Simple groups of conjugate type rank 5

By

Noboru I<mark>TO^{*}</mark>

(Communicated by Professor Nagata, August 4, 1972)

1. Introduction

Let \Im be a finite group, $I(\Im)$ the set of indices of centralizers of non-central elements of \mathcal{B} in \mathcal{B} , and r the number of elements in $I(\mathcal{G})$, r is called the conjugate type rank of \mathcal{G} . We introduce an ordering in $I(\mathcal{B})$ as follows: let a and b be two elements of $I(\mathcal{B})$. Then $a > b$ if and only if a divides *b*. Let *k* be the number of maximal elements in $I(\mathcal{B})$. Then \mathcal{B} is called k-headed. We form a graph $C(\mathcal{B})$ of \mathcal{B} as follows: the points of $C(\mathcal{B})$ are the elements of $I(\mathcal{B})$. The (oriented) edge ab of $C(\mathcal{B})$ exists, where a and *b* are points of $C(\mathcal{B})$, if and only if $a \gt b$. We denote the edge ab by *a.* $C(\mathcal{B})$ is called the conjugate type graph of \mathcal{B} . The centralizer $\frac{1}{b}$

of any non-central element of $\mathfrak G$ in $\mathfrak G$ corresponding to an isolated point of $C(\mathcal{B})$ is called free.

An obvious problem is as follows: Let r be a given positive integer. Then classify all (simple) groups \mathcal{B} such that conjugate type rank of \mathcal{B} are equal to r . When r increases, this problem probably will become more difficult with exponential growth rate. If, however, the shape of $C(\mathcal{O})$ is given and coincident with that of the conjugate type graph of some known simple group, then the problem will become considerably tractable.

In previous papers we proved the following theorems:

(I) [7] A finite group \mathcal{B} is a simple group of the conjugate type

^{*} This work is partially supported by NSF GP 28420.

rank 3 if and only if $\circled{3}$ is isomorphic with some $LF(2,2^{m})$, $m \geq 2$.

(II) [8] A finite group \Im is a simple group of the conjugate type rank 4 if and only if \circled{S} is isomorphic with some $LF(2, q)$, where $q \ge 7$ is odd.

It the present paper we prove the following theorem:

Theorem. *A simple group of conjugate type rank 5 and not of 3-headed is isomorphic with some* $Sz(l)$ *,* $l=2^{2n+1}$ *,* $n \geq 1$ *, or* $LF(3, 4)$ *.*

Remark. The 3-headed case is still open.

Notation and definition. Let \tilde{x} be a finite group. $Z(\tilde{x})$ is the center of $\mathfrak X$. If $\mathfrak X$ is solvable, then $F(\mathfrak X)$ is the Fitting subgroup of \mathfrak{X} . Let \mathfrak{Y} be a subset of \mathfrak{X} . $|\mathfrak{Y}|$ is the number of elements in \mathfrak{Y} . $\pi(\mathfrak{X})$ is the set of prime divisors of $|\mathfrak{X}|$. If \mathfrak{Y} is nonempty, then *Cs*²) is the centralizer of 2 in \mathfrak{X} . If $\mathfrak{Y} = \{Y\}$, $Cs\mathfrak{Y} = CsY$. *Ns*²) is the normalizer of \mathfrak{Y} in \mathfrak{X} . $\langle \mathfrak{Y} \rangle$ is the subgroup generated by \mathfrak{Y} . If $[2] = \{Y\}$, $\langle \emptyset \rangle = \langle Y \rangle$. Let 3 be a subset of \mathfrak{X} . Then $[2], 3$ is the subset of $\mathfrak X$ consisting of $Y^{-1}Z^{-1}YZ$, where Y and Z are elements of \mathfrak{Y} and \mathfrak{X} , respectively. *A* proper subgroup \mathfrak{F} of \mathfrak{X} is called fundamental, if there exists an element X of $\mathfrak X$ such that $\mathfrak F = CsX$. $\mathfrak F$ is called maximal, if δ is containd in no other fundamental subgroups of \tilde{x} . \mathfrak{F} is called minimal, if \mathfrak{F} contains no other fundamental subgroup of \mathfrak{X} . \mathfrak{F} is free, if \mathfrak{F} is maximal and minimal.

2. 2-headed case

The purpose of this section is to show that this case does not occur.

Let \circledS be a simple group of conjugate type rank 5 and of 2headed. Let n_i be maximal elements of $I(\mathcal{B})$ $(i=1, 2)$. Let A_i be an element of \mathcal{B} such that $\mathcal{B}: CsA_i = n_i$ $(i=1, 2)$. Then the class equation implies that $(n_1, n_2) = 1$. In particular, $\mathcal{B} = C s A_1 C s A_2$.

- $(2. 1)$ Both $CsA₁$ and $CsA₂$ are not free.
- *Proof.* See the proof of (2.2) in [8].

(2.2) We may assume that $|\langle A_i \rangle| = p_i$ is a prime $(i=1, 2)$.

Then $p_1 \neq p_2$, A_i is p_i -central, namely A_i belongs to the center of some Sylow p_i -subgroup of \mathcal{B} , $n_2 \equiv 0 \pmod{p_1}$ and $n_1 \equiv 0 \pmod{p_2}$. *Proof.* See the proof of $(2, 3)$ in $[8]$.

(2. 3) We have that either $|CsA_1| \neq 0 \pmod{p_2}$ or $|CsA_2| \neq 0$ (mod p_1).

Proof. Assume the contrary that both $|CsA_1| \equiv 0 \pmod{p_2}$ and $|\mathbf{CsA}_2|\equiv 0 \pmod{p_1}.$

Let $A'_2(\neq E)$ be an element of the center of a Sylow p_2 -subgroup of CsA_1 . We may assume that A'_2 belongs to CsA_2 . If $|CsA'_2|$ = $|CsA_2|$, then $\mathcal{B}=CsA_1CsA_2'$. Since $A_1A_2'=A_2'A_1$, this implies that \mathcal{B} is not simple. If $|CsA'_2| = |CsA_1|$, then $\mathcal{B} = CsA'_2CsA_2$. Since A'_2A_2 $A_2A'_2$, this implies that \circledS is not simple. If $CsA_1A'_2 = CsA'_2$, then A_1 belongs to $Z(CsA_2')$. Hence $A_1A_2 = A_2A_1$. Then \otimes is not simple.

Now $CsA_1:CsA_1A_2'$ is prime to p_2 . Let \mathfrak{P}_2 be a Sylow p_2 -subgroup of CsA_2 . Then we may assume that CsA'_2 contains $\mathbb{Z}(\mathfrak{P}_2)$. Since we may assume that A_2 does not belong to CsA_1 , we may assume that CsA_1A_2' contains no conjugates of $\mathbb{Z}(\mathfrak{B}_2)$. Thus we have that $CsA'_{2}: CsA_{1}A'_{2}=0$ (mod p_{2}). Hence $|CsA'_{2}|$ does not divide $|CsA_{1}|$, but $|CsA'_2|$ is a proper divisor of $|CsA_2|$. Therefore a part of $C(\mathcal{B})$ has the shape n_1 n_2 . Now by symmetry we can conclude that

 $C(\mathcal{B})$ has the shape n_1 n_2 .

t *n4n2 n5*

Now assume that there exists a prime divisor q of $|\mathcal{B}|$ such that *q* is prime to n_5 . Then for every element *X* of \otimes *CsX* contains a Sylow q-subgroup $\mathfrak{Q} \neq \mathfrak{C}$ of \mathfrak{G} . Hence $\mathcal{C}s\mathfrak{Q}$ and its conjugates exhaust \mathcal{B} . This implies that $\mathcal{B} = C_s \Omega$. Hence \mathcal{B} is not simple. By a theorem of Burnside $[5, p. 451]$ n_1 is not a prime power. Let p_2^* be a prime divisor of n_1 distinct from p_2 . Let \mathfrak{P}_2^* be a Sylow

 p_2^* -subgroup of \circled{S} contained in CsA_2 . Now assume that \circled{S} : $CsZ \neq n_2$ for every element $Z \neq E$ of $Z(\mathfrak{P}_2^*)$. Let $A_2^* \neq E$ be an element of $\mathbf{Z}(\mathbb{S}_2^*)$. Then $\mathbf{CsA}_2^* = \mathbf{CsA}_2A_2^*$. Thus $\mathbb{S}: \mathbf{CsA}_2^* = n_4$. On the other hand, we may assume that CsA'_2 contains \mathfrak{P}_2^* . Otherwise, replace A_2^* and A_2 by their appropriate conjugates. Then $CsA_2' = CsA_2'A_2^*$. Thus $CsA'_{2}=CsA^{*}_{2}$. Since A_{2} belongs to $Z(CsA^{*}_{2})$ and since A_{1} belongs to CsA'_2 , $A_1A_2 = A_2A_1$. Hence \circledS is not simple. Thus there exists a p^*_2 -element $A^*_2 \neq E$ such that $CsA_2 = CsA^*_2$.

Now clearly $|CsA_1| \equiv 0 \pmod{p_2^*}$. Arguing with p_2^* instead of p_2 , we obtain that n_5/n_1 is prime to p_2^* and that n_5/n_4 is divisible by p_2^* . Let $A_2^{*'} \neq E$ be a p_2^* -element of CsA_1A_2' . Then we may assume that $CsA_1A_2 = CsA_1A_2^*$. Hence, since CsA_1A_2 is minimal, *CsA*₁ A'_2 is nilpotent. Let \mathfrak{P}_2^* be a Sylow p_2^* -subgroup of *CsA*[']. Let A_2^{*} \neq E be an element of $Z(\mathfrak{P}_2^*)$. Then $CsA_2' = CsA_2'A_2''$. Thus $A_2^{*''}A_1 = A_1A_2^{*''}$ and $A_2^{*''}$ belongs to CsA_1A_2' . If $|CsA_2^{*''}| = |CsA_2|$ then \mathcal{F} is not simple. We may assume that $|CsA_2^{*}|| = |CsA_2|$. If CsA_3 is not maximal, there exists an element $A \neq E$ of \circledS such that $|CsA| = |CsA_2|$ and $AA_1 = A_1A$. Then \emptyset is not simple. So we may assume that CsA'_2 is maximal. Now in the theorem of Camina [2] we may put $\pi = \pi (Z(CsA_2))$. Then since π contains at least two prime numbers we obtain that CsA'_{2} is nilpotent. Then clearly $A_{1}A_{2}$ $=A_2A_1$. Thus \circledS is not simple.

(2.4) We have that both $|CsA_1| \neq 0 \pmod{p_2}$ and $|CsA_2| \neq 0$ $(mod p_1).$

Proof. Assume that $|CsA_1| \equiv 0 \pmod{p_2}$. Then by (2.3) $|CsA_2| \neq 0$ (mod p_1). Let $A'_2 \neq E$ be an element of the center of a Sylow p_2 -subgroup of CsA_1 . Then as in the beginning of the proof of (2.3) we obtain that $|CsA'_2| \neq |CsA_1|$, $|CsA_2|$ and that $CsA'_2 \neq$ *CsA*₁ A'_2 . Anyway $|CsA_1A'_2| \equiv 0 \pmod{p_1}$. Further we see that as in the second part of the proof of (2.3) $|CsA'_2|$ divides $|CsA_2|$. This is a contradiction.

 (2.5) *CsA*¹ and *CsA*² are Hall subgroups of \circledS .

Proof. See the proof of (2.7) in [8]. Now we see that $C(\mathcal{B})$ has either the shape n_1 n_2 or the $\hat{n_{3}}$ $\hat{n_{4}}$ $\hat{n_{5}}$

shape
$$
n_1
$$
 n_2 .
\n \uparrow \uparrow n_3
\n \uparrow \uparrow n_5
\n \uparrow \uparrow n_4

 (2.6) $CsA₂$ is not nilpotent.

Proof. Assume that CsA_2 is nilpotent. Since CsA_2 is not free, $CsA₂$ is obviously not abelian. We may assume that the Sylow $p₂$ subgroup \mathfrak{P}_2 of CsA_2 is not abelian. Then the Sylow p_2 -complement 11 of $CsA₂$ is abelian. By a theorem of Burnside [5, p. 491] $u \neq \mathfrak{C}$. Let $X \neq E$ be a primary element of $CsA₂$. If X belongs to U, then $CsX = CsA_2$. Let X belong to \mathfrak{P}_2 and let CsX be not contained in $CsA₂$. By a theorem of Wielandt [5, p. 285] CsX is nilpotent. Hence $CsX \subseteq CsU = CsA_2$. This is a contradiction. Hence CsA_2 is centralizer-closed. This contradicts [9] .

Let B_5 be an element of \circledS such that $CsA_2 \supseteq CsB_5$ and such that $\mathcal{B}: \mathbf{C} \mathbf{s} B_{\mathbf{s}} = n_{\mathbf{s}}$. Then by a theorem of Camina [2] $n_{\mathbf{s}}/n_{\mathbf{z}}$ is a power of p_2 and $Z(CsA_2)$ is a p_2 -group.

(2.7) The Sylow p_2 -complement U of CsB_5 and moreover CsB_5 itself are abelian.

Proof. First we show that U is abelian. If $\pi(\mathfrak{U})$ contains at least two prime numbers, this is obvious. So let us assume that 11 is a q-group, where q is a prime. Let $B \neq E$ be an element of U. Then $CsB \subseteq CsA_2$. In fact, otherwise, $|CsB| = |CsA_2|$. Then by a theorem of Camina $[2]$ CsB is nilpotent. Then by a theorem of Wielandt [5, p. 285] *CsA²* is nilpotent against (2. 6). Hence *CsB* is a conjugate of U in $CsA₂$. By a theorem of Burnside [5, p. 492] $CsA₂$ is solvable. Thus a theorem of Fitting $[5, p. 277]$ implies

that $\mathfrak U$ is abelian. The rest is obvious.

 (2.8) $|CsA_2|$ is odd.

Proof. Assume that $|CsA_2|$ is even. By a theorem of Walter [13] and by (2.7) $p_2=2$. By the proofs of (4.5) and (4.6) in [8] there exists a 2-element *B* such that $|CsB| < |CsA_2|$. By the proof of (2.7) CsB is abelian. Therefore we may assume that $B = B₅$ and that CsB is contained in $CsA₂$.

Since CsB_5 is nilpotent and since $CsA_2 = \mathfrak{P}_2CsB_5$, CsA_2 is solvable [5, p. 674]. Let \mathfrak{P}_2^* be the Sylow 2-subgroup of CsB_5 . If $F(CsA_2)$ is a 2-group, then by a theorem of Fitting [5, p. 277] $F(CsA_2) \neq \mathfrak{P}_2^*$. Now $(F(CsA_2) \cap Ns\mathfrak{P}_2^*)/\mathfrak{P}_2^*$ is the kernel of a Frobenius group $(F(CsA_2) \cap N_s \mathfrak{P}_2^*) \mathfrak{U}/\mathfrak{P}_2^*$. Let *A* be an element of $F(CsA_2) \cap N_s \mathfrak{P}_2^*$ outside \mathfrak{P}_2^* . If $A^{-1} \mathfrak{U} A \neq \mathfrak{U}$, then $C s B_5$ contains $A^{-1} \mathfrak{U} A$. This is a contradiction. If $A^{-1} \mathfrak{U} A = \mathfrak{U}$, then [A, U] is contained in $\mathfrak{U} \cap F(CsA_2)$ $=\mathfrak{C}$. This is a contradiction. Hence $F(CsA_2) = CsB_5$. Then CsA_2/\mathfrak{B}_2^* is a Frobenius group with CsB_5/\mathfrak{B}_2^* the kernel. Hence $\mathfrak{B}_2/\mathfrak{B}_2^*$ is cyclic or generalized quaternion.

First assume that $\mathfrak{P}_2/\mathfrak{P}_2^*$ is a generalized quaternion group of order 2^{*a*}. Then there exist elements *Q* and *R* of \mathfrak{P}_2 and *S*, *T*, *U* and *V* of \mathfrak{P}_2^* such that $R^{-1}QR = Q^{-1}S$, $Q^{2^*} = R^2T$, $Q^{2^*} = U$, $R^* = V$ and $\mathfrak{B}_2/\mathfrak{B}_3^* = \langle Q, R \rangle \mathfrak{B}_3^*/\mathfrak{B}_2^*$. Now suppose that \mathfrak{B}_2^* is not cyclic. Let We be a normal subgroup of type (2.2) of \mathfrak{P}_2 contained in \mathfrak{P}_2^* . Then *CsR²* contains \mathfrak{W} . If $|CsR^2| = |CsB_5|$, then by (2.7) CsR^2 is abelian. This implies that $CsR^2 \subseteq CsA_2$ and that R^2 belongs to \mathfrak{P}_2^* . This is a contradiction. Hence $|CsR^2| = |CsA_2|$. If $F(CsR^2)$ is a 2-group, then we have that \mathfrak{P}_2 : $\mathfrak{P}_2^* > |\mathfrak{U}|$. This is a contradiction. Hence $F(CsR^2)$ is not a 2-group. Let \mathfrak{P}_2 and U be the Sylow 2complement of $F(CsR^2)$, respectively. Let \mathfrak{P}_2 be a Sylow 2-subgroup of CsR^2 . Then $\mathfrak{P}_2/\mathfrak{P}_2$ is cyclic or generalized quaternion. This implies that $\mathfrak{W} \cap \overline{\mathfrak{P}}_2 \neq \mathfrak{E}$. Take an element $W(\neq E)$ of $\mathfrak{W} \cap \overline{\mathfrak{P}}_2$. Then *CsW* contains $\overline{\mathfrak{U}}$ and $\overline{\mathfrak{U}}$. This implies that $\mathfrak{U}=\overline{\mathfrak{U}}$. This is a contradiction. Therefore \mathfrak{P}_2^* is cyclic. Hence $\mathfrak{P}_2 \cap \mathbf{C} s \mathfrak{P}_2^* \neq \mathfrak{P}_2^*$. Thus $\mathbf{C} s Q^{2^{d-2}}$

contains \mathfrak{P}_2^* . This implies that $|CsQ^{2^{n-2}}| = |CsA_2|$. If $F(CsQ^{2^{n-2}})$ is a 2-group, then we have that $\mathfrak{P}_2:\mathfrak{P}_2^*\gg|\mathfrak{U}|$. This contradiction shows that $F(CsQ^{2^{2}})$ is not a 2-group. If $CsQ \neq CsQ^{2^{2^{2}}}$, then $CsQ = F$ *(CsQ*^{2*z*-2}). Let \mathfrak{P}_2^* be the Sylow 2-subgroup of *CsQ*. Then $[Q, \mathfrak{P}_2^*]$ $\subseteq \mathfrak{P}_2^* \cap \mathfrak{P}_2^* = \mathfrak{E}$. Since $|\mathbf{CsQ}| = |\mathbf{CsB}_5|$, this is a contradiction. Hence $CsQ = CsQ^{2^{a-2}}$. Similarly we obtain that $CsR = CsR^2$. Since $Q^{2^{a-2}}$ and R^2 commute, this implies that *Q* and *R* commute. This is a contradiction. Therefore $\mathfrak{P}_2/\mathfrak{P}_2^*$ is cyclic.

Let $\mathfrak{P}_2/\mathfrak{P}_2^*$ be of order 2^a and $P\mathfrak{P}_2^*$ a generator of $\mathfrak{P}_2/\mathfrak{P}_2^*$. Assume that $a \geq 2$. As above, we obtain that \mathfrak{P}_2^* is cyclic. Therefore, \mathfrak{P}_2 is metacyclic. Then by a theorem of Mazurov [10] \mathfrak{P}_2 is of type (2. 2) or of maximal class. This is a contradiction. Hence we obtain that $a=1$. Now we show that $\mathbf{Z}(\mathfrak{P}_2)$ is of order 2. Assume the contrary. If $|CsP| = |CsB_s|$, then by (2.7) CsP is abelian and $CsP \cap \mathfrak{U} = \mathfrak{S}$. Let \mathfrak{u}^* be the Sylow 2-complement of *CsP*. Then $\mathfrak{u} \cap \mathfrak{u}^* = \mathfrak{E}$. But since CsP contains $\mathbf{Z}(\mathfrak{P}_2)$, this is a contradiction. If $|CsP| = |CsA_2|$, then let $\hat{\mathfrak{B}}_2$ and $\hat{\mathfrak{U}}$ be the Sylow 2-subgroup and Sylow 2-complement of $F(CsP)$. Then $\mathfrak{P}_2^* \cap \widehat{\mathfrak{P}_2} \neq \mathfrak{F}$ by assumption. Let $Z(\neq E)$ be an element of $\mathfrak{B}_{\alpha}^* \cap \widehat{\mathfrak{P}}_2$. *CsZ* contains U and $\widehat{\mathfrak{U}}$. Since $\mathfrak{U} \cap \widehat{\mathfrak{U}} = \mathfrak{S}$, and since $F(CsZ)$ contains 11 and \hat{u} , this is a contradiction. Hence $\mathbf{Z}(\mathfrak{P}_2)$ = 2. Then by a lemma of Suzuki [11] \mathfrak{P}_2 is of type $(2, 2)$ or of maximal class. Then by a theorem of Wong $[14]$ we get a contradiction.

 $(2. 9)$ $F(CsA_2)$ is a p_2 -group.

Proof. Assume the contrary. Then $F(GsA_2) = CsB_5 = \mathcal{D}_2^* \times \mathcal{U}$. Since $F(CsA_2)/\mathfrak{B}_2^*$ is the kernel of a Frobenius group CsA_2/\mathfrak{B}_2^* , $\mathfrak{P}_2/\mathfrak{P}_2^*$ is cyclic by (2.8). Let $\mathfrak{P}_2/\mathfrak{P}_2^*$ be of order p_2^* and $P\mathfrak{P}_2^*$ a generator of $\mathfrak{B}_2/\mathfrak{B}_2^*$. Assume that $a \geq 2$. Then as in the proof of (2.8) we obtain that \mathfrak{P}_2^* is cyclic. Therefore \mathfrak{P}_2 is metacyclic. If \mathfrak{P}_2 , is not abelian, then by a theorem of Huppert [5, p. 452] \mathfrak{G} is not simple. Hence \mathfrak{P}_2 is abelian. Since $\langle P \rangle \cap \mathfrak{P}_2^* = \mathfrak{E}$, we obtain that $\mathfrak{P}_2 = \mathfrak{P}_2^* \times \langle P \rangle$ is of type (p_2^a, p_2^a) .

Now the set of elements *X* of \otimes such that \otimes : $CsX = n_2$ coincides with the set of p_2 -elements $\neq E$ in \circledS . Every p_2 -element $\neq E$ belongs to exactly one conjugate of \mathfrak{P}_2^* . Now $Ns\mathfrak{P}_2^* = CsA_2$. In fact, otherwise, since $Cs\mathfrak{P}_2^* = CsA_2$, by a theorem of Thompson [5, p. 499] we obtain that $CsA₂$ is nilpotent contradicting $(2, 6)$. Let e be the number of conjugacy classes of elements X of \mathcal{B} such that $\mathcal{B}: CsX$ $=n_2$. Then we obtain that

$$
en_{2}=n_{2}(p_{2}^{a}-1).
$$

Hence $e=p_2^{\prime}-1$. On the other hand, by a theorem of Burnside [5, p. 418] any two elements of \mathfrak{P}_2 which are conjugate in \mathfrak{G} are conjugate in $N_s \mathfrak{P}_2$. Since $Cs \mathfrak{P}_2 = \mathfrak{P}_2$, we obtain that $Ns \mathfrak{P}_2$: $\mathfrak{P}_2 = p_2 + 1$. In particular, there exists an involution *J* in $Ns\mathfrak{S}_2$ such that *J* inverts A_2 . Then by a theorem of Thompson [5, p. 499] we obtain that $CsA₂$ is nilpotent contradicting (2.6) Hence we obtain that *a=1.*

If $|CsP| = |CsB₅|$, then by (2.7) CsP is abelian. Then CsP is contained in CsA_2 . This is a contradiction. Hence $|CsP| = |CsA_2|$. Let $\hat{\mathfrak{P}}_2$ be the Sylow p₂-subgroup of $F(CsP)$. Since $\hat{\mathfrak{P}}_2 \cap \mathfrak{P}_2^* = \mathfrak{S}$, we have that $|\mathfrak{P}_2^* \cap \mathcal{C} sP| = p_2$. If \mathfrak{P}_2 is abelian, we get a contradiction as above. So we may assume that \mathfrak{P}_2 is not abelian. Hence we have that $|\mathfrak{P}_2| = p_2^3$. By the transfer theorem of Wielandt [5, p. 447] $Ns\mathfrak{P}_2 \neq \mathfrak{P}_2$. Since $\mathbf{Z}(\mathfrak{P}_2) = \langle A_2 \rangle$ we have that $CsA_2 \neq Ns \langle A_2 \rangle$. Then by a theorem of Thompson $[5, p. 499]$ $CsA₂$ is nilpotent against $(2.6).$

Remark. The proof of (2.10) of $[8]$ is incomplete, because it leaves open the case where \mathfrak{P}_2 is abelian but not cyclic. The proof of (2.10) of [8] can be completed as above. But meanwhile Camina [2 [has found an essentially simpler proof to kill the 2-headed case for the conjugate type rank 4 simple groups.

 $(2. 10)$ Let $X \neq E$ be a p_2 -element of \mathcal{B} . Then $|CsX| = |CsA_2|$.

Proof. Assume that $|CsX| \neq |CsA_2|$. By (2.7) CsX is abelian.

Hence we may assume that $CsX \subseteq CsA_2$. Let $\widehat{\mathfrak{P}}_2$ and $\widehat{\mathfrak{U}}$ be the Sylow p_2 -subgroup and Sylow p_2 -complement of *CsX*, respectively. By $F(CsA_2) \neq \hat{X}_2$. Hence $F(CsA_2) \cap Ns\hat{X}_2 \neq \hat{X}_2$. Let X_1 be an element of $\mathbf{F}(CsA_2) \cap \mathbf{Ns}_{22}$ outside $\hat{\mathfrak{B}}_2$. Then $[\hat{\mathfrak{X}}_2, X_1^{-1}\hat{\mathfrak{U}}X_1] = \mathfrak{E}$. If $X_1^{-1}\hat{U}X_1 = \hat{U}$, then $[X_1, \hat{U}] = F(CsA_2) \cap \hat{U} = \mathfrak{S}$. This is a contradiction.

 $(2. 11)$ \mathfrak{P}_2 is of exponent p_2 .

Proof. Assume that \mathfrak{P}_2 is of exponent p_2^a , where $a \geq 2$. Then by (2.10) we may assume that $\mathbf{Z}(CsA_2)$ contains an element C of order p_2^2 . Let *X* be an element of CsA_2 of order p_2 . Then $CsCX =$ $CsC^p₂=CsA₂$. Hence all elements of $CsA₂$ of order $p₂$ belong to **Z** *(CsA₂)*. This implies that $\mathfrak{P}_2 = \mathbb{Z}(CsA_2)$. Then by (2.9) $\mathbb{F}(CsA_2) = \mathfrak{P}_2$. Hence $CsA₂ \cap NsU = CsU$. If $Nsl = CsU$, then by the transfer theorem of Burnside \mathcal{G} is not simple. Hence *Ns*U $\neq Cs$ U. Let *V* be an element of *NsU* outside *CsU*. Since *CsU*= $\mathfrak{B}_{2}^{*} \times \mathfrak{U}$, *V* normalizes \mathfrak{P}_{2}^{*} . Since $Cs\mathfrak{P}_2^* = CsA_2$, *V* belongs to $Ns(CsA_2)$, but not to CsA_2 . Hence by a theorem of Thompson $[5, p. 499]$ $CsA₂$ is nilpotent. This is a contradiction.

 $(2. 12)$ $\pi(CsA_2) = \pi(Nsl)$.

Proof. If *s* is a prime of π (CsU) not belonging to π (CsA₂), then let $S \neq E$ be an s-element of *NsU*. Then S normalizes \mathfrak{P}_2^* and hence $Cs\mathfrak{B}_{2}^{*}$. $\langle S\rangle Cs\mathfrak{B}_{2}^{*}$ is a Frobenius group with $Cs\mathfrak{B}_{2}^{*}$ the kernel. By a theorem of Thompson [5, p. 499], $Cs\mathfrak{B}_{2}^{*}$ is nilpotent. By the proof of (2.10) $Cs\mathfrak{B}_{2}^{*}$ contains *Csll* properly. This is a contradiction. If p_2 does not belong to $\pi(NsU)$ then by the transfer theorem of Burnside \circledS is not simple.

Now we get a desired contradiction as follows.

Let $\hat{\mathcal{V}}$ be a Sylow p_2 -subgroup of *NsU*. Then *NsU* = $\hat{\mathcal{V}}$ U and $\hat{\mathcal{B}} \neq \mathcal{B}$ by (2.12). Notice that $\mathbf{Csl} = \mathfrak{P}_2^* \times \mathfrak{U}$, where \mathfrak{P}_2^* contains A_2 . Thus $\mathfrak{P}_2^* \cap Z(\widehat{\mathfrak{P}}) \neq \mathfrak{E}$. Let $A' \neq E$ be an element of $\mathfrak{P}_2^* \cap Z(\widehat{\mathfrak{P}})$. Then *CsA'* contains *NsU*. Let $\overline{\mathfrak{B}}$ be a Sylow p_2 -subgroup of *CsA'*. Since

 $Nsll \neq Csll$, $F(CsA') \neq \overline{\mathfrak{P}}$. $Nsll/\mathfrak{P}_2^*$ is a Frobenius group with $Csll/\mathfrak{P}_2^*$ the kernel. Since $F(CsA') \cap Nsl1 = F(CsA') \cap Csl1$ and since $\overline{\mathfrak{P}} = F$ $(CsA')(\overline{\mathfrak{P}} \cap Nsl)$, $\overline{\mathfrak{P}} \cap Nsl/ \mathfrak{P}_2^*$ is cyclic. Hence $\overline{\mathfrak{P}}$: $F(CsA')=p_2$. Put $Ns\overline{\mathfrak{B}}\cap CsA' = \overline{\mathfrak{B}}\overline{\mathfrak{U}}$, where $\overline{\mathfrak{U}}$ is a subgroup of \mathfrak{U} . If $\overline{\mathfrak{U}}\neq\mathfrak{E}$, then let $X \neq E$ be an element of *Ns*U_I $\overline{\mathfrak{B}}$ outside \mathfrak{P}_2^* . Then $[X, \overline{\mathfrak{U}}] = \overline{\mathfrak{P}} \cap \overline{\mathfrak{U}} = \mathfrak{E}$. Since $Cs\overline{\mathfrak{U}} = Cs\mathfrak{U} = \mathfrak{P}_2^* \times \mathfrak{U}$, this is a contradiction. Hence $Ns\overline{\mathfrak{V}} \cap CsA'$ $=\overline{\mathfrak{P}}$. By the transfer theorem of Wielandt [5, p. 447] *CsA'* is p_z nilpotent. This is a contradiction.

3. 4-headed case

Let \circledA be a simple group of conjugate type rank 5 and of 4headed. Let n_i be maximal elements of $I(\mathcal{B})$ $(i=1, 2, 3, 4)$. Let *A_i* be an element of \mathcal{G} such that $\mathcal{G}: \mathbf{Cs}A_i = n_i$ ($i=1, 2, 3, 4$).

Part *A.* The purpose of this part is to prove that at least one of the CsA_i $(i=1, 2, 3, 4)$ is free.

Assume the contrary. Then let X_i be an element of \mathfrak{G} such that CsX_i is properly contained in CsA_i $(i=1, 2, 3, 4)$. Thus $\mathcal{B}: \mathbf{C}\mathbf{s}X_i = n_5$ (*i* = 1, 2, 3, 4).

 $(3A. 1)$ *CsA_i* is not nilpotent $(i=1, 2, 3, 4)$.

Proof. Assume that CsA_1 is nilpotent. Obviously there exists a nonabelian Sylow p_1 -subgroup \mathfrak{P}_1 of CsA_1 , where p_1 is a prime. We may assume that A_1 is an element of $\mathbb{Z}(\mathfrak{P}_1)$. Hence \mathfrak{P}_1 is a Sylow p_1 -subgroup of $\ddot{\otimes}$. Let $\ddot{\otimes}$ be the Sylow p_1 -complement of CsA_1 . Clearly 11 is abelian. Since CsA_1 is not a Hall subgroup of \mathcal{B} , there exists a prime q in $\pi(\mathfrak{U})$ such that the Sylow q-subgroup \mathfrak{O} of CsA_1 is not a Sylow q-subgroup of \heartsuit . Then there exists a q-element $Q \neq E$ of Ω such that a Sylow q-subgroup of $\mathcal{C} sQ$ contains Ω properly. Since CsA_1 is contained in CsQ , this is a contradiction.

Now by a theorem of Camina [2] we obtain that CsA_i : $CsX_i =$ $p_i^{\epsilon_i}$, where p_i is a prime, and that $\mathbf{Z}(CsA_i)$ is a p_i -group $(i=1, 2, 3, ...)$ 4). By the choice of A_i the p_i are distinct.

 $(3A. 2)$ π (\integs) = { p_1 , p_2 , p_3 , p_4 }.

Proof. Let *q* be a prime divisor of $|\mathcal{G}|$ distinct from p_i (*i* = 1. 2, 3, 4). We may assume that CsA_1 contains a Sylow q-subgroup Ω of \mathcal{B} . Let $Q \neq E$ be an element of $\mathbf{Z}(\Omega)$. Then we have that CsA_1Q contains \mathfrak{Q} and that $|CsA_1Q| = |CsX_1|$. This shows that $Cs\Omega$ and its conjugates exhaust \mathcal{B} . Hence $\mathcal{B} = Cs\Omega$. This contradicts the simplicity of \mathcal{B} .

 $(3A.3)$ Let $|CsX| = |CsX_1|$. Then CsX is abelian.

Proof. This is obvious, since $p_1p_2p_3p_4$ divides $|CsX|$ and since *CsA_i*: *CsX_i* is a power of p_i ($i=1, 2, 3, 4$)

(3A. 4) We may choose $X = X_1$ and A_i ($i = 1, 2, 3, 4$) so that $\mathbf{C} s X$ is contained in $\bigcap_{i=1}^{4} \mathbf{C} s A_i$.

Proof. We show that CsX contains a p_i -element $A_i'(i>1)$ such that CsX is contained in CsA' and that $|CsA'_{i}| = |CsA_{i}|$. Let $A''_{i} \neq E$ be any p_i -element of CsX . We may assume that A_i'' belongs to CsA_i . If $CsA_i'' = CsX$, then CsX contains A_i . Put $A_i' = A_i$. If $|CsA_i''| = |CsA_i|$, put $A_i = A_i''$.

Let \mathfrak{P}_i be a Sylow p_i -subgloup of CsA_i . Then by (3A. 4) CsA_i $=$ \mathcal{B}_i *CsX*. In particular, *CsA_i* is solvable $(i=1, 2, 3, 4)$ [5, p. 674].

(3A. 5) For at least one *i*, $F(CsA_i)$ is a p_i-group.

Proof. Assume the contrary. Then $CsX = F(CsA_i)$ $(i=1, 2, 3,$ 4). Hence $\mathcal{B} = Ns(CsX)$. This contradicts the simplicity of \mathcal{B} .

We assume that $\mathbf{F}(CsA_1)$ is a p_1 -group. Let \mathfrak{P}_i^* be the Sylow p_i -subgroup of CsX $(i=1, 2, 3, 4)$.

(3A. 6) For at least three i's, $\mathbf{F}(CsA_i)$ is a p_i-group.

Proof. By a theorem of Fitting [5, p. 277] we have that $F(CsA_1)$ contains \mathfrak{P}_i^* properly. Then $(F(CsA_1) \cap Ns\mathfrak{P}_i^*)\mathfrak{P}_i^*\mathfrak{P}_i^*\mathfrak{P}_i^*/\mathfrak{P}_i^*$

is a Frobenius group with $\mathbf{F}(CsA_1) \cap \text{Ns}\mathfrak{P}_1^*/\mathfrak{P}^*$ the kernel. Therefore $\mathfrak{P}_{\mathfrak{a}}^*\mathfrak{P}_{\mathfrak{a}}^*\mathfrak{P}_{\mathfrak{a}}^*$ is cyclic. Now assume that $\mathbf{F}(CsA_i)$ is not a p_i -group for $i=3$, 4. Then $F(CsA_i) = CsX$ for $i=3, 4$. We may assume that $p_3 \geq p_4$. Since \mathfrak{P}_4^* is cyclic, we may assume that $\mathfrak{P}_3 \mathfrak{P}_4^*$ is p_4 -nilpotent. Hence $[\mathfrak{P}_3, \mathfrak{P}_4^*] \subseteq \mathfrak{P}_3 \cap \mathfrak{P}_4^* = \mathfrak{E}$. This is a contradiction.

We assume that $F(CsA_i)$ is a p_i -group for $i=1, 2, 3$.

(3A. 7) If $F(CsA_4)$ is not a p_4 -group, then $p_4 < p_i$ (i=1, 2, 3).

Proof. If so, we have that $F(CsA_4) = CsX$. By the proof of (3A. 6) CsX is cyclic. Since $\mathfrak{P}_i^*\mathfrak{P}_4/\mathfrak{P}_i^*$ is a Frobenius group with $\mathfrak{P}_{i}^{*}\mathfrak{P}_{i}^{*}/\mathfrak{P}_{i}^{*}$ the kernel, $p_{i} > p_{i}$ (*i*=1, 2, 3)

Now we may assume that $p_1 > p_2 > p_3 > p_4$. Then $F(CsA_1) = \mathfrak{P}_1$.

We show that $N_s\mathfrak{P}_1$ and its conjugates exhaust \mathfrak{G} . Let $G \neq E$ be any element of \mathcal{G} . If $|\mathcal{C}sG| = |\mathcal{C}sA_1|$, then \mathcal{G} is a p_1 -element. If $|CsG| = |CsA_i|$ for $i>1$, then *G* is a *p_i*-element. Since *CsG* is not free, there exists an element *H* in *CsG* such that *CsH* is properly contained in CsG . *G* belongs to CsH . By the proof of $(3A.4)$ there exists a p_1 -element $A'_1 \neq E$ such that CsH is contained in CsA'_1 and that $|CsA_i'| = |CsA_i|$. Therefore, $Ns\mathfrak{B}_i = \mathfrak{B}$ and \mathfrak{B} is not simple. This is a cntradiction.

Part *B*. We use the same notation as in Part *A*. By Part *A*. we may assume that $CsA₄$ is free. The purpose of this part is to prove that at least one of CsA_i , $(i=1, 2, 3)$ is also free.

Assume the contrary. Then let X_i be an element of \otimes such that CsX_i is properly contained in CsA_i ($i=1, 2, 3$). Then $\mathcal{C} \cdot sX_i$ $=n_5$ $(i=1, 2, 3)$.

 $(3B, 1)$ *CsA_i* is not nilpotent $(i=1, 2, 3)$.

Proof. See the proof of $(3A. 1)$.

Now by a theorem of Camina [2] we obtain that $CsA_i: CsX_i =$ $p_i^{\alpha_i}$, where p_i is a prime, and that $\mathbf{Z}(CsA_i)$ is a p_i -group $(i=1, 2, 3)$. By the choice of A_i the p_i are distinct.

(3B. 2) $\pi(CsA_i) = \{p_1, p_2, p_3\}$ $(i=1, 2, 3)$

Proof. Let *q* be a prime of $\pi(CsA_1)$ distinct from p_i (*i*=1, 2, 3). We may assume that CsA_1 contains a Sylow q-subgroup Ω of \mathbb{G} . Let $Q \neq E$ be an element of $\mathbb{Z}(\mathbb{Q})$. Then we have that CsA_1Q contains \mathfrak{D} and $|CsA_1Q| = |CsX_1|$. This shows that \mathfrak{B} is of isolated type and hence \mathcal{B} is not simple $[6]$.

 $(3B. 3)$ Let $|CsX| = |CsX_1|$. Then CsX is abelian.

Proof. See the proof of (3A. 3)

(3B. 4) We may choose $X = X_1$ and A_i $(i=1, 2, 3)$ so that 3 $\mathbf{C} s X$ is contained in $\bigcap_{i=1} \mathbf{C} s A_i$.

Proof. See the proof of $(3A. 4)$.

Let \mathfrak{P}_i be a Sylow p_i-subgroup of CsA_i . Then by (3B. 3) CsA_i $\mathfrak{P}_i C_s X$. In particular, $C_s A_i$ is solvable $(i=1, 2, 3)$ [5, p. 674].

(3B. 5) $p_i = 2$ for $i = 1$ or 2 or 3.

Proof. Assume the contrary. Then by a theorem of Feit-Thompson [3] $CsA₄$ is of even order. Since $CsA₄$ is free, $CsA₄$ is abelian $[6]$. In particular, a Sylow 2-subgroup of \otimes is abelian. Therefore, by a theorem of Walter [13] we get a contradiction.

We assume that $p_3 = 2$. Then \mathfrak{P}_3 is not abelian and, in particular, of exponent ≥ 4 .

(3**B. 6**) There exists a 2-element Y such that $|CsY| = |CsX|$.

Proof. Assume the contrary. Let A'_3 be an element of $\mathbf{Z}(CsA_3)$ of order 4. Let *A* be any involution of CsA_3 . Then since $CsAA'_3$ is contained in $Cs(A_s)²$, we obtain that $CsA_sA = CsA = CsA_s$. This implies that \mathfrak{P}_3 is abelian. This is a contradiction.

 $(3B. 7)$ We can take Y as in $(3B. 4)$.

Proof. Since CsY is minimal, CsY is the direct product of the Sylow 2-subgroup and the abelian Sylow 2-complement. The rest is obvious.

 $(3B. 8)$ $F(CsA_3)$ is not a 2-group.

Proof. Assume the contrary. By a theorem of Fitting [5, p. 277] we have that $\mathbf{F}(CsA_3)$ contains \mathfrak{P}_3^* properly. Let A be an element of $\mathbf{F}(CsA_3) \cap Ns\mathfrak{B}_3^*$ outside \mathfrak{P}_3^* . Then if *A* belongs to $Ns\mathfrak{B}_1^*$, $[A, \mathfrak{P}_1^*]$ is contained in $\mathfrak{P}_1^* \cap F(CsA_3) = \mathfrak{E}$. Since $Cs\mathfrak{P}_1^* \cap CsA_3$ is contained in *CsX*, this is a contradiction. Therefore, $A^{-1}\mathfrak{P}_{1}^{*}A \neq \mathfrak{P}_{1}^{*}$ and $[\mathfrak{P}_3^*, A^{-1}\mathfrak{P}_1^*A] = \mathfrak{E}$. This shows that $|CsX| = |CsA_3|$. This contradicts (3B. 6).

(3B. 9) Let $|CsX'| = |CsX|$. Then CsX' is conjugate with CsX in \mathcal{B} .

Proof. By (3B. 3) CsX' is abelian. Since CsX contains $Z(\mathfrak{P}_3)$, we may assume that CsX contains a 2-element A'_3 of CsX' . Then $CsA₃$ contains both CsX and CsX' . Now by (3B. 8) $F(CsA₃)$ is not a 2-group. This implies that $CsX = CsX' = Cs(\mathfrak{P}_1^*\mathfrak{P}_2^*)$.

Now every element of \mathcal{B} is conjugate either to an element of $CsA₄$ or to an element of CsX . Since CsX is normal in $CsA₃$, Ns (CsX) contains CsX properly. Since $CsA₄$ is abelian or an p-group of exponent p, if $Ns(CsA_4) = CsA_4$ then by the transfer theorem of Wielandt [5, p. 447] \otimes is not simple. Hence $Ns(CsA_4) \neq CsA_4$. Therefore by counting the number of elements in \mathcal{B} we get a contradiction.

Part *C .* We use the same notation as in Part *A .* By Parts *A* and *B* we may assume that CsA_3 and CsA_4 are free. The purpose of this part is to prove that at least one of CsA_i , $(i=1, 2)$ is also free.

Assume the contrary. Then let X_i be an element of \otimes such that CsX_i is properly contained in CsA_i $(i=1, 2)$. Then $\mathcal{G}:CsX_i =$

 n_5 $(i=1, 2)$.

(3C. 1) CsA_i is not nilpotent $(i=1, 2)$.

Proof. See the proof of $(3A. 1)$.

Now by a theorem of Camina [2] we obtain that *CsA,: CsX,* $p_i^{\epsilon_i}$, where p_i is a prime, and that $\mathbf{Z}(CsA_i)$ is a p_i -group $(i=1, 2)$. By the choice of A_1 and A_2 , p_1 and p_2 are distinct.

 $(3C. 2)$ *p₁* or $p_2=2$.

Proof. See the proof of $(3B, 5)$.

We assume that $p_2 = 2$. Then P_2 is not abelian, and, in particular, of exponent ≥ 4 .

(3C. 3) There exists a 2-element *X* such that $|CsX| = |CsX_1|$. CsX is the direct product of the Sylow 2-subgsoup \mathcal{X}_{2}^{*} , the abelian Sylow p_1 -subgroup \mathfrak{P}_1^* and the abelian Hall $\{2, p_1\}$ -complement $\mathfrak A$ of *CsX.*

Proof. See the proof of $(3B. 6)$.

(3C. 4) We may choose A_1 and A_2 so that $CsA_1 \cap CsA_2 = CsX$.

Proof. Obvious.

Since $CsA_i = \mathcal{B}_iCsX$, CsA_i is solvable $(i=1, 2)$ [5, p. 674].

(3C. 5) $F(CsA_2)$ is not a 2-group.

Proof. See the proof of $(3B. 8)$.

Therefore $\mathbf{F}(CsA_2) = CsX = \mathfrak{P}_1^* \times \mathfrak{P}_2^* \times \mathfrak{A}$. Since $\mathfrak{P}_2CsX/\mathfrak{P}_2^*$ is a Frobenius group with CsX/\mathfrak{B}_{2}^{*} the kernel, $\mathfrak{P}_{2}/\mathfrak{P}_{2}^{*}$ is cyclic or generalized quaternion. Let A'_2 be an element of \mathfrak{P}_2 outside \mathfrak{P}_2^* . If $|CsA'_2|$ $= |CsX|$, then A_2 commutes with a p_1 -element not belonging to \mathfrak{P}_1^* . This is a contradiction. Hence $|CsA_2'| = |CsA_2|$. If CsA_2' contains a 2-element *X'* of CsA_2 such that $CsX' = CsX$, then A'_2 belongs to CsX . This is a contradiction. Hence CsA'_{2} does not contain such an element. If $\langle A_2' \rangle \cap \mathfrak{P}_2^* \neq \mathfrak{C}$, then CsA_2' contains $\mathfrak{P}_1^* \times \mathfrak{A}$. This is a contradiction. Hence $\langle A'_2 \rangle \cap \mathfrak{P}_2^* = \mathfrak{S}.$

(3C. 6) $\mathbf{Z}(\mathfrak{P}_2)$ is elementary abelian.

Proof. First we show that $Z(CsA_2)$ is elementary abelian. Otherwise, we may assume that A_2 is an element of order 4. Let A'_2 be an involution of \mathfrak{P}_2 outside \mathfrak{P}_2^* . Then $CsA'_2A_2 = CsA_2^2 = CsA_2$. This shows that A'_2 belongs to $\mathbf{Z}(CsA_2)$, and hence to CsX . This is a contradiction. Now assume that $\mathbf{Z}(\mathfrak{P}_2)$ is not elementary abelian. Let A_2'' be an element of $\mathbf{Z}(\mathfrak{P}_2)$ of order 4. Then A_2'' does not belong to \mathfrak{P}_2^* by the first argument. But $A_2''X = XA_2'$. This is a contradiction.

 $(3C. 7)$ $\beta_2^* = 2.$

Proof. This is obvious by (3C. 6) and the argument following (3C. 5).

(3C. 8) Let A'_2 be an element of \mathfrak{P}_2 outside \mathfrak{P}_2^* . Then $CsA'_2\cap$ $\mathfrak{P}_2^* = \langle A_2 \rangle$.

Proof. Let G be an element of \otimes such that $\mathbb{Z}(G^{-1}\mathfrak{P}_2 G)$ contains A'_2 . Then $G^{-1}A_2G$ belongs to $\mathbb{Z}(G^{-1}\mathfrak{P}_2G)$, $\mathbb{C} sG^{-1}A_2G$: $\mathbb{C} sG^{-1}XG$ $=$ 2 and $C \cdot sG^{-1} XG = G^{-1} \mathfrak{P}_1^* G \times G^{-1} \mathfrak{P}_2^* G \times G^{-1} \mathfrak{A}G$. Then A'_2 belongs to $G^{-1} \mathfrak{P}_2^* G$. Hence $CsA_2' = CsG^{-1}A_2G$. Now assume that $CsA_2' \cap \mathfrak{P}_2^*$ contains $\langle A_2 \rangle$ properly. Then $CsG^{-1}KG$ contains an element $A''_2 \neq E$ of \mathfrak{P}_2^* . Then CsA''_2 contains \mathfrak{P}_1^* and $G^{-1}\mathfrak{P}_1^*G$. The first argument shows that $F(CsA_2'')$ is not a 2-group. Hence $\mathfrak{P}_1^* = G^{-1}\mathfrak{P}_1^*G$. This is a contradiction.

Now by a lemma of Suzuki [11] \mathfrak{P}_2 is dihedral or quasi-dihedral. Hence by a theorem of Gorenstein-Walter **[4]** or a theorem of Alperin-Brauer-Gorenstein **[1]** we get a contradiction.

Remark. The argument in $((c), p. 244)$ of $[8]$ is incomplete, since the argument appeals to **[9]** which is not applicable in that

case. One way to amend it is to follow the argument in Part *C.*

Part *D*. We use the same notation as in Part *A*. By Parts *A*, *B* and *C* we may assume that CsA_i $(i=1, 2, 3, 4)$ is free. The purpose of this part is to prove that \mathcal{B} is isomorphic with some $Sz(l)$, where $l=2^{2n+1}$, $n\geq 1$, or $LF(3, 4)$. By [7] CsA_1 is not free. Let *X* be an element of \mathcal{G} such that CsA_1 : $CsX = n_5$.

(3D. 1) CsA_1 is a Hall subgroup of \mathcal{B} . Furtheremore, $|\mathcal{B}|=$ $\stackrel{\text{{\small 4}}}{\Pi}\,\,$ $|\boldsymbol{CsA_i}|$.

Proof. This is obvious.

 $(3D. 2)$ *CsA*¹ is of even order.

Proof. See the proof of (3B. 5).

(3D. 3) We may assume that $CsA₁$ is not nilpotent.

Proof. If CsA_1 is nilpotent, then by a theorem of Wielandt [5, p. 285] all subgroups \mathfrak{X} of \mathfrak{G} with $|\mathfrak{X}| = |CsA_1|$ are nilpotent. Hence, in particular, the centralizer of every involution of \mathcal{B} is 2closed. Therefore by a theorem of Suzuki [12] we get the theorem. Hence we may assume that CsA_1 is not nilpotent.

Now by a theorem of Camina [2] we obtain that *CsAi: CsX=* p^a , where p is a prime, and that $Z(CsA_1)$ is a p-group.

(3D. 4) We may assume that $p=2$.

Proof. Otherwise, let *J* be an involution in CsA_1 . Then $CsJ =$ $CsA₁$ *j* is nilpotent. Hence, as in the proof of (3D. 3) we may assume that *p=2.*

Now, as before, \mathfrak{P}_1 is not abelian and, in particular, of exponent ≥ 4 .

(3D. 5) There exists a 2-element *Y* such that $|CsY| = |CsX|$.

Proof. See the proof of (3B. 6).

(3D. 6) $F(CsA_1)$ is not a 2-group.

Proof. Since $CsA_1 = \mathcal{F}_1CsY$ and since CsY is nilpotent, CsA_1 is solvable $[5, p. 674]$. Now see the proof of $(3B, 8)$.

By (3D. 3) $|\pi(CsA_1)| \geq 2$. Let *q* be a prime of $\pi(CsA_1)$ distinct from 2. Let Ω be a Sylow q-subgroup of CsA_i . Let $X \neq E$ be an element of $\mathbf{Z}(\mathbf{Q})$. Then $C_sX=C_sXA_1$ is the direct product of the abelian Sylow 2-subgroup \mathfrak{P}_1^* , the Sylow q-subgroup \mathfrak{D} and the abelian Hall $\{2, q\}$ -complement \mathfrak{A} . By (3D. 5) \mathfrak{D} is also abelian. Thus *CsX* is abelian.

Now to complete the proof it suffices to prove the following proposition, which is incompatible with (3D. 6)

(3D. 7) $F(CsA_1)$ is a 2-group.

Proof. Assume the contrary. Then $F(CsA_1) = CsX$. $\mathfrak{P}_1CsX/\mathfrak{P}_1^*$ is a Frobenius group with CsX/\mathfrak{P}_1^* the kernel. Hence $\mathfrak{P}_1/\mathfrak{P}_1^*$ is cyclic or generalized quaternion [5, p. 502].

First we assume that $\mathfrak{B}_1/\mathfrak{B}_1^*$ is a generalized quaternion group of order 2^b . Then there exist elements Q and R of \mathfrak{P}_1 and S, T, U and *V* of \mathfrak{P}_1^* such that $R^{-1}QR = Q^{-1}S$, $Q^{2^{k-2}} = R^2T$, $Q^{2^{k-1}} = U$, $R^4 = V$ and $\mathfrak{B}_1/\mathfrak{B}_1^* = \langle Q, R \rangle \mathfrak{B}_1^*/\mathfrak{B}_1^*$. Now we further assume that \mathfrak{B}_1^* is not cyclic. Let \mathfrak{W} be a normal subgroup of \mathfrak{P}_1 of type $(2, 2)$ contained in \mathfrak{P}_1^* . Then CsR^2 contains \mathfrak{B} . If $|CsR^2| = |CsX|$, then by the remark just before (3D. 7) $CsR²$ is abelian. This implies that $CsR²$ is contained in CsA_1 . This is a contradiction. Hence $|CsR^2| = |CsA_1|$. If $F(CsR^2)$ is a 2-group, then we have that \mathfrak{P}_1 : $\mathfrak{P}_1^* > |\mathfrak{Q}|$. This is a contradiction. Hence $F(CsR^2)$ is not a 2-group. Let \mathfrak{P}_1 , $\mathfrak{P}_1^*, \mathfrak{Q}_2^*$ and \mathfrak{A}^* be a Sylow 2-subgroup of CsR^2 , the abelian Sylow 2-subgroup, the abelian Sylow q-subgroup and the abelian Hall $\{2, q\}$ -complement of $F(CsR²)$, respectively. Then $\mathfrak{P}_1/\mathfrak{P}_1^*$ is cyclic or generalized quaternion.. This implies that $\mathfrak{B} \cap \mathfrak{B}^{\dagger}_1 \neq \mathfrak{C}$. Take an element $W \neq E$ of

 $\mathfrak{B}\cap\mathfrak{P}^*_1$. Then CsW contains \mathfrak{Q}^* and \mathfrak{Q} . This implies that $\mathfrak{Q}^*=\mathfrak{Q}$. This is a contradiction. Therefore \mathfrak{P}_1^* is cyclic. Hence $\mathfrak{P}_1 \cap C_s \mathfrak{P}_1^*$ contains \mathfrak{P}_1^* properly. Thus $CsQ^{2^{k-2}}$ contains \mathfrak{P}_1^* . This implies that $\left| \mathbf{C} sQ^{2^{r-2}} \right| = \left| \mathbf{C} sA_1 \right|$. As above, $\mathbf{F}(\mathbf{C} sQ^{2^{r-2}})$ is not a 2-group. If $\left| \mathbf{C} sQ \right|$ $I = |CsX|$, then $CsQ = F(CsQ^{2^{k-2}})$. Let \mathfrak{P}_1 be the Sylow 2-subgroup of *CsQ*. Then $[Q, \mathfrak{P}_1^*]$ is contained in $\mathfrak{P}_1^* \cap \mathfrak{P}_1 = \mathfrak{E}$. This is a contradiction. Hence $\bm{C}s\bm{Q} = \bm{C}s\bm{Q}^2$ $\ddot{}$. Similarly we obtain that $\bm{C}s\bm{R} = \bm{C}s\bm{R}^2$ Since $Q^{2^{b-2}}$ and R^2 commute, this implies that Q and R commute. This is a contradiction. Therefore $\mathfrak{P}_1/\mathfrak{P}_1^*$ is cyclic.

Let $\mathfrak{P}_1/\mathfrak{P}_1^*$ be of order 2^b and $P\mathfrak{P}_1^*$ a generator of $\mathfrak{P}_1/\mathfrak{P}_1^*$. Assume that $b \geq 2$. As above, we may assume that \mathfrak{P}_1 is cyclic. Therefore \mathfrak{P}_1 is metacyclic. Then by a theorem of Mazurov [10] \mathfrak{P}_1 is of type $(2, 2)$ or of maximal class. This is a contradiction. Hence we obtain that $b=1$. Now we show that $\mathbf{Z}(\mathfrak{B}_1)$ is of order 2. Assume the contrary. If $|CsP|=|CsX|$, then by the remark just before (3D. *7*) $C s P$ is abelian and $C s P \cap (\mathcal{Q} \times \mathfrak{A}) = \mathfrak{E}$. Let \mathfrak{Q}^{\dagger} be the abelian Sylow q-subgroup of CsP . Then $\mathbb{Q}^* \cap \mathbb{Q} = \mathbb{G}$. But since CsP contains $\mathbf{Z}(\mathfrak{B}_1)$, this is a contradiction. If $|CsP| = |CsA_1|$, then let \mathfrak{P}_1^* and \mathfrak{Q}^* be the abelian Sylow 2-subgroup and the abelian Sylow q-subgroup of $\mathbf{F}(CsP)$. Then $\mathfrak{P}_1 \cap \mathfrak{P}_1^* \neq \mathfrak{E}$ by assumption. Let $Z \neq E$ be an element of $\mathfrak{P}_1 \cap \mathfrak{P}_1^*$. *CsZ* contains \mathfrak{Q} and \mathfrak{Q}^* . Since $\mathfrak{L} \cap \mathfrak{L}^* = \mathfrak{E}$ and since $F(CsZ)$ contains \mathfrak{L} and \mathfrak{L}^* , this is a contradiction. Hence $|\mathbf{Z}(\mathfrak{P}_1)|=2$. Since P is of order 2 (See the proof of $(3C, 6)$, by a lemma of Suzuki $[11]$ \mathfrak{P}_1 is of type $(2, 2)$ or of maximal class. Then by a theorem of Wong [14] we get a contradiction.

Remark. The argument of Part *D*, together with [8], shows that we obtain the followiog theorem. Let \mathcal{B} be a simple group *such that* $C(\mathcal{B})$ *has the following shape* n_1 $n_2 \cdots n_k$. *Then* $k=3$ *or* n_{k+1}

4. If $k=3$, then \mathcal{B} is isomorphic with $LF(2, l)$, where *l* is an *odd Prime power bigger than 5 . I f k= 4 , then 03 is isom orphic with* $Sz(l)$, *where* $l=2^{2n+1}$, $n \ge 1$, *or* $LF(3, 4)$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS CHICAGO CIRCLE

References

- [1] J.L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Am. Math. Soc. 151 (1970), 1-261.
- [2] A.R. Camina, Conjugacy classes of groups and some theorems of N. Ito, J. London Math. Soc., to appear.
- [3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963). 755-1029.
- $\lceil 4 \rceil$ D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-groups, J. Algebra 2 (1965), 85-151, 218-270, 354-393.
- [5] B. Huppert. "Endliche Gruppen, I", Springer. Berlin/New York, 1967.
- $\lceil 6 \rceil$ N. Ito, On finite groups with given conjugate type I, Nagoya Math. J. 6 (1953), 17-28.
- [7] N. Ito, On finite groups with given conjugate type III, Math. Z. 117 (1970), 267-271.
- [8] N. Ito, Simple groups of conjugate type rank 4, J. Algebra 20 (1972), 226-249.
- [9] N. Ito, A theorem on factorizable groups, Acta Sci. Math. Szeged 33 (1972), 49-52.
- [10] V.D. Mazurov, O konečnyh gruppah c metacikliceskimi silovskimi 2-podgruppami, Sibirskii Math. Ž. 8 (1967). 966-982.
- [11] M. Suzuki, A characterization of simple groups LF (2, p), J. Fac. Sci. Univ. Tokyo 6 (1951), 259-293.
- [12] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. 82 (1965), 191-212.
- [13] J.H. Walter, The characterization of finite groups with abelian Sylow 2subgroups, Ann. of Math. 89 (1969), 405-514.
- [14] W. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Austral. Math. Soc. 4 (1964), 90-112.