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1. Introduction

Let 0  be a finite group, /(03) the set of indices of centralizers
of non-central elements of 03 in 03, and r  the number o f elements
in I (6) . r  is called the conjugate type rank o f  0 .  We introduce
an ordering in /(03) as follows: let a and b be two elements of /(03).
Then a> b if and only i f  a  divides b. Let k  be the number of
maximal elements in /(03). Then 0 is called k-headed. We form
a graph C(03) of 0  as follows: the points of C(03) are the elements
o f / (0 ). T h e  (oriented) edge ab  o f C (0 ) exists, where a and b
are points of C (s ) , if and only if a> b . We denote the edge ab by
a. C ( s )  is called the conjugate type graph of 03. The centralizer

of any non-central element o f 0  in  0  corresponding to an isolated
point of C(03) is called free.

An obvious problem is as follows: Let r  be a  given positive
integer. Then classify all (simple) groups 0 such that conjugate
type rank of 03 are equal to r. W h en  r  increases, this problem
probably will become more difficult with exponential growth rate.
If, however, the shape o f C (0 ) is given and coincident with that of
the conjugate type graph o f  some known simple group, then the
problem will become considerably tractable.

In previous papers we proved the following theorems:
(I) [7] A finite group 0 is a simple group of the conjugate type
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rank 3 if and only if 03 is isomorphic with some L F(2,2 - ),
( I I )  [8] A finite group 03 is a simple group of the conjugate type

rank 4 if and only if 03 is isomorphic with some LF (2, q) , where q 7
is odd.

It the present paper we prove the following theorem:

Theorem. A simple group of conjugate type rank 5  and not of
3-headed is isomorphic with some S z (l), l=2 2 "+1 , 21 1, or L F(3, 4).

Remark. The 3-headed case is still open.

Notation and definition. Let X be a  finite group. Z (X ) is  the
center of X .  If X is solvable, then F(X ) is the Fitting subgroup of
X. Let V be a subset of X . !DI is  the number o f  elements in  D.
n(N ) is the set of prime divisors of j X  .  I f  D is  nonempty, then
CsD is the centralizer o f V  in  X. If D= { Y },  C sD =C sY . N sD  is
the normalizer of D in X. <D> is the subgroup generated by D. If
D= { Y} , <D>=< Y > . L e t 3 be a subset of X. T h e n  [D, 3] is  the
subset of X consisting o f  Y 'Z ' Y Z , where Y and Z  are elements of

and 3, respectively. A proper subgroup of X is called fundamental,
if there exists an element X  of X such that 3  =CsX. is called
maximal, if is containd in no other fundamental subgroups of

is called minimal, if contains no other fundamental subgroup
of X. is free, if is maximal and minimal.

2 .  2-headed case

The purpose of this section is to show that this case does not occur.
Let 03 be a simple group of conjugate type rank 5  and of 2-

headed. Let n; be maximal elements o f /(03) ( i =1, 2 ) .  Let A , be
an element o f 03 such that ■3 : CsA ,= n ; ( i = 1 , 2 ) .  Then the class
equation implies that (n 1 , n 2 ) -= 1. In particular, 03= CsAiCsAz.

(2. 1) Both CsA i  and CsA , are not free.

Pro o f . See the proof of (2 .2 ) in  [8].
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(2 .2 ) W e  m ay  assume that I <Ai>I =Pi is  a prime (i = 1, 2).

Then pi*p2, A , is A-central, namely A i b e lo n gs to  the center of

some Sylow p 1-subgroup of 0, n 2 O (m od p o  and n1==--- 0 (mod p2).
Pro o f . See the proof o f (2. 3) in  [8] .

(2. 3) We have that either I CsAi I 0 (mod po  or I C s A ,I 0
(mod Po.

Pro o f . Assume the contrary that both I C s A i  0 (mod p2) and

(mod pi).
Let A (* E ) be an element of the center of a Sylow 0 2 -subgroup

of CsA i . W e m ay assume th at A  b e lo n gs to  C sA 2. If I C s i t  =
iCsA2I , then 0 =C s A ,C s it .  Since Aiit= 24A1, this implies that 0
is not sim ple. If I CsA; I CsAi I th e n  0 = CsA CsA 2 . Since AA2------
A 2A , this implies that 0  is not simple. If CsA,A= Csit, then A1
belongs to Z (C s A ) .  Hence A 2A 2 = A2441. Then 0  is not simple.

Now CsA1 :CsA 1 A  is  prime to p2. Let 132 be a Sylow P2 -subgroup
of CsA 2 . Then we m ay assume th a t C s A  contains Z(132). Since
we may assume that A2 does not belong to CsA i ,  w e m ay  assume
that CsA,A contains no conjugates of Z(132). T hus w e have that
CsA;: CsA 1 A;=----0 (mod p2). Hence I Csit I does not divide I CsAi J,
but I C siC  is  a proper divisor of I CsA 2 I . Therefore a part of C(0)
has the shape n, n2  . Now by symmetry we can conclude that

C (0 ) has the shape ni n2 .
t

n4 n2

n5

Now assume th at there  ex ists a prime divisor q  of 10 I such
that q is  prime to n5. Then for every element X  of 0  CsX  contains
a  Sylow q-subgroup c * e  o f  0 .  Hence C s2 , and its conjugates
exhaust 0 .  This im plies that 0 =  C sa Hence 0  is  n o t  simple.
By a theorem of Burnside [5, p. 451] n, is not a prime power. Let
pi* be a prime divisor o f n , distinct from p2. Let 13: be a Sylow
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N-subgroup of 03 contained in CsA 2 . Now assume that (5) : C sZ #n,
for every element Z # E  of Z (43 :). Let A: # E  be an element of
Z ( T : ) .  Then CsA :=CsA 2 A : .  Thus 03: CsA: — n4 . On the other
hand, we may assume that CsA : contains 13:. Otherwise, replace
A : and A 2  by their appropriate conjugates. Then C sA =C sitA :.
Thus C s A = C s A :.  Since 442 belongs to Z  (C s A n  and since A1
belongs to Csit, A1A2=-24 2 A 1 . Hence 03 is not simple. Thus there
exists a p:-element A: # E  such that CsA 2 =CsA :.

Now clearly I CsAi I =0 (mod pf l .  Arguing w ith p :  instead of

P 2 , we obtain that n,/n i  i s  prime to  p :  and that n1/n4 is  divisible
by p : .  Let A r # E  be a p:-element of CsA i i t .  Then we may
assume that CsA ,A =CsA i A :i. Hence, since Csil i A ; is  minimal,
C sA iit is nilpotent. Let Tr be a Sylow pr-subgroup of C s A .  Let
A r # E  be an element o f Z ( $ : ') .  Then CsA .-- --C s i t A :" .  Thus
A:" A l = A i A :" and A:" belongs to C sA ,A . If I C sA r I = I CsA2 I then
03 is not simple. We may assume that I CsA:" I = I CsA; I. I f  CsA
is not maximal, there exists an element

 A =/=E
 o f 0 3  such that

I CsA I =1CsA 2I and AA,----.A i.A . Then 06 is not simple. So we may
assume that C s i t  is maximal. Now in the theorem of Camina [2]
we may put n =n ( Z ( C s A ) ) .  Then since n  contains at least two
prime numbers we obtain that C sA  is nilpotent. Then clearly A 1A 2

= A 2A i . Thus 03 is not simple.

(2. 4) We have that both I CsA i  I 0  (mod P o  and I CsA2 I 0
(mod po.

P ro o f .  Assume that I CsAi I = 0  (mod po . Then by (2. 3)

I CsA 2 I % 0 (mod p i ) .  Let il'a * E  be an element of the center of a

Sylow p2 -subgroup of CsA i . Then as in the beginning of the proof

o f (2 . 3 ) we obtain that I CsA ;I#ICsA iI, ICsA 2 I and that CsA ;#

C s A ,A . Anyway I CsAiA; I =0 (mod p1). Further we see that as

in the second part of the proof of (2 . 3 ) I Csit I divides I CsA2 I.
This is a contradiction.
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(2. 5) CsAi  and CsA 2 are Hall subgroups of IX

P ro o f .  See the proof of (2 .7 ) in [8] .
Now we see that C () has either the shape n 4  n , or the

\n, n4 115

shape n i n , .
f tn , n ,
n4

(2. 6) C s A 2 is not nilpotent.

P ro o f .  Assume that CsA2 is nilpotent. Since CsA 2 is not free,
CsA 2 is obviously not abelian. We may assume that the Sylow
subgroup T 2 o f CsA , is not abelian. Then the Sylow /32-complement
11 of CsA 2 is abelian. By a theorem o f Burnside [5, p. 491] u*e.
Let X * E  be a primary element of CsA 2 . I f  X  belongs to U, then
CsX= CsA2 . Let X  belong to T 2 and let CsX be not contained in
CsA2 . B y a  theorem of Wielandt [5, p. 285] CsX is nilpotent.
Hence CsX .ÇCsU=CsA 2 . This is  a contradiction. Hence CsA 2 is
centralizer-closed. This contradicts [9] .

Let B5 be an element o f  i  such that CsA.2._ CsB5 and such that
: CsB 5 =n 5 . Then by a theorem of Camina [2] n,/n, is  a  power

of p ,  and Z(CsA2) is a p 2-group.

(2. 7) The Sylow p 2-complement U of CsB 5 and moreover CsB5

itself are abelian.

P ro o f .  First we show that U is abelian. If n(11) contains at
least two prime numbers, this is obvious. So let us assume that 11
is a q-group, where q  is a prime. Let B * E  be an element o f U.
Then C sB c C sA 2 . In fact, otherwise, I CsB I=ICsA 2II. T h en  b y  a
theorem of Camina [2] C sB  is nilpotent. Then by a  theorem of
Wielandt [5, p. 285] CsA2 is nilpotent against (2. 6). Hence CsB
is a conjugate of U in CsA 2 . By a theorem of Burnside [5, p. 492]
CsA2 i s  solvable. Thus a  theorem o f Fitting [5, p. 277] implies
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that 11 is abelian . The rest is obvious.

(2. 8) I Cs142 1 is odd.

Pro o f . Assume that I CsA2 I is even. By a  theorem of Walter
[13] and by (2. 7) p2= 2 . By the proofs of (4.5) and (4.6) in  [8]
there exists a 2-element B  such that I CsB <1CsA2I . By the proof
o f (2. 7) C sB  is abelian . Therefore we may assume that B=B 5 and
that CsB is contained in CsA 2

Since CsB , is nilpotent and since CsA2= T2CsB5, CsA2 is solvable
[5, p. 674] . Let T : be the Sylow 2-subgroup of CsB5 . I f  F(CsA2)
is a 2-group, then by a theorem of Fitting [5, p. 277] F(CsA 2 ) *W .
Now (F(CsA 2 ) f l NsT:)/FP: is  the kernel of a Frobenius group
(F(CsA2) n N s4 3 :)1 1 4 :. Let A be an element o f F (CsA2 ) N s T :
outside If i l - '11A*11, then CsB5 contains A.- 1 11A. This is  a
contradiction. If A- 1 UA=U, then [A, U] is contained in UnF(CsA2)
= e .  This is a contradiction. Hence F(CsA 2 ) =CsB 5 .  Then CsA2/T:
is  a Frobenius group with CsB5 / T : the kernel. Hence 432/43: is
cyclic or generalized quaternion.

First assume that 32/43: is  a generalized quaternion group of
order 2'. Then there exist elements Q  and R  o f $ 2 and S , T , U
and V  o f 43 : such that R 'Q R =Q - iS, Q 2 ° ' =12 2 T, Q2 " =U , R 4 = V
and 432 / =<Q, RA3: /1. Now suppose that 4.q. is not cyclic. Let
U  be a normal subgroup of type (2 . 2 ) o f T2 contained in  T1'.
Then CsR2 contains U. I f  I CsR2 I CsB5 1, then by (2. 7) CsR2 is
abelian . This implies that CsR2 CsA2 and that R 2 belongs to
This is  a contradiction. Hence I CsR2 I = iCsA2II. I f  F(CsR 2 )  is a
2-group, then we have that 432: This is  a contradiction.
Hence F(CsR 2 )  is not a 2-group. Let and T i be the Sylow 2-
complement of F(CsR 2 ) ,  respectively. Let 412 be a Sylow 2-subgroup
of CsR 2 . Then ?- 2/-4-32 is  cyclic o r  generalized quaternion. This
implies that U n i§ 2 * e .  Take an element W ( E )  of Q13 n $2. Then
CsW contains U and U .  This implies that U=1:1. This is a contra-
diction. Therefore S43: is cyclic. Hence T z (1 C s ' *qv. Thus CsQ2-2
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contains 13:. This implies that I CsQ 2 ' 2 1= IC s A d . I f  F(C sQ ' 2)  is
a 2-group, then we have that T2.13:› U  I . T h is  contradiction shows
that F(CsQ 2 ' 2)  is  n o t  a 2-group. If CsQ#C.s/2 2 ' 2,  then  C sQ =F
(CsQ 2 2 ). Let 1.q be the Sylow 2-subgroup o f C s Q . Then [Q, 90:]

n e .  Since I CsQl =1CsB51, th is is a contradiction. Hence
CsQ=CsQz ' 2. Similarly we obtain that CsR =CsR 2 . Since Q2 2 and
R 2 commute, this implies that Q  and R  commute. This is a contra-
diction. Therefore 9;32/W  is cyclic.

Let 3 2/9n . b e  o f  order 2  and /3 13: a  generator of
Assume that a>2 . As above, we obtain that T: is cyclic. Therefore,

T2 is  metacyclic. Then by a theorem of Mazurov [10] 132 is of type
(2. 2) or of maximal class. This is a contradiction. Hence we obtain
that a=1. Now we show that Z(FP2) is of order 2. Assume the contrary.
I f  I C sPi = IC sik , then by (2. 7) C sP is abelian and CsPf iL l= e . Let
t r  b e  th e  Sylow 2-complement o f  C s P .  Then 11[11r = e. But
since CsP contains Z($2), this is a contradiction. I f  I CsPI =  CsA2I
then let i'32 and la be the Sylow 2-subgroup and Sylow 2-complement
o f F ( C s P ) .  Then q3i*n € # e  by assum ption. Let Z ( # E )  be an

element of 43:Fli-2. CsZ contains U and fi. Since Urifi= e, and

since F (C s Z )  contains 11 and i t  t h i s  i s  a contradiction. Hence
Z(T 2 ) I = 2 . Then by a lemma of Suzuki [11] T, is  of type (2, 2)

or of maximal class. Then by a  theorem o f Wong [14] w e  g e t a
contradiction.

(2. 9) F(CsA 2 )  is  a p 2-group.

Proof. Assume the contrary. Then F (CsA 2 ) =Cs13 2 =  x U.
Since F(CsA 2)/13: i s  the kernel of a Frobenius group CsA2/13:,
13 2/ 3 ' is  cyc lic  b y  (2. 8). Let T2/13: be o f order g  and R V ' a
generator of V2/V:. Assume that a 2. T h e n  as in the proof of
(2. 8) we obtain that s43: is cyclic. Therefore Tz i s  metacyclic. If
13, is not abelian, then by a  theorem o f Huppert [5, p. 452] 03 is
not simple. Hence T 2 is  abelian. Since <P> m3: = e , we obtain that
T2=$: x <P> is  of type (N, p ) .
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Now the set of elements X  o f 03 such that 03 : CsX =n 2 coin-
cides with the set of P 2 -elements * E  in 06. Every p 2 -element * E
belongs to exactly one conjugate of 1 3 : . Now NsFIV=CsA 2 .  In fact,
otherwise, since CsW =CsA 2 , by a theorem of Thompson [5, p. 499]
we obtain that CsA 2 is nilpotent contradicting (2. 6). Let e  be the
number of conjugacy classes of elements X  of Q1 such that 03: CsX
= n 2 .  Then we obtain that

enz= n2(g — 1).
Hence e =g  — 1 . On the other hand, by a  theorem o f Burnside [5,
p. 418] any two elements of 2  w h ich  are conjugate in 03 are con-
jugate in Ns3 2 . Since Cs32= T2, w e obtain  that NsT 2 : 2 =g+1.
In particular, there ex ists an involution J  in  N s3 2 su c h  th a t  J
inverts A 2 . Then by a theorem of Thompson [5, p. 499] we obtain
that CsA 2  is nilpotent contradicting (2. 6) Hence we obtain that
a=1.

I f  I CsPI =  I CsB 5 I ,  then by (2. 7) CsP is  ab e lian . Then CsP is
contained in CsA 2 . This is  a contradiction. Hence I CsPI =1CsA2I.
Let 4T,, be the Sylow p 2 -subgroup of F ( C s P ) .  Since i ' 2 [1V:= e, we
have that I T: nC sP I =P 2 . If T2 is  abelian, we get a contradiction as
above. So we may assume that T2 is  n o t ab e lian . Hence we have
that I T 2 I =A . B y  the transfer theorem o f  W ielandt [5, p. 447]
NsT,* T 2 .  Since Z(T2) = <A2> we have th at CsA2 *Ns<A 2 >. Then
b y  a  theorem o f Thompson [5, p. 4 9 9 ] CsA 2 is n ilpotent against
(2. 6).

Remark. The proof o f (2. 10) o f [8 ] is incomplete, because it
leaves open the case where T 2 i s  abelian but not cyclic . The proof
of (2 .10) of [8] can be completed as above. But meanwhile Camina
[2 [ has found an essentially simpler proof to kill the 2-headed case
for the conjugate type rank 4  simple groups.

(2. 1 0 )  Let X * E  be a P2-element of 03. Then I CsXI =  CsA2I

P ro o f . Assume that I CsXI CsA2I . By (2 .7 )  CsX is abelian.
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Hence we may assume that CsXg_Cs242 . Let and 11 be the Sylow

P2-subgroup and Sylow P2-complement o f  C sX , respectively. B y
(2.9) F (C s A 2 ) * 2 .  Hence F(CsA 2 ) n N 4 2 Let x i  be an

element of F(CsA 2 ) r1 Nss-T2 outside 2 . T h e n X1-111X1] =e. If
X TifiX i =11, then [X 1 ,11] =F(CsA2) n e. This is a contradiction.

(2. 11) T 2 is  of exponent P2.

Pro o f . Assume that T2 is of exponent X , w here a2. Then
by (2. 10) we may assume that Z(CsA 2)  contains an element C of
order lg. Let X  be an element of CsA2 of order P2. Then CsCX=
CsCP2=CsA 2 . Hence all elements of CsA2 o f  order p 2  belong to Z
(CsA2 ) .  This implies that q32= Z(CSA2). Then by (2. 9) F(CsA 2 ) = 32.
Hence CsA 2 n N sU= CsU. If NsU-- -=CsU, then by the transfer theorem
of Burnside 0 is not simple. Hence N stl*C sU . Let V be an element
of NsU outside C sU . Since CsU= 43 x11, V normalizes 4 1 .  Since
Cs13:= Cs242, V belongs to Ns(CsA 2 ) ,  but not to CsA 2 . Hence by a
theorem of Thompson [5, p. 499] CsA 2 is nilpotent. This is a con-
tradiction.

(2. 12) n(Cs242 ) =n (NsU ).

Pro o f . If s  is  a prime of n(CsU) not belonging to n(CsA2),
then let S=/=E be an s-element of N sU . Then S normalizes 13: and
hence Cs43:. <S>Cs13: is a Frobenius group with Csi3: the kernel.
By a theorem of Thompson [5, p. 499], Cs43: is nilpotent. By the
proof of (2. 10) Cs13: contains CsU properly. This is a contradiction.
If p2 does not belong to n (N sU ) then by the transfer theorem of
Burnside 63 is not simple.

Now we get a desired contradiction as follows.
Let be a  Sylow P 2-subgroup o f  N s U . Then N s U 4 U  and

#  e by (2.12). Notice that C A I =  X U, where 43' contains A 2 . Thus

n43 Z ( )  * e .  L e t A' * E be an element o f q3: n z ( 3) . Then
CsA ' contains N sU . Let *3- be a Sylow P2-subgroup o f C sA '. Since
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NsIl*CsU, F(CsA ') * T .  NstI/T: is a Frobenius group with CsU/13:
the kernel. Since F(CsA i ) f l  N sU=F(CsA ') ncsu  and since T  F

(C sA ')(T n Nsu), s43n Nsu/q3: is cyclic. Hence 13 : F(C sA ')=p 2 .  Put
NsTriCsA i =T11, where U  is  a  subgroup o f U .  I f  u * e ,  then let
X=/=E be an element of NsUr143 outside 43:. Then [X, II] =13[1U= e.
Since CAI= CAI= x U, this is a contradiction. Hence NA3n CsA '
= T . By the transfer theorem of W ielandt [5, p. 447] C sA ' is pz-
nilpotent. This is a contradiction.

3. 4-headed case

Let 6 be a simple group o f conjugate type rank 5  and of 4-
headed. Let n 1 b e  maximal elements o f  I(IS) ( i 1, 2 ,  3 ,  4 ) .  Let
A , be an element of 03 such that 03 : CsA ,=n, ( i=1 ,  2 , 3 , 4 ) .

Part A. The purpose of this part is to prove that at least one
of the C sA , ( i=1 , 2 , 3 , 4 )  is free.

Assume the contrary. Then let X , be an element o f  i  such
that CsXi is properly contained in  C sA , (i = 1 ,  2 ,  3 ,  4 ) .  Thus

: CsX1 =n5 ( i= 1 , 2 , 3 , 4 ) .

(3 A . 1 ) CsA , is not nilpotent ( i= 1 , 2 , 3 , 4 ) .

P ro o f .  Assume that CsA i  is nilpotent. Obviously there exists
a nonabelian Sylow p 1-subgroup 13, of CsAi, where p i  is a prime. We
may assume that A 1 is  an element o f Z(13 1 ). Hence T i  is  a Sylow
P 1 -subgroup o f 0 . L e t  1 1  be the Sylow p 1 -complement of CsAl.
Clearly 11 is abelian. Since CsA i  is not a Hall subgroup of 6, there
exists a prime q  in m(U) such that the Sylow q-subgroup 2, of Cs.A,
is not a Sylow q -subgroup of Then there exists a q-element Q * E
of 2  such that a  Sylow q-subgroup o f C sQ  contains 2 ,  properly.
Since CsA i  is contained in CsQ, this is a contradiction.

Now by a theorem of Camina [2 ] we obtain that CsA ,: CsX ,=
p°., where P i is  a prime, and that Z(CsA i )  is a p i -group (i =1, 2, 3,
4 ) .  By the choice of A . the p i are distinct.
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(3A. 2) Tc0” — ,P2, P 3 7  .104} •

P ro o f. Let q be a prime divisor o f 1031 distinct from p i

1. 2, 3, 4). We may assume that CsAi contains a Sylow q-subgroup
C, of 03. Let Q # E  be an element o f  Z ( C ) .  Then we have that
CsA,Q contains Z. and that I CsAiQ I I  CsXi I • This shows that
CsZ1 and its conjugates exhaust 03. Hence 0 =  C s .  T h is  contra-

dicts the simplicity of 03.

(3 A . 3 )  Let ICsX1 = iCsX1II. T h en  C sX  is abelian.

P ro o f. This is obvious, since pip2p3p4 divides I C s X  and since
CsA: CsX, is a power of p, ( i =1, 2 , 3 , 4 )

(3 A . 4 )  We may choose X = X , and A, (i = 1 , 2 , 3 , 4 ) so that
4

CSX is contained in  n CsA,.

P ro o f. We show that CsX  contains a p 1-element A ( i> 1 )  such
that CsX  is contained in C sit and that 1CsA;1= J CsA 1 J. L e t  261.:' #E
be any P i -element of C s X . We may assume that A:' belongs to CsA,.
If CsA;' then CsX  contains A,. Put A = A,. III CsA:' I = I CsA,I,
put A = X'.

Let 131 be a Sylow P r subgloup of CsA i . Then by (3A . 4 ) CsA,
=% ,C sX . In particular, CsA, is solvab!e (i = 1, 2 , 3 , 4 ) [5 , p. 674].

(3 A . 5 )  For at least one i, F(C sA ,) is a p,-group.

P ro o f. Assume the contrary. Then C sX =F(C sA ,) (i = 1, 2, 3,
4 ) .  Hence ( = N s (C s X ) . This contradicts the simplicity of 03.

We assume that F(CsA i )  is a P1-group . Let 43:+ be the Sylow
p,-subgroup of CsX  (i = 1, 2, 3, 4).

(3 A . 6 )  For at least three i 's , F(C sA ,) is a p 1-group.

P ro o f. B y a  theorem o f  Fitting [5 ,  p. 2 7 7 ] w e have that
F(CsA i )  contains T7 properly. Then (F(CsA i) n NsT)13:43:13:/l31'
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is a Frobenius group with F(CsA 1)F1 Ns3743' the kernel. Therefore
WUKT: is cyclic. N o w  assume that F(CsA ; )  is not a  pi-group
for 1= 3, 4 . Then F(C sA )=C sX  for 1 = 3 , 4 . We may assume that
p3>p4. Since T : is cyclic, we may assume that T343: is p4-nilpotent.
Hence P 3 , 1 3 : ]  3 f l 3 2  = .  This is a contradiction.

We assume that F(CsA,) is a P,-group for 1= 1, 2, 3.

(3A. 7 )  I f F(CsA4) is not a p 4-group, then p4<p1 (1=1, 2, 3).

Proof. If so, w e have that F(CsA 4 )= C s X . By the proof of
(3A . 6) CsX is cyclic. Since T:434/$1̀  is  a Frobenius group with
V7132743? the kernel, p ,> p , (1=1, 2, 3)

Now we may assume that p ,> x > p a > p ,  Then F(CsAi)=
We show that NsT, and its conjugates exhaust 13 .  Let G * E

be any element o f 0 .  If I
 C s G  I = I CsAi I, then Q• is  a p 1-element.

I f  ICsGI=ICsAI for 1> 1 , then G  is  a p 1-element. Since C sG  is
not free, there exists an element H  in CsG such that C sH  is properly
contained in  C s G . G  belongs to C s H .  By the proof o f  (3A. 4)
there exists a p 1-element A:1 * E  such that C sH  is contained in CsA;
and that I CsiCi I C s A i I .  Therefore, Ns431=3 and 05 is not simple.
This is a cntradiction.

Part B .  We use the same notation as in Part A .  By Part A.
we may assume that CsA4 is  free. The purpose of this part is to
prove that at least one of C sA  ( i= 1 , 2 , 3 )  is also free.

Assume the contrary. Then let X  be an element of such
that CsX is properly contained in C sA  (1 = 1 , 2 , 3 ) . Then 0:CsX 1

=n 5 ( 1= 1, 2 , 3 ).

(3B. 1) C sA  is not nilpotent (1=1, 2 , 3 ) .

Proof. See the proof o f (3A . 1).

Now by a theorem of Camina [2] we obtain that C sA :C sX i =

Pt" where p i is  a prime, and that Z (C sA ) is a p i - g r o u p  (1=1, 2, 3).
By the choice of A  the p i  are distinct.
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(3 B . 2 ) TC (C sAi) = {Pi, P2) P3}  c i  = 1 , 2, 3)

P ro o f .  Let q  be a prime of n(CsAi) distinct from p, ( i =1, 2,

3). W e m ay assume that CsAi contains a Sylow q-subgroup o f

ia  L e t  Q E  be an element of Z ( D ) .  Then we have that CsA1 (2

contains C and CsAiQ CsX-1.1 This shows that 03 is of isolated

type and hence 03 is not simple [6].

(3 B . 3 ) Let 1CsX  --- I C sX i . T h en  C sX  is abelian.

P ro o f .  See the proof of (3A. 3)

(3 B . 4 ) We may choose X = X 1 an d  A1 ( i =1, 2, 3) so that
3

CSX is contained in  FICsA,.
i =1

P ro o f .  See the proof of (3A. 4).
Let 9;3, be a Sylow p,-subgroup of C sA . Then by (3B. 3) CsA,---

43,CsX. In particular, CsA, is solvable (i =I., 2, 3) [5, p. 674].

(3B . 5 ) p i = 2  for i=1 or 2 or 3.

P ro o f .  Assume the contrary. T h e n  b y  a  theorem of Feit-
Thompson [3] C s i l ,  is of even order. Since C sA , is  free, CsA, is
abelian [6]. In particular, a Sylow 2-subgroup of 3 is abelian.
Therefore, by a theorem of Walter [13] we get a contradiction.

We assume that p3 = 2. Then T3 is not abelian and, in particular,
of exponent

(3 B . 6 ) There exists a 2-element Y  such that I CsYl=1CsX1.

P ro o f .  Assume the contrary. Let A  b e  an element of Z(CsA 3 )
of order 4. Let A be any involution of CsA3 . Then since CsA2t is
contained in C s (A ) 2 , we obtain that CsiCA—CsA-- -- CsA 3 . This
implies that 133 is abelian. This is a contradiction.

(3 B . 7 ) We can take Y as in (3B. 4).
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P ro o f . Since Cs Y  is  minimal, CsY is  the direct product of the
Sylow 2-subgroup and the abelian Sylow 2-complement. The rest is
obvious.

( 3 B .  8 )  F(CsA 3 )  is not a 2-group.

P ro o f . Assume the con trary . B y a  theorem o f  Fitting [5, p.
277] w e have th a t F(CsA 3) contains W  properly. L e t  A  b e  an

element of F(CsA 3 ) f l  NsT : outside W . Then if A belongs to NsFir,
[A, T P ] is contained in  W nF(csA 3 ) = .  Since CsVK FlCsA3 i s
contained in C sX , th is  is  a contradiction. Therefore, 24- 1 TI@A*3 1'
and [W, A - 1 q3M ] =  e . This shows that I CsX1=  I CsA31. This con-
tradicts (3B. 6).

( 3 B .  9 )  Let I C s r  I = I CsXI .
 Then C sX ' is conjugate with

CsX  in 03.

P ro o f .  B y  (3B. 3) C sX ' is abelian . Since CsX contains Z (T 3 ) ,
we may assume that C sX  contains a  2-element A o f  C sX '.  Then
CsA3 contains both C sX  and C s X ' .  Now by (3B . 8 ) F(CsA3) is
not a 2-group. This implies that C sX = C sX '= C s(W W ).

Now every element o f 03 is conjugate either to an element of

CsA4  o r  to an element o f C sX . Since C sX  is  normal in CsA3 ,  Ns
(CsX) contains C sX  properly. Since CsA4  i s  abelian or an p-group
of exponent p ,  i f  Ns (CsA4 ) = CsA, then by the transfer theorem of

W ielandt [5 , p. 4 4 7 ]  0 6  is not simple. H e n c e  Ns(CsA4)*CsA4.
Therefore by counting the number of elements in 03 w e ge t a  con-
tradiction.

Part C .  We use the same notation as in Part A .  By Parts A
and B  we may assume that CsA3 and CsA4 are free. The purpose
o f this part is to prove that at least on e o f CsA, (i = 1 , 2 )  is  also
free.

Assume the contrary. Then let X , b e  an  element o f  05 such
that CsX , is properly contained in CsA, ( i= 1 ,  2 ) .  Then 03:CsX,—
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n5 (i =1, 2) .

(3 C . 1 ) CsA , is not nilpotent ( i=1 , 2).

P ro o f .  See the proof o f (3A. 1).
Now by a theorem o f Camina [2] we obtain that CsA ,: CsX ,—
where p. a prime, and that Z (C sA ,) is  a  p,-group (i=1, 2).

By the choice o f A , and A 2  p i  and p2 are distinct.

(3 C . 2 ) p ,  or p2=2.

P ro o f .  See the proof o f (3B. 5).
We assume that p 2 = 2 .  Then P2 is not abelian, and, in parti-

cular, of exponent

(3 C . 3 ) There exists a 2-element X  such that CsX l =
CsX  is the direct product of the Sylow 2-subgsoup W, the abelian
Sylow P 1-subgroup 4.3;' and the abelian H all {2, Pi } -complement '21
of CsX .

P ro o f .  See the proof o f (3B. 6).

(3 C . 4 ) We may choose A , and A 2 so that Cs./12 f iCsil2=CsX .

P ro o f .  Obvious.
Since CsA ,=43,CsX , CsA , is solvable ( i=1 , 2 ) [5 , p. 674].

(3 C . 5 ) F(CsA 2 )  is not a 2-group.

P ro o f .  See the proof o f (3B. 8).
Therefore F(CsA 2)=CsX =43P x 43:x Since 43 2 C sX /43: is  a

Frobenius group with CsX /43: the kernel, T2/T: is cyclic or general-
ized quaternion. Let A ; be an element o f 132 outside 13. If I Csit
= 1CsX 1, then A 2  commutes with a p 1-element not belonging to w.
This is  a contradiction. Hence !C sit csA2 .  I f  C sA ; contains
a 2-element X ' o f CsA 2 such that C sX '=C sX , then i t  belongs to
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C sX . This is  a contradiction. Hence CsA; does not contain such
an elem ent. If < A > n ' ,  then C s i t  contains 13P ><K  This is
a contradiction. Hence <A> f- 113: e.

(3C . 6 ) Z (T 2 )  is elementary abelian.
Proof. F irs t w e  show th a t Z (C sA2 )  is  e lem entary abelian.

Otherwise, we may assume that A2 i s  an element o f order 4. Let
A be an involution of T2, outside 13:. Then CsAA2=CsA,=CsA 2 .
This shows that A belongs to Z (C sA ,), and hence to  C sX . This
is  a contradiction. Now assume that Z(T 2 )  is not elementary abelian.
Let A' be an element o f Z(132 )  o f order 4 .  Then A ' does not
belong to q3: b y  the first argument. But X= X 2 4 '. This i s  a
contradiction.

(3C. 7 ) T 2  q 3: = 2.

P r o o f .  This is obvious by (3C. 6) and the argument following
(3C. 5).

(3C . 8 ) Let A be an element of 4 2 outside 13:. Then C s i t n
<A2>.

Proof. Let G be an element o f 0  such that Z(G - 1 T 2G) con-
tains A . T h e n  G' A2G belongs to Z (G- 1 T 2 G), C sG - 1 A,G : CsG 1 XG
=2 and CsG'XG=G - 1G  x  G - 1 WG x a - 11G . Then A belongs to
G- 1 43:G . Hence Csit=CsG - 1,42G. Now assume that CsAFIT: con-
tains <A2> properly. Then CsG'XG contains an element A' * E of

Then C s i t '  contains TP and G- 1 137G. The first argument shows that
F (C sA n  is not a 2-group. Hence 13,*----.G- 113PG. This i s  a  contra-
diction.

Now by a lemma of Suzuki [11] $2 is dihedral or quasi-dihedral.
Hence by a theorem of Gorenstein-Walter [4] or a theorem of Alperin-
Brauer-Gorenstein [1 ]  we get a contradiction.

Rem ark. The argument in ((c), p. 244) o f  [8] is incomplete,
since the argument appeals to [9 ]  which is not applicable in  that
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case. One way to amend it is to follow the argument in Part C.
Part D .  We use the same notation as in Part A . By Parts A,

B  and C we may assume that CsA i ( i =1, 2, 3, 4) is free. T h e
purpose of this part is to prove that 03 is isomorphic with some
Sz(/), where /=2 2"+1, or LF(3, 4 ) .  B y [7] CsA i  is  not free.
Let X  be an element o f 0  such that CsA i  : CsX=n 5 .

(3 D . 1 ) CsAi  is  a Hall subgroup of 0. Furtheremore, 103 1 =
4

H iCs24,1.

P ro o f .  This is obvious.

(3 D . 2 ) CsA i  is  of even order.

P ro o f .  See the proof of (3B. 5).

(3 D . 3 ) We may assume that CsAi  is not nilpotent.

P ro o f .  If CsA i  is nilpotent, then by a  theorem of Wielandt
[5, p. 285] all subgroups X o f  0  with I =I CsA i  I are nilpotent.
Hence, in particular, the centralizer of every involution of 0 is 2-
closed. Therefore by a theorem of Suzuki [12] we get the theorem.
Hence we may assume that CsAi  is not nilpotent.

Now by a theorem of Camina [2] we obtain that CsAi: CsX=
where p  is a prime, and that Z(CsA i )  is a p-group.

(3 D . 4 ) We may assume that p= 2.

P ro o f .  Otherwise, let J be an involution in CsA i . Then CsJ=
CsAi j  is nilpotent. Hence, as in  the proof of (3D . 3 ) we may
assume that p=2.

Now, as before, Ti  is not abelian and, in particular, of exponent

(3 D . 5 ) There exists a 2-element Y such that I Cs Yi = I Cs.X1
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P roo f. See the proof o f (3B. 6).

(3 D . 6 ) F(Cs241 )  is not a 2-group.

Proof. Since CsAi = T i CsY and since CsY is nilpotent, Csil i  is
solvable [5, p. 674] . Now see the proof o f  (3B. 8).

By (3D. 3) In (CsA 1 )I 2. Let q be a prime of n(C s A i )  distinct
from  2. Let be a Sylow q-subgroup of CsAi . Let X=/=E be an
element o f Z (C ) .  Then CsX=CsXA, is the direct product of the
abelian Sylow 2-subgroup 4.3;', the Sylow q-subgroup and the abe-
lian Hall {2, 0 -complement '.21. By (3D. 5) Z is also abelian. Thus
CsX is abelian.

Now to complete the proof it suffices to prove the following
proposition, which is incompatible with (3D. 6)

(3 D . 7 ) F(CsAi) is a 2-group.

Proof. Assume the contrary. Then F(CsA i ) TiCsX/V
is  a  Frobenius group with CsX/W the kernel. Hence 4.V 3' is
cyclic or generalized quaternion [5, p. 502].

First we assume that Ti/TP is a  generalized quaternion group
of order 2'. Then there exist elements Q and R  o f Ti and S, T, U
and V of V' such that R - 1 QR=Q - 1 S, V '  —R2 T, Q2 ' U ,  R4 = V
and T i/ T P  <Q, R>TP/43P. Now we further assume that 3'  not

cyclic. Let B  b e  a normal subgroup o f T i  o f type  (2, 2) contained
in  93'. T h e n  C s k  contains I f  I  CsR=1= ICsXj, then by the

remark just before (3D. 7) C sk is abelian. This implies that Csk
is contained in CsAi. This is a contradiction. Hence ICsR 2 1=1CsA1.
I f  F(CsR 2 )  is a 2-group, then we have that q37>-1 1. This is
a contradiction. Hence F(CsR 2 )  is not a 2-group. Let 13,, C '
and be a Sylow 2-subgroup of Csk, the abelian Sylow 2-subgroup,

the abelian Sylow q-subgroup and the abelial. Hall {2, 0 -complement
o f F(CsR 2 ) ,  respectively. Thel Ti/V,' is cyclic  o r  generalized qua-

ternion.. This implies that QB 11 43! *Q . T a k e  an element W=I= E  of
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u n v .  Then CsW  contains C$ and C. This implies that V=5:a.
This is  a contradiction. Therefore l r  is  cyc lic . H ence Vin CsW
contains V` properly. Thus CsQ 2 °  2  contains qr. This implies that
iCsQ2b 2 1=  IC sA il. As above, F(CsQ 2 b  2 )  is not a 2-group. If 1CsQl
= IC sX I, then CsQ=F(Cs(2 2 ° - 2 ). Let 431 b e  the Sylow 2-subgroup
of C sQ . Then [Q, is contained in 13P M31—il. This is  a contra-
diction. Hence C sQ =C sV - 2 . Sim ilarly we obtain that CsR=CsR 2

.

Since Q22 and R 2 commute, th is im plies that Q  and R  commute.
This is  a contradiction. Therefore wqr is cyclic.

Let Vi/VP b e  o f  order 2  and P43P a  generator o f Vi/W
Assume that b > 2 . A s  above, we m ay assume th a t V i  is  cyc lic .
Therefore V i  i s  metacyclic. T hen by a  theorem o f Mazurov [10]
13, is  of type (2, 2) or of maximal class. This i s  a contradiction.
Hence we obtain that b = 1 .  Now we show th at Z(931 )  i s  o f order
2. Assume the co n tra ry . I f  I Cs.P1= ICsX 1, th en  b y  the remark
just before (3D. 7 ) C sP  is  abelian and CsP ( -1 (Clx.1) = Q .  Let C °

b e  the abelian Sylow q-subgroup o f C s P .  Then v n z -e . But
since C sP  contains Z(V1), this is a contradiction. If I CsPI = I CsAi I,
then let arid C.t' be the abelian Sylow 2-subgroup and the abelian
Sylow q-subgroup of F ( C s P ) .  Then 13in 43it # e  by assumption. Let
Z=/=E be an element of 3 1r-1311. csz contains ,C and C .  S in c e
cnv=e and since F(C sZ )  contains C and C*, th is  is  a  contra-
diction. Hence I z ( 31) I = 2 .  Since P  is o f order 2 (See  the proof
o f (3C. 6)), by a lemma of Suzuki [11] V i  is  of type (2, 2) or of
maximal class. Then by a theorem of Wong [14] w e get a contra-
diction.

Remark. The argument of Part D , together with [8], shows
that we obtain the followiog theorem. L et 06 be a sim ple group
such that C(03) has the follow ing shape n1 n,••• Ilk . T hen  k = 3  or

nk+ i
4 .  I f  k = 3 , then 03 is isom orphic w ith L F (2 , 1 ) , w here 1  i s  an
odd Prime power bigger than 5 .  I f  k = 4 , then  03 is isom orphic
w ith S z(1 ), where l= 2 2 "+1 , or L F (3 , 4 ).
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