

An obvious problem is as follows: Let » be a given positive
integer. Then classify all (simple) groups & such that conjugate
type rank of & are equal to ». When 7 increases, this problem
probably will become more difficult with exponential growth rate.
If, however, the shape of C(®) is given and coincident with that of
the conjugate type graph of some known simple group, then the
problem will become considerably tractable.

In previous papers we proved the following theorems:

(I) [7] A finite group © is a simple group of the conjugate type
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rank 3 if and only if ® is isomorphic with some LF(2,2"), m=2.
(II) [8] A finite group ® is a simple group of the conjugate type
rank 4 if and only if @ is isomorphic with some LF(2, ¢), where ¢g=7
is odd.
It the present paper we prove the following theorem:

Theorem. A simple group of conjugate type rank 5 and not of
3-headed is isomorphic with some Sz(l), 1=2*" n=1, or LF(3, 4).

Remark. The 3-headed case is still open.

Notation and definition. Let X be a finite group. Z(¥) is the
center of X. If X is solvable, then F(X) is the Fitting subgroup of
X. Let 9 be a subset of X. |Y| is the number of elements in 9.
n(X) is the set of prime divisors of |%X|. If ¥ is nonempty, then
Cs?) is the centralizer of 9 in X. If Y={Y}, CsY=CsY. Ns?) is
the normalizer of ¥) in X. <¥)) is the subgroup generated by 9. If
D={Y}, <OY>={Y). Let 8 be a subset of X. Then [, B] is the
subset of X consisting of Y 'Z7'YZ, where Y and Z are elements of
9) and B, respectively. A proper subgroup $% of ¥ is called fundamental,
if there exists an element X of ¥ such that F=CsX. F is called
maximal, if ¥ is containd in no other fundamental subgroups of %.
& is called minimal, if ¥ contains no other fundamental subgroup
of X. @ is free, if ¥ is maximal and minimal.

2. 2-headed case

The purpose of this section is to show that this case does not occur.

Let @ be a simple group of conjugate type rank 5 and of 2-
headed. Let #; be maximal elements of I(®) (/=1,2). Let A; be
an element of & such that ®: CsA;=#»n; ({=1,2). Then the class
equation implies that (#,, #.)=1. In particular, & =CsA;CsA;.

(2.1) Both CsA, and CsA, arc not free.

Proof. See the proof of (2.2) in [8].
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(2.2) We may assume that |{A>|=p; is a prime ((=1,2).

Then p;#p., A:; is picentral, namely A; belongs to the center of
some Sylow p;-subgroup of &, #,=0 (mod p,) and #,=0 (mod p,).
Proof. See the proof of (2.3) in [8].

(2.3) We have that either |CsA;|#0 (mod p.) or |CsA,| 0
(mod p,).

Proof. Assume the contrary that both |CsA;|=0 (mod p.) and
|CsA:|=0 (mod p,).

Let A;(#E) be an element of the center of a Sylow p.-subgroup
of CsA,. We may assume that A; belongs to CsA,. If |CsA;|=
|CsA;|, then &=CsA,CsA;. Since A,A;=A;A,, this implies that &
is not simple. If |CsA;| =|CsA,|, then &=CsA;CsA,. Since A;A,=
A,A; this implies that & is not simple. If CsA;A;=CsA; then A,
belongs to Z(CsA;). Hence A;A,=A;A,. Then & is not simple.

Now CsA;:CsA,A; is prime to p,. Let B, be a Sylow p,-subgroup
of CsA,. Then we may assume that CsA; contains Z(%,). Since
we may assume that A, does not belong to CsA;, we may assume
that CsA;A; contains no conjugates of Z($,). Thus we have that
CsA;: CsA,A;=0 (mod p.). Hence |CsA;| does not divide |Cs4,],
but |CsA;| is a proper divisor of |CsA,|. Therefore a part of C(®)
has the shape 111 #n, . Now by symmetry we can conclude that

C(®) has the shape 7, #, .

m s

s
Now assume that there exists a prime divisor ¢ of |®| such
that g is prime to #s. Then for every element X of & CsX contains
a Sylow g¢-subgroup QL#& of &. Hence CsQ and its conjugates
exhaust &. This implies that @=CsQ. Hence @& is not simple.
By a theorem of Burnside [5, p. 451] #, is not a prime power. Let
p¥ be a prime divisor of 7, distinct from p.. Let BF be a Sylow
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p¥-subgroup of & contained in CsA.. Now assume that & : CsZ+#n,
for every element Z#E of Z(P¥). Let AFf+FE be an element of
Z(PF). Then CsA¥=CsA,A¥. Thus G:CsAf=n,. On the other
hand, we may assume that CsA, contains PF. Otherwise, replace

¥ and A, by their appropriate conjugates. Then CsA;=CsA;A¥.
Thus CsA;=CsA¥. Since A, belongs to Z (CsA¥) and since A,
belongs to CsAi, A;A.=A;A,. Hence & is not simple. Thus there

exists a pf-element AF+# E such that CsA,=CsA¥.

Now clearly |CsA;|=0 (mod py). Arguing with pJ instead of
bs, we obtain that #s/n, is prime to p¥ and that #;/n, is divisible
by p¥. Let AY+E be a pf-element of CsA;A;. Then we may
assume that CsA;A,=CsA,A¥. Hence, since CsA;A; is minimal,
CsA.A; is nilpotent. Let P’ be a Sylow p¥-subgroup of CsA;. Let
A¥"+E be an element of Z(PF). Then CsA:=CsA.AF¥”’. Thus
A¥"A,= A, A¥" and A} belongs to CsA,A;. If |CsA}’| =|CsA,| then
® is not simple. We may assume that |CsA¥”’|=|CsA:|. If CsA;
is not maximal, there exists an element A#E of & such that
|CsA| =|CsA;| and AA,=A,A. Then ® is not simple. So we may
assume that CsA; is maximal. Now in the theorem of Camina [2]
we may put n==(Z(CsA;)). Then since = contains at least two
prime numbers we obtain that CsA; is nilpotent. Then clearly A.A4.
=A,A,, Thus ® is not simple.

(2.4) We have that both |CsA,;|#0 (mod p,) and |CsA.|#0
(mod p).

Proof. Assume that |CsA;| =0 (mod p.). Then by (2.3)
|CsA,] #0 (mod p,). Let A:#E be an element of the center of a
Sylow p.-subgroup of CsA,. Then as in the beginning of the proof
of (2.3) we obtain that |CsA;| #|CsA.|, |CsA,| and that CsA;5
CsA,A;,. Anyway |CsA,A:]=0 (mod p,). Further we see that as
in the second part of the proof of (2.3) |CsA;| divides |CsA.].

This is a contradiction.



Simple groups 175
(2.5) CsA; and CsA, are Hall subgroups of .

Proof. See the proof of (2.7) in [8].
Now we see that C(®) has either the shape /1'1'1\ nTz or the

Ny Ny Ns

shape 7;1 7y .
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(2.6) CsA, is not nilpotent.

Proof. Assume that CsA; is nilpotent. Since CsA, is not free,
CsA, is obviously not abelian. We may assume that the Sylow p,-
subgroup B, of CsA; is not abelian. Then the Sylow p,-complement
1 of CsA, is abelian. By a theorem of Burnside [5, p. 491] U+G@G.
Let X+#FE be a primary element of CsA,. If X belongs to 1, then
CsX=CsA, Let X belong to %, and let CsX be not contained in
CsA.. By a theorem of Wielandt [5, p. 285] CsX is nilpotent.
Hence Cs XS Cs1=CsA,. This is a contradiction. Hence CsA, is
centralizer-closed. This contradicts [9].

Let B; be an element of & such that CsA,2CsB;s and such that
®: CsBs=ns. Then by a theorem of Camina [2] #s/#. is a power
of p, and Z(CsA,) is a p.-group.

(2.7) The Sylow p.-complement U of CsB; and moreover CsB;
itself are abelian.

Proof. First we show that i1 is abelian. If z(1l) contains at
least two prime numbers, this is obvious. So let us assume that U
is a g-group, where ¢ is a prime. Let B#E be an element of 1.
Then CsBSCsA,. In fact, otherwise, |CsB|=|CsA,|. Then by a
theorem of Camina [2] CsB is nilpotent. Then by a theorem of
Wielandt [5, p. 285] CsA. is nilpotent against (2.6). Hence CsB
is a conjugate of U1 in CsA,. By a theorem of Burnside [5, p. 492]
CsA, is solvable. Thus a theorem of Fitting [5, p. 277] implies
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that 1 is abelian. The rest is obvious.
(2.8) |CsA.| is odd.

Proof. Assume that |CsA,| is even. By a theorem of Walter
[13] and by (2.7) p.=2. By the proofs of (4.5) and (4.6) in [8]
there exists a 2-element B such that |CsB|<<|CsA,|. By the proof
of (2.7) CsB is abelian. Therefore we may assume that B=B; and
that CsB is contained in CsA,.

Since CsB; is nilpotent and since CsA,=%3,CsBs, CsA, is solvable
[5, p. 674]. Let ¥ be the Sylow 2-subgroup of CsBs. If F(CsA.)
is a 2-group, then by a theorem of Fitting [5, p. 277] F(CsA,) #+B¥.
Now (F(CsA,)(\NsP¥)/B¥ is the kernel of a Frobenius group
(F(CsA,) N NsPHU/P¥. Let A be an element of F (CsA,) (| NsP¥
outside P¥. If A'UA+#U, then CsB; contains AUA. This is a
contradiction. If A*UA=1, then [A4, U] is contained in UNF(CsA,)
=@. This is a contradiction. Hence F(CsA;) =CsBs. Then CsA,/P¥
is a Frobenius group with CsB;/¥f the kernel. Hence P[./P¥ is
cyclic or generalized quaternion.

First assume that P,/Pi is a generalized quaternion group of
order 2°. Then there exist elements € and R of P, and S, T, U
and V of ¥ such that R'QR=QS, @ '=RT,Q " "'=UR=V
and P./Pr=<Q, RYPF/P¥. Now suppose that PF is not cyclic. Let
B be a normal subgroup of type (2.2) of B, contained in L.
Then CsR? contains . If |CsR*|=]|CsBs|, then by (2.7) CsK® is
abelian. This implies that CsKR*<.CsA, and that K* belongs to PF.
This is a contradiction. Hence |CsR?*| =|CsA.|. If F(CsR?) is a
2-group, then we have that %B,: P¥>|U|. This is a contradiction.
Hence F(CsR*) is not a 2-group. Let %3, and U be the Sylow 2-
complement of F(CsR?), respectively. Let ‘B\z be a Sylow 2-subgroup
of CsK?. Then %2/$2 is cyclic or generalized quaternion. This
implies that WP, #E. Take an element W(#E) of WNPR,. Then
CsW contains U and U. This implies that W=1. This is a contra-
diction. Therefore ¥ is cyclic. Hence PN CsPF #=P¥. Thus Cs@Q*"
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contains Pf. This implies that |Cs@Q* | = |CsA.|. If F(CsQ*™) is
a 2-group, then we have that %5,:BF>|U|. This contradiction shows
that F(CsQ* ") is not a 2-group. If CsQ+#CsQ* ', then CsQ=F
(CsQ* ™). Let V¢ be the Sylow 2-subgroup of €CsQ. Then [Q, ¥]
SPFNPF=E. Since |CsQ|=|CsBs|, this is a contradiction. Hence
CsQ=CsQ*"". Similarly we obtain that CsR=CsR*. Since @ and
R? commute, this implies that @ and R commute. This is a contra-
diction. Therefore [,/ P¥ is cyclic.

Let PB./P¥ be of order 2° and PP¥ a generator of /L.
Assume that a=2. As above, we obtain that ¥ is cyclic. Therefore,
. is metacyclic. Then by a theorem of Mazurov [10] B, is of type
(2.2) or of maximal class. This is a contradiction. Hence we obtain
that a=1. Now we show that Z(%3,) is of order 2. Assume the contrary.
If |CsP|=|CsBs|, then by (2.7) CsP is abelian and CsP(U=C. Let
¥ be the Sylow 2-complement of CsP. Then UNU*=E. But
since CsP contains Z(%,), this is a contradiction. If |CsP|=|CsA.],
then let STSZ and 1 be the Sylow 2-subgroup and Sylow 2-complement
of F(CsP). Then PBF ﬂ"ﬁﬁb(&f by assumption. Let Z(#E) be an
element of ¥ ﬁ%z. CsZ contains 1 and 1. Since Hﬂﬁ=@, and

since F(CsZ) contains U and ﬁ, this is a contradiction. Hence
|Z(B,)| =2. Then by a lemma of Suzuki [11] %, is of type (2, 2)
or of maximal class. Then by a theorem of Wong [14] we get a

contradiction.
(2.9) F(CsA,) is a p,-group.

Proof. Assume the contrary. Then F (CsA,) =CsB;=TF x 1.
Since F(CsA,)/P¥ is the kernel of a Frobenius group CsA,/PBF,
Bo/P¥ is cyclic by (2.8). Let B/PBF be of order p; and PPF a
generator of B,/P¥. Assume that ¢=2. Then as in the proof of
(2.8) we obtain that 3¥ is cyclic. Therefore ¥, is metacyclic. If
B, is not abelian, then by a theorem of Huppert [5, p. 452] & is
not simple. Hence ¥, is abelian. Since (PY>MNP¥ =&, we obtain that
P =P X{(P) is of type (pi, pi).
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Now the set of elements X of & such that & : CsX=u, coin-
cides with the set of p,elements #FE in &. Every p.element #FE
belongs to exactly one conjugate of LF. Now NsPF=CsA,. In fact,
otherwise, since CsPy¥ =CsA,, by a theorem of Thompson [5, p. 499]
we obtain that CsA, is nilpotent contradicting (2.6). Let e be the
number of conjugacy classes of elements X of & such that & : CsX
=#, Then we obtain that

en,=n,(p;—1).

Hence e=p;—1. On the other hand, by a theorem of Burnside [5,
p. 418] any two elements of %, which are conjugate in & are con-
jugate in Ns¥3,. Since Cs%3,=,, we obtain that NsP.: P,=p:+1.
In particular, there exists an involution J in Ns¥%, such that [
inverts A,. Then by a theorem of Thompson [5, p. 499] we obtain
that CsA, is nilpotent contradicting (2.6) Hence we obtain that
a=1.

If |CsP|=|CsBs|, then by (2.7) CsP is abelian. Then CsP is
contained in CsA.. This is a contradiction. Hence |CsP| =|CsA,]|.
Let 4%, be the Sylow p,-subgroup of F(CsP). Since f.NP¥=C, we
have that |P¥NCsP|=p,. If P, is abelian, we get a contradiction as
above. So we may assume that %3, is not abelian. Hence we have
that |, =p3. By the transfer theorem of Wielandt [5, p. 447]
NsP,#%,. Since Z(P,) =<A4.> we have that CsA,+* Ns(A,>. Then
by a theorem of Thompson [5, p. 499] CsA, is nilpotent against
(2.6).

Remark. The proof of (2.10) of [8] is incomplete, because it
leaves open the case where %, is abelian but not cyclic. The proof
of (2.10) of [8] can be completed as above. But meanwhile Camina
[2[ has found an essentially simpler proof to kill the 2-headed case
for the conjugate type rank 4 simple groups.

(2.10) Let X+FE be a p,element of &. Then |CsX|=|CsA,]|.

Proof. Assume that |CsX|+#|CsA.|. By (2.7) CsX is abelian.
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Hence we may assume that CsXSCsA,. Let 51/32 and 1 be the Sylow
pe-subgroup and Sylow p,-complement of CsX, respectively. By
(2.9) F(CsA)+%P,. Hence F(CsA) NNsP#=%,. Let X, be an
element of F(CSAz)ﬂNS%z outside ﬁ?z. Then [%2, X7 X, =6 If
X7 1ﬁXl=ﬁ, then [X, ﬁ] =F(CsA,) ﬂﬁ= @. This is a contradiction.

(2.11) B, is of exponent p,.

Proof. Assume that T3, is of exponent p;, where a;Z. Then
by (2.10) we may assume that Z(CsA,) contains an element C of
order p;. Let X be an element of CsA, of order p,. Then CsCX=
CsC»=CsA;. Hence all elements of CsA, of order p, belong to Z
(CsA,). This implies that P,=Z(CsA.). Then by (2.9) F(CsA,) =2..
Hence CsA, Nsu=Csl. If Ns1=Csll, then by the transfer theorem
of Burnside & is not simple. Hence Nsl1#=Csll. Let V be an element
of NsU outside CsU. Since CsU=P¥ xU, V normalizes P¥. Since
CsP¥=CsA,, V belongs to Ns(CsA,), but not to CsA.. Hence by a
theorem of Thompson [5, p. 499] CsA, is nilpotent. This is a con-
tradiction.

(2.12) =(CsA,) ==n(Nsll).

Proof. If s is a prime of n(Csl1) not belonging to n(CsA.),
then let S#E be an s-element of Nsll. Then S normalizes 3¥ and
hence CsP¥. <(S>CsP¥ is a Frobenius group with CsPF the kernel.
By a theorem of Thompson [5, p. 499], CsPLF is nilpotent. By the
proof of (2.10) CsP¥ contains Csll properly. This is a contradiction.
If p, does not belong to =(Nsll) then by the transfer theorem of
Burnside & is not simple.

Now we get a desired contradiction as follows.

Let ‘,1\3 be a Sylow p.,subgroup of NsU. Then Nsllz‘i\Sll and
E/I\hk@ by (2.12). Notice that Csl1=PF XU, where L contains A,. Thus
PrNZE) %6 Let A'#E be an element of PFNZ(P). Then
CsA’ contains NsU. Let P be a Sylow p.-subgroup of CsA’. Since
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Nsl#Cs1, F(CsA")#%. NsU/P¥ is a Frobenius group with Csl/P5
the kernel. Since F(CsA’)(\Nsll=F(CsA")NCsl and since PB=F
(CsA") (P NsW), BN Nsll/P# is cyclic. Hence P : F(CsA") =p.. Put
NsPNCsA’ =P, where 1 is a subgroup of . If U#E, then let
X+#E be an element of NsUNP outside PF. Then [ X, U] =PNU=E.
Since CsU=Cs1=P x 11, this is a contradiction. Hence NsPCsA’
=%. By the transfer theorem of Wielandt [5, p. 447] CsA’ is p.-
nilpotent. This is a contradiction.

3. 4-headed case

Let & be a simple group of conjugate type rank 5 and of 4-
headed. Let #; be maximal elements of I(®) (=1, 2, 3, 4). Let
A; be an element of & such that & : CsA;=n; (=1, 2, 3, 4).

Part A. The purpose of this part is to prove that at least one
of the CsA:; (i=1, 2, 3, 4) is free.

Assume the contrary. Then let X; be an element of & such
that CsX; is properly contained in CsA; (=1, 2, 3, 4). Thus
S&:CsX,=ns (1=1, 2, 3, 4).

(BA.1) CsA; is not nilpotent (=1, 2, 3, 4).

Proof. Assume that CsA, is nilpotent. Obviously there exists
a nonabelian Sylow p,-subgroup %3, of CsA,, where p, is a prime. We
may assume that A; is an element of Z(%B,). Hence B, is a Sylow
prsubgroup of &. Let U be the Sylow p;-complement of CsA..
Clearly U is abelian. Since CsA; is not a Hall subgroup of &, there
exists a prime ¢ in =(11) such that the Sylow g-subgroup Q of CsA,
is not a Sylow ¢-subgroup of ®. Then there exists a g-element @+ E
of Q such that a Sylow ¢-subgroup of CsQ contains £ properly.
Since CsA; is contained in Cs@, this is a contradiction.

Now by a theorem of Camina [2] we obtain that CsA;: CsX,=
PP, where p; is a prime, and that Z(CsA4;) is a p-group (1=1, 2, 3,
4). By the choice of A; the p; are distinct.
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(3A- 2) n(@): {ﬁl, Ds, bs, P4}-

Proof. Let g be a prime divisor of |@]| distinct from p; (G=
1.2,3,4). We may assume that CsA, contains a Sylow g-subgroup
Q of &. Let Q+#FE be an element of Z(L). Then we have that
CsA.Q contains £ and that |CsA,Q|=|CsX;|. This shows that
CsQ and its conjugates exhaust &. Hence &=CsQ. This contra-
dicts the simplicity of &.

(BA.3) Let |CsX|=|CsX;|. Then CsX is abelian.

Proof. This is obvious, since pip,psp. divides |CsX| and since
CsA;: CsX; is a power of p, (1=1, 2, 3, 4)

(83A.4) We may choose X=X, and A, (i=1, 2, 3, 4) so that
4
CsX is contained in [ CsA..
i=1

Proof. We show that CsX contains a prelement A (:>>1) such
that CsX is contained in CsA; and that |CsA;| = |CsA;|. Let A'+E
be any pr-element of CsX. We may assume that A belongs to CsA..
If CsA/'=CsX, then CsX contains A;. Put A=A, If|CsA!| =|CsA,]|,
put A/=A/.

Let %B; be a Sylow p:-subgloup of CsA;. Then by (3A.4) CsA;
=%B,CsX. In particular, CsA; is solvable (Z=1, 2, 3,4) [5, p. 674].

(83A.5) For at least one 7, F(CsA,) is a p-group.

Proof. Assume the contrary. Then CsX=F(CsA,) (=1,2,3,
4). Hence &= Ns(CsX). This contradicts the simplicity of &.

We assume that F(CsA,) is a p;-group. Let P} be the Sylow
psubgroup of CsX (i=1, 2, 3, 4).

(3A.6) For at least three ¢’s, F(CsA,) is a p-group.

Proof. By a theorem of Fitting [5, p. 277] we have that
F(CsA,) contains Py properly. Then (F(CsA,) (M Ns¥¥) PP P /B
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is a Frobenius group with F(CsA,) (N NsP}/P* the kernel. Therefore
PRSP is cyclic. Now assume that F(CsA;) is not a p-group
for =3, 4. Then F(CsA;) =CsX for i=3, 4. We may assume that
D:=>ps. Since P¥ is cyclic, we may assume that LPF is p.-nilpotent.
Hence [P, B¥] S/ NPF=G. This is a contradiction.

We assume that F(CsA)) is a p-group for i=1, 2, 3.

(BA.T7) If F(CsA,) is not a p,-group, then p,<<p:; (:=1, 2, 3).

Proof. If so, we have that F(CsA,)=CsX. By the proof of
(3A.6) CsX is cyclic. Since B*P./B¥ is a Frobenius group with
PFPF/V* the kernel, p.>p, (1=1, 2, 3)

Now we may assume that p,>p,>>p;,>>p,. Then F(CsA,) =%,

We show that NsPB, and its conjugates exhaust . Let G#*FE
be any element of &, If |CsG|=]|CsA,|, then & is a p;-element.
If |CsG|=|CsA;| for =1, then G is a p;-element. Since CsG is
not free, there exists an element H in CsG such that CsH is properly
contained in CsG. G belongs to CsH. By the proof of (3A.4)
there exists a p;-element A;#E such that CsH is contained in CsA;
and that |CsA;| =|CsA,|. Therefore, NsP,=® and ® is not simple.
This is a cntradiction.

Part B. We use the same notation as in Part A. By Part A.
we may assume that CsA, is free. The purpose of this part is to
prove that at least one of CsA4; (=1, 2, 3) is also free.

Assume the contrary. Then let X; be an element of & such
that CsX; is properly contained in CsA; (i=1, 2, 3). Then &:CsX;
=ns ((=1, 2, 3).

(3B. 1) CsA; is not nilpotent (=1, 2, 3).

Proof. See the proof of (3A. 1).
Now by a theorem of Camina [2] we obtain that CsA;: CsX,=
pii, where p; is a prime, and that Z(CsA,) is a pi-group (=1, 2, 3).

By the choice of A; the p; are distinct.
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(3B. 2) R(CSA,') == {pl, ﬁz, Pa} (i=1, 2’ 3)

Proof. Let g be a prime of z(CsA,) distinct from p; (1=1, 2,
3). We may assume that CsA; contains a Sylow g¢-subgroup £ of
®. Let Q+#E be an element of Z(Q). Then we have that CsA.Q
contains Q and |CsA4,Q|=|CsX;|. This shows that & is of isolated
type and hence & is not simple [6].

(3B. 3) Let |CsX|=]|CsX,|. Then CsX is abelian.
Proof. See the proof of (3A. 3)

(3B. 4) We may choose X=X, and A; (:=1,2,3) so that
3
CsX is contained in (NCsA.
i=1

Proof. See the proof of (3A. 4).
Let B: be a Sylow p-subgroup of CsA;. Then by (3B. 3) Cs4;=
P:.CsX. In particular, CsA; is solvable (:=1, 2, 3) [5, p. 674].

(3B. 5) p;=2 for i=1 or 2 or 3.

Proof. Assume the contrary. Then by a theorem of Feit-
Thompson [3] CsA, is of even order. Since CsA, is free, CsA. is
abelian [6]. In particular, a Sylow 2-subgroup of & is abelian.
Therefore, by a theorem of Walter [13] we get a contradiction.

We assume that p,=2. Then 9; is not abelian and, in particular,
of exponent =4.

(3B. 6) There exists a 2-element Y such that |[CsY|=|CsX].

Proof. Assume the contrary. Let A; be an element of Z(CsA;)
of order 4. Let A be any involution of €CsA;. Then since CsAA; is
contained in Cs(A:;)?, we obtain that CsA;A=CsA=CsA,. This
implies that %B; is abelian. This is a contradiction.

(3B. 7) We can take Y as in (3B. 4).
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Proof. Since CsY is minimal, CsY is the direct product of the
Sylow 2-subgroup and the abelian Sylow 2-complement. The rest is
obvious.

(3B. 8) F(CsA,) is not a 2-group.

Proof. Assume the contrary. By a theorem of Fitting [5, p.
277] we have that F(CsA,) contains ¥ properly. Let A be an
element of F(CsA,) (N NsT¥ outside L. Then if A belongs to NsPf,
[4, B¥] is contained in PFNF(CsA,) =F. Since CsPFNCsA; is
contained in CsX, this is a contradiction. Therefore, A™“PFA+PF
and [, AP A] =C. This shows that |CsX|=]|CsAs;|. This con-
tradicts (3B. 6).

(3B. 9) Let |CsX’|=|CsX|. Then CsX’ is conjugate with
CsX in O.

Proof. By (3B. 3) CsX’ is abelian. Since CsX contains Z (%),
we may assume that CsX contains a 2-element A; of CsX’. Then
CsA; contains both CsX and CsX’. Now by (3B. 8) F(CsA:) is
not a 2-group. This implies that CsX=CsX' =Cs(PL}PF).

Now every element of & is conjugate either to an element of
CsA, or to an element of CsX. Since CsX is normal in CsA;, Ns
(€CsX) contains CsX properly. Since CsA, is abelian or an p-group
of exponent p, if Ns(CsA;) =CsA; then by the transfer theorem of
Wielandt [5, p. 447] ® is not simple. Hence Ns(CsA,) #CsA..
Therefore by counting the number of elements in & we get a con-
tradiction.

Part C. We use the same notation as in Part A. By Parts A
and B we may assume that CsA; and CsA, are free. The purpose
of this part is to prove that at least one of CsA; (=1, 2) is also
free.

Assume the contrary. Then let X; be an element of & such
that CsX; is properly contained in Cs4; (=1, 2). Then &:CsX,=
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ns (i=1, 2).
(3C. 1) CsA; is not nilpotent (=1, 2).

Proof. See the proof of (3A. 1).

Now by a theorem of Camina [2] we obtain that CsA;: CsX,=
pi‘, where p; is a prime, and that Z(CsA;) is a p,-group (G=1, 2).
By the choice of A, and A., p, and p. are distinct.

3C. 2) p, or p,=2.

Proof. See the proof of (3B. 5).
We assume that p,=2. Then P, is not abelian, and, in parti-

cular, of exponent =4.

(3C. 3) There exists a 2-element X such that |CsX|=|CsX,].
CsX is the direct product of the Sylow 2-subgsoup %%, the abelian
Sylow py-subgroup ¥} and the abelian Hall {2, p,} -complement A
of CsX.

Proof. See the proof of (3B. 6).

(3C. 4) We may choose A; and A, so that CsA;(\CsA,=CsX.

Proof. Obvious.
Since CsA;=P.CsX, CsA; is solvable (7=1, 2) [5, p. 674].

(3C. 5) F(CsA,) is not a 2-group.

Proof. See the proof of (3B. 8).

Therefore F(CsA,) =CsX=}xPF xA. Since LL.CsX/PBF is a
Frobenius group with CsX/%¥ the kernel, ¥,/%¥ is cyclic or general-
ized quaternion. Let A; be an element of P, outside PF. If |CsA;]
=|CsX]|, then A, commutes with a p,-element not belonging to Pf.
This is a contradiction. Hence |CsA4;| =|CsA,'. If CsA: contains
a 2-element X’ of CsA, such that CsX'=CsX, then A; belongs to
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CsX. This is a contradiction. Hence CsA; does not contain such
an element. If {(ADNPF+#E, then CsA: contains P x. This is
a contradiction. Hence {A:;>\P¥=@.

(8C. 6) Z(%,) is elementary abelian.

Proof. First we show that Z(CsA,;) is elementary abelian.
Otherwise, we may assume that A, is an element of order 4. Let
A; be an involution of %, outside P¥. Then CsA:A,=CsA}=CsA,.
This shows that A; belongs to Z(CsA,), and hence to CsX. This
is a contradiction. Now assume that Z(*,) is not elementary abelian.
Let Ay be an element of Z(%,) of order 4. Then A: does not
belong to P¥ by the first argument. But Ay X=XA;. This is a

contradiction.

BC. O P Pr=2.

Proof. This is obvious by (3C. 6) and the argument following
(3C. 5).

(3C. 8) Let A; be an element of ¥, outside PF. Then CsA;N
P =< As).

Proof. Let G be an element of & such that Z(G'$,G) con-
tains A;. Then G'A.G belongs to Z(G'P.G), CsGA,G : CsG*XG
=2 and CsG'XG=G"PfGXG'PFG X G "AG. Then A; belongs to
G'P¥G. Hence CsA;=CsG'A,G. Now assume that CsA: P con-
tains {A4.) properly. Then CsG*XG contains an element A; # E of L.
Then CsA. contains P and G*B¥G. The first argument shows that
F(CsAY) is not a 2-group. Hence PF=G'$¥G. This is a contra-
diction.

Now by a lemma of Suzuki [11] %3, is dihedral or quasi-dihedral.
Hence by a theorem of Gorenstein-Walter [4] or a theorem of Alperin-
Brauer-Gorenstein [1] we get a contradiction.

Remark. The argument in ((c), p. 244) of [8] is incomplete,
since the argument appeals to [9] which is not applicable in that
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case. One way to amend it is to follow the argument in Part C.

Part D. We use the same notation as in Part A. By Parts A4,
B and C we may assume that CsA; (=1, 2, 3,4) is free. The
purpose of this part is to prove that & is isomorphic with some
Sz(), where [=2"*, n=1, or LF(3,4). By [7] CsA, is not free.
Let X be an element of & such that CsA,: CsX=n;.

(3D. 1) CsA, is a Hall subgroup of ®&. Furtheremore, |&| =
ICSA;I.

n.n

1
Proof. This is obvious.
(3D. 2) CsA, is of even order.
Proof. See the proof of (3B. 5).
(3D. 3) We may assume that CsA, is not nilpotent.

Proof. 1If CsA, is nilpotent, then by a theorem of Wielandt
[5, p. 285] all subgroups ¥ of & with |X|=|CsA,| are nilpotent.
Hence, in particular, the centralizer of every involution of & is 2-
closed. Therefore by a theorem of Suzuki [12] we get the theorem.
Hence we may assume that CsA, is not nilpotent.

Now by a theorem of Camina [2] we obtain that CsA,: CsX=
p°, where p is a prime, and that Z(CsA,) is a p-group.

(3D. 4) We may assume that p=2.

Proof. Otherwise, let J be an involution in CsA,. Then CsJ=
CsA,] is nilpotent. Hence, as in the proof of (3D. 3) we may
assume that p=2.

Now, as before, 3, is not abelian and, in particular, of exponent
=4,

(3D. 5) There exists a 2-element Y such that |CsY|=|CsX].
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Proof. See the proof of (3B. 6).
(3D. 6) F(CsA,) is not a 2-group.

Proof. Since CsA,;=%,CsY and since CsY is nilpotent, CsA, is
solvable [5, p. 674]. Now see the proof of (3B. 8).

By (3D. 3) |=(CsA,) |=2. Let g be a prime of n(CsA,) distinct
from 2. Let Q be a Sylow g¢-subgroup of CsA,. Let X+E be an
element of Z(X). Then CsX=CsXA, is the direct product of the
abelian Sylow 2-subgroup P, the Sylow g-subgroup L and the abe-
lian Hall {2, ¢} -complement 2. By (3D. 5) Q is also abelian. Thus
CsX is abelian.

Now to complete the proof it suffices to prove the following
proposition, which is incompatible with (3D. 6)

3D. 7) F(CsA, is a 2-group.

Proof. Assume the contrary. Then F(CsA,) =CsX. B.Cs X/
is a Frobenius group with CsX/P the kernel. Hence T,/ is
cyclic or generalized quaternion [5, p. 502].

First we assume that P3,/F is a generalized quaternion group
of order 2°. Then there exist elements @ and R of R, and S, T, U
and V of P¥ such that R'QR=Q'S, Q=RT Q"'=U R=V
and Lu/Pf=<Q, R)P¥/PF. Now we further assume that T is not
cyclic. Let T3 be a normal subgroup of %, of type (2, 2) contained
in PF. Then CsR? contains W. If |CsR*|=|CsX|, then by the
remark just before (3D. 7) CsK® is abelian. This implies that CsK*
is contained in CsA,. This is a contradiction. Hence |CsR*| = |CsA,]|.
If F(CsR?) is a 2-group, then we have that ¥,: L¥>|Q(. This is
a contradiction. Hence F(CsR*) is not a 2-group. Let %, ¥, QF
and U* be a Sylow 2-subgroup of CsK?, the ahelian Sylow 2-subgroup,
the abelian Sylow g-subgroup and the abelian Hall {2, ¢} -complement
of F(CsR?), respectively. Thea ¥,/%*# is cyclic or generalized qua-
ternion.. This implies that WO P¥+E. Take an element W#E of
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WNP!E. Then CsW contains QF and Q. This implies that Qf=Q.
This is a contradiction. Therefore 3 is cyclic. Hence P,NCsP}
contains P} properly. Thus CsQ* " contains PB¥. This implies that
|CsQ*'| = |CsA,|. As above, F(CsQ*™) is not a 2-group. If |CsQ|
=|CsX|, then CsQ=F(CsQ*"'™). Let B, be the Sylow 2-subgroup
of CsQ. Then [Q, PF] is contained in PFNP,=E. This is a contra-
diction. Hence CsQ=CsQ* ™. Similarly we obtain that CsR=CsK?,
Since @*' " and R® commute, this implies that @ and R commute.
This is a contradiction. Therefore B,/PF is cyclic.

Let ./PF be of order 2° and PYPF a generator of B,/Pr.
Assume that 4=2. As above, we may assume that %3, is cyclic.
Therefore 9B, is metacyclic. Then by a theorem of Mazurov [10]
P, is of type (2, 2) or of maximal class. This is a contradiction.
Hence we obtain that 4=1. Now we show that Z(%%,) is of order
2. Assume the contrary. If |CsP|=]|CsX|, then by the remark
just before (3D. 7) CsP is abelian and CsPN(QXA)=E. Let QO
be the abelian Sylow g-subgroup of CsP. Then Q*NQ=E. But
since CsP contains Z(%3,), this is a contradiction. If |CsP|=|CsA,|,
then let B! and QF be the abelian Sylow 2-subgroup and the abelian
Sylow g-subgroup of F(CsP). Then P.NP{#E by assumption. Let
Z+E be an element of Pi\P!. C€sZ contains O and LF. Since
QN Q*=E and since F(CsZ) contains O and OF, this is a contra-
diction. Hence |Z(B,)|=2. Since P is of order 2 (See the proof
of (3C. 6)), by a lemma of Suzuki [11] P, is of type (2, 2) or of
maximal class. Then by a theorem of Wong [14] we get a contra-
diction.

Remark. The argument of Part D, together with [8], shows
that we obtain the followiog theorem. Let & be a simple group
such that C(®) has the following shape n, n,---n.. Then k=3 or

o
4. If k=3, then © is isomorphic with LF(2, 1), where | is an
odd prime power bigger than 5. If k=4, then & is isomorphic
with Sz(l), where 1=2*', n=1, or LF(3, 4).
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