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0. Introduction

We have calculated the equivariant K*-group of the Hirzebruch-
Mayer O(n)-manifold W?*'(d) as follows.

Theorem. [5, §8] For n=2, the orbit space is a 2-disk the
orbit type of whose interior is (On—2)) and the boundary
On—-1)), and

o (W (d))=R(O(n—1))
and Ky, (W=1(d))=Ker ¢o',...
Here 01t ROOn—1))—=R(Omn—2)) is the canonical surjection.

In the case above the equivariant K*-group is independent of
d. Moreover, we have proved that the equivariant K *-group of the
regular O (#)-manifold X depends only on the orbit type decomposi-
tion of the orbit space, if dim X/O(n)=<2.

On the other hand, if we restrict the O(»)-action on the sub-
group SO(n), we shall get

Theorem. For n=3, the orbit space is homeomorphic to a
2-disk the orbit type of whose interior is (SO(n—2)) and the
boundary (SO(n—1)), and the equivariant K*-group is calculated
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as follows.
(a) n=2k+1
(ai) d: even
Koy (W (d))=R(SO0(n—1)),
and Ksowy (W (d))=Ker p,
(ail) d: odd
Kooy (W (@))=Z [3*+++, 271, 2]
(=R(SO))) CR(SO(n—1)),
and Ko (W (d))=Ker p,_./ (A% —2).
Here p,.1: R(SOm—1))=Z 2, -, L X, 1]/ ~—
ZA, -, 2 =R(SO(n—2))
is the canonical surjection which carries i to zero.
(b) n=2k+2
0—>Coker p,_1+—> K soy (W™ (d) ) >R(SO(n—1))—0
is exact, and
Ksow (W (d)) =0.
Here p,_.: R(SO(n—1))=Z 3, -, I, ¥ —
Z[2 - L2/ ~=R(SO(n—2))
is the canonical injection which carries A to X.+1-.

In the case (a) the equivariant K *-group does depend on the
parity of d. As for the equivariant K°-group in the case (aii),
H. Matsunaga [3] has determined it recently. But since our method
is simpler and more systematic, it seems worth to present the com-
plete proof of Theorem using an appropriate SO(n)-CW decomposi-
tion of W '(d).

1. G-CW structure of W*'(d) (G=0(), SO(n))

For d=0 and n=1, W*'(d) denote the real analytic set in
C', defined by zi+2}+---+2.=0 and 22 +22:+-+2.2,=2. The
action of O(n) (or SO(n)) is defined by Az= (2o, A(2s, **+, 2,)), for
AsO0(n) (or SO(n) resp.) and z= (2o, 21, ***, 2,) € W7 (d).

Define the (closed) cells in W*'(d), by
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a=1{00,7,1,0, :+,0)}

a=1{1,%0,0,--,0)}

a={(r,1p,4,0,,0);vV 2p=v2—-1+r",

VvV 2q=v2—r—7i 0<r<1}

ai={(e?ie",0,0,++,0); 2y=do, 0=6<2n}

a*= {(re®, ipe'?, ge', 0, -++,0; 0<r<1, 0<0=<2n}
Then, every point of the interior of o), ¢ and ¢* has the same
isotropy subgroup O(n—2) (or SO(n—2) resp.) and every point of
s; and ¢ has the same isotropy subgroup O(n—1) (or SO(n—1)
resp.).

Proposition 1 Let K= {gs; g€0n), 6=0a), o}, o, 0},6°}. T hen,
for n=2, (W**(d), K) is an O(n)-CW complex.

Proof: Since G=0(n) is a compact Lie group and X=W?>"(d)
satisfies the axiom of the Ist countability, we need only to
check the conditions (a), (b), (d) and (e) in the definition of G-cell
complex and that the induced cell decomposition of the orbit space
is a CW decomposition (See [4] especially Theorem (1:10)).

By the definition of the cells we know that each cell has its
characteristic map, its isotropy subgroup and its conjugate cells, that
is, the conditions (b), (e) and (d) are satisfied. Define a map
p: W '(d)—C by p(z, 21, -, 2.)=2. Then, for n=2, it is easy
to show that p induces an homeomorphism:

W*(d)/0(n)->D*= {zeC; |2|<1} CC.
(See Hirzebruch-Mayer [2].)

Now remark that the collection of cells, p(a0), p(s), p(at), p(sb)

and p(¢*), forms a CW decomposition of D% This fact shows that

the induced cell structure on the orbit space is a CW decomposition
and K satisfies the condition (a). q.e.d.

Proposition 1’ Let K' = {gs; g€SO(n), =06}, &, &, d, o°}.
Then, for n=3, (W*'(d), K") is a SO(n)-CW complex.
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Proof: We only need to show that p: W*'(d)—C induces
also the homeomorphism: W?'(d)/SO(n)—D"

Since #=3, there exist an element A=O0(#n) (for example A(z,, 21,
ey 21y 20) = (20, 21, ***, Zu1, —2.)) such that A& SO(n) and As=s for
6=d;(1=0,1,2,7=0, 1).

Therefore, W**(d)/O(n)= W**(d)/SO (n), because A and
SO (n) generate the whole group O(n) and the collection of ¢/0(n)

(6=05,:=0,1,2,7=0,1) covers W**(d)/O(n). q.e.d.
The boundary operations are as follows. Let J&SO(#) be the

transformation J(z, -+, 2.) = (€724, €725, 25, ***, 2.).

Then, 0a= (o}) U (—a)

8ot = (Jo) U (—d)
05" = (o0) U (@) U (—Jar) U (%}Jei"’tfg)

2. Computation of H%,,,,(W* ' (d) ; Kso(») and proof of Theorem.

From the result of §1, we get the cochain groups and coboun-
dary homomorphisms as in the following diagram.
¢=R(SOn—1)) (HDR(SO(n—2)) (60)
|Gy —day \! |ia
Ci=R(SO(n—1) ((DDPR(SO(n—2) (a)
| o J Gd)— Gd)’
C:=R(SO(n—2) ()
where C&=Cé, (W*(d); Ksoty), p=p.-1: R(SO (n—1))—>R (SO (n—2))
is the restriction map and (id)'=]*.

We recall the ring structure of R(SO(m)). (See [1] for
example.) Let T* be a maximal torus of SO(2k) and SO(2k+1).
Then, R(TH=Z [y, ", Yo 2% =+, ¥ '], the Weyl group W (SO (2k))
acts as the group generated by permutations of the y; and transfor-
mations y,—>¥5?, (@) = +1, Tle(?) =1, and the Weyl group W(SO
(2k+1)) acts as the group generated by permutations of the jy;
and the transformations y,—y5?, e(?) = *+1. Let A, ---, #* denote the
elementary symmetric functions in the 2k-variables i, *:+, 3 Y177
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oyt and A=Y PYie’™ - yie™ (=@ = - Si(R), (1)
e(2)--e(k) = +1). Then, R(SOQRk+1))=Z [}, :--, %] and R(SO(2k))
is the ring generated by ', -, 4%, 2% and 2* with one relation
Q22 ) R4 ) = @ 0% (We write R(SO(2k))
=Z[A, e, LA ]/ ~)
Case (a) n=2k+1
oo : R(SOm—1))=Z 3, «--, & 2, 28]/~
—=Z[3, -, F]=R(S0n—2))
is a natural surjection which carries 24 to zero.
If d=even, then J=id. Therefore, we get
H!=R(SO(n—1)) and Hi=Ker p._..
If d=odd, then J*= (¢d)’ is the identity on R(SO(#—2)) and
exchanges A% for 2% on R(SO(n—1)). Therefore, we get
e=Z A AU+ 22] and Hi=Kerp,_./ (At —21%)
Case(b) n=2k+2
01 R(SOm—1))=Z 3, -+, ", ] -
ZA, e L2812/ ~=R(SO(n—-2))
is a natural injection which carries A to A%+ 4%,
If d=even, then J=id. Therefore. we get
H{=R(SO(n—1)), Ht=0 and Hi=Coker p,_:.
If d=odd, then J*= (id)’ is the identity on R(SO(n—1)) and
exchanges 1% for 2% on R(SO(n—2)). Since
id: R(SO)n—2)) () - R(SO n—2))(a}) is onto, (¢d) — (id)’ on
R(SO®—2)) (&) has no effect on H¥. Therefore, the result is the
same as in the case in which d=even.
By the theorem (8.2) of [5] the Atiyah-Hirzebruch spectral
sequence collapses in these cases. Therefore, we complete the proof
of Theorem.

As for K¥.,(W*'(d)), we get also the result in the same way
as in the case (ai), because J*=id independent of the parity of d.
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