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A note on Kronecker’s ‘“‘Randwertsatz”

By

Shiigo NaxkaTtsuchr

(Communicated by professor Nagata, July 24, 1972)

Kronecker brought to light the determinative properties of certain
sets of prime numbers for algebraic number fields and their invari-
ants in his “Ueber die irreductibilitit von Gleichungen” which was
dedicated to Kummer on his 70th birthday celebration. Kronecker’s
assertion was called “Randwertsatz” of algebraic number theory by
M. Bauer because of Kronecker’s statement——

“es ist also (in &dhnlicher Weise, wie nach dem Cauchy’schen
Satze einen Function durch ihre Randwerte bestimmt wird) mit blossen
Congruenzbestimmungen der ganze Inbegriff der durch die Gleichung
definierten algebrasscheu Irrationalititen bestimmt”. '

Since then the base of Kronecker’s assertion has been amplified
into Frobenius-Tschebotareff’s dencity theorem, Bauer’s theorem and
GaBmann’s theorem, and furthermore his plan has been realized as
class field theory in the case of relative abelian number fields.
However, in this note, we shall mainly discuss Kronecker-Bauer’s
“Randwertsatz”.

1. Let k be a finite number field, 2/k a finite extension. Let
K/k be the minimal normal extension containing 2/k, and let K'/k
be the maximal normal extension contained in £/k, namely

K= g®oM...... 20D,

K = gOng® 0. e Q@D
where =9, m= [2:k] and {Q®; {=0,1,---, m—1} are all the con-
jugates of 2 over k. We define P(2/k) and Q(2/k) by setting



130 Shugo Nakatsuchi

P(2/k) = {prime ideals p of k;3p in 2, No,p=p, pD(Q/K)},
Q(2/k) = {prime ideals p of k; p=p:+p. in 2, ptD(2/K)}.
P(2/E) is called the regular domain of 2/k.

In the following propositions I—XV, we shall observe that, if a
relation containing notations P(2/k) or Q(2/k) is a conclusion,
then the relation holds without any exceptional prime ideals, while
if a relation containing notations P (2/k) or @ (2/k) is premise,
then we can leave a set of prime ideals of density 0 out of account.
First we enumerate Bauer’s results I—VI:

I. Q/k)=Q(K/EK).

II. Q(2/k)=P(Q/k)=>K=9(=K).

II1. Q(2,/k) =Q(2./k) <= K,=K..

IV. Q(2,/k) €Q(2:./k) <> K2 K..

V. P(2./k)CQ(2/k)<>2,2K..

VI. Q(2:/k) NQ(2:/k) =Q(2:2./k).

From III, IV and VI, we obtain immediately
Q(@/E)n nQ(L/k) CQ(2/k) =K K DK,
VIL { Q(2/k)n- nQ(2./k) =Q(2/k) =K, K.=K,
Q(@/k)n-nQ(L/k)DQ(2/k) =K, K,.CK.

The above theorems are related with {Q(2/k)} except II and V.
Now we shall show analogaus matters related with {P(2/k)} in the
following. For this purpose the fact V gives the starting point;
namely, corresponding to III, we obtain from V the following fact:

VIII. P(2,/k)=P(2,/k)=>K,=K..

Based on this fact, we obtain, corresponding to IV,

IX. P(@/k)cP(2/k)=>K;2K:.

(Obviously 2,202,>P(2,/k) S P(2./k).)
The following fact means a generalization of VI.

X. P(2/k)nQ(2:/k)(=P(2/k)NP(K:/k)) =P(2:K,/k).
Corresponding to VII, we get

XI. P(2,-2,/k) SP(9/k)n--nP(2./k) SP(K;---K./k).
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Therefore,

XII. If P(2/k)SP(2/k)n--nP(2,/k) S P(2../k),
then Ki2K;---K. and K....2K,,,,
where Ki..../k is the maximal normal extension contained
in 9-2./k.

In particular,
XIIL. If P(&/k)n--nP(&/k)=P(2/k),
then K,...2K'2K;---K..

To prove IX, X and XI would be enough for us. For this
purpose, let N/k be an arbitrary finite normal extension which con-
tains all the extensions {2/k} in present discussion, let & be its Galois
group, and let {9} be the subgroups of & corresponding with {2}
respectivery. Then we have the well-known——

(A) pe P(g/k)@(]f#) c U o5y,

®) re@/p<=(M*e 0 s,

for the prime ideals p of k such that y{D(N/E).

Further, the normal subgroup £ of & correponding with K
coincides with the intersection of all the conjugates of 9, and the
normal subgroup & of & corresponding with K’ is generated by the
union of all the conjugates of 9, namely

R

Proof of IX. Let &’ and &, be the normal subgroups of &
corresponding with K,” and K, respectively, i.e. &,/ =< U a“-i)la>,
A =c}

Rz,:<¢g@"_l®2">' Then, from the lemma (A), we have

P(.Ql/k)gP(.Qz/k) => U 6—1©16g U d—l'bzo‘
cEQ (A=)

>8/CR,/=>K/DK,.
This completes the proof.
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Proof of X. Let (= (N ¢ 'Dw) be the normal subgroup of
A=)

@& corresponding with K,. Then £, &, is the subgroup of & which
corresponds with 2,K,. Now we see

(U D) N&:= U ("DwN:) = U e ' (D:N K20
cEY cEY

cEG
Then, by the above lemmas (A) and (B), it follows that the rela-

tion X holds except for prime factors of D(N/k). We shall show,
however, that the relation X holds without any exceptional prime
ideals. To do this, let us consider the differents {(2/k)}. Obviously

D(2:2,/k) =D(2:92:,/2)D(2:/k), i=1,2.
Further we have
D(212:/2:) 2D(2,/ k),
because D(2,2,/2,) is the greatest common divisor of all the relative

differents Dn,0./0.(6) of integers 6 of 2,2,, and so D(2,2,/2,) con-
tains all the differents ®a,/k(6) of integers of £2,. Therefore

D(2:2:/k) 2D(2:/k)D(2:/k),
hence
;1 D(2:2:/K)y € {p; I D(2/K)y U {p; p| D(2:/K)} .
On the other hand, since
D(9.:2:/k) = Na;/k(D(2:2,/2)) -D(2:/k)", n:= [2.2::2], i=1,2,
we have
{b;p| D(22:/ )y 2 {p;p| D(2:/k)} U {p; v D(2:/ )5
Thus we get
b;pID(2:2:/K)} = {p;p| D(2/K)} U {p; | D(2:/K)},
namely
0; 0} D (22:/k)} = {p;p kD (/) N {p;pk D (2:/K)}.
In this way, we can see that the relation X holds without any

exception. (See also the proof of XV given below.) Thus proposition
X is established.

Proof of XI. Using the lemma (A) and what has been men-
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tioned in the proof of X, we need only to observe the next group
theoretical relation:

U (@10 e ﬂ@s)o'
=Y
C(UdD)n N U o 'Ds0)
cEY cEG

S U aDidn - nd U 67'Hso).
cEQ

cEG
This relation is evident. Thus the proposition XI is proved.

Remark. Since ( U 67 9i) - Nn( U 67'Hs0) is a union of some
cEG cEG

compartments (i.e. ‘“Abteilungen”) in &, by Frobenius’s density
theorem we see that

M=P(2,/k)n--nP(2s/k)
has a definite Dirichlet-Kronecker’s density d(M), that is
(number of elements of ( U 67 $:0) NN U 6'Dw0))
ocEQ cEG
(order of &)

d(M)=

Examples of XIII. Let R be the rational number field.

(i) Put &=R(¥'3), %= R(w), where o :‘1—+21/;3,

and 2=R(¥ 2, »), then K,/=R, K,’=K,=%,, and we have
P(2)NP(L)=P(2)
and K'=K,,)~K,/K,’(=R(w)).
(ii)) Put 22=R(G¥2), 22=R(>' 3), 23=R(w) where v is the
same as the above, and 2=£,2.2;, then we have
P(_Ql)ﬂP(_Qz)ﬂP(_Qs) :P(,Q)
and K=02,29>K/K,/K/(=R(/=3)).
(i) Put 2=R(G¥'2), 22=R(G¥ 20) where » is the same as
the above, and 2=2,, then we have
PO NP(2) =P(2)
and K =K K;(=R) xK,,)(=2:2,).

2. It seems to me that the following problem has not been
solved jet.
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Problem Is the number of distinct extensions 2/k correspon-
ding to one and the same regular domain P(2/k) always finite ?

The difficulty of this problem comes from group theoretical
reasons, because we can get very little information about those
conditions on which all conjugates of a subgroup O of a finite group
& unite themselves into a normal subgroup of ©.

On the other hand, it is natural for us to associate the above
problem with Hermite-Minkowski’s theorem on discriminants. Indeed
we have a few results based on this association, for example——

XIV. If P(2,/k)=P(2,/k), then, for any finite normal exten-
sion N/k containing both of 2/k and 2./k, we have

{prime ideals p of k; | Ng(D(N/2,))}
= {prime ideals p of k; p| Ny, .(D(N/2:))}.

XV. If Q(2.,/k)=Q(2:/k), then we have

{prime ideals p of k; p|D(2/k)}
= {prime ideals p of k; p|D(2,/k)}.

Though the essential point of XV has been proved in the proof
of X, we shall give another proof as follows.

Let p be an arbitrary prime ideal of &k and %P its arbitrary prime
factor in N. Let & be the Galois group of N/k,  the subgroup of
®& corresponding with £, and € and 3 the inertia groups of P
concerned with N/k and N/ respectively. As is well known, ¥’
=3IN. Then the propositions XIV and XV are immediate con-

sequences of the following lemmas——
© p| No/k(D(N|2)) <=2Zn( U@a@a“) *1.
ocE
(D) p|D(R/k) <=>TE Q@o‘@o’".

Now we need only to prove (C) the (D).

Proof of (C) and (D). Let D(N/k), D(N/2) and D(L/k)
be the differents of N/k, N/f and 2/k respectively, and let & be
the Hilbert’s element-ideal of N corresponding to ¢&®—1. Then
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we have
D(N/k) =D(N/DD(L/kK),
and
D(N/E)= 1T &, DIN/&)= I &, DWQ/k)= 11 G..
cEG—1 seEH—-1 cEG—9H

Let us denote the ®PB-component of an ideal A of N by [A]g, then
we have

[D(N/B)]g= 11 [C]s, [SD(N/-Q)JSB:TEg_l[@T]SB,

ceET—1
and [D(N/E)] g =TI, [E:] -
where r ranges over all elements of ¢'%s—1,
furtheremore [D(N/2)] g =I1.[C:] g,

where ¢ ranges over all elements of (6'TonND) —1.

Therefore we have
I [D(N/2)]gx1<>( U ' T)nHF1
(=6 =G

=SIN(U 6Do™) 1.
o=l

ie. PINy . (D(N/2))<=Zn (ag@ja@o“) x1.
On the other hand, we obtain
[D@/B)]p=T1[C]g,
where ¢ ranges over all elements of £—INH(=T—"), and
[D(@/K)] =TI [,
where ¢ ranges over all elements of ¢7'%s— (6 'TeNH), therefore
Pl N (D(2/k)) =367 ZoED

ST E D™

=TE N 6o,
cEW

ie. p|D(2/k)=ZTE N Do .
cEQ

3. Kronecker-GaBmann’s ‘“Randwertsatz” shows the more exact
determinative property of subdivided regular domains

P@/E)=MQ)UM()U...... UM (m),

where m= [2:k] and
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M(2) = {prime ideals p of k; vy, (p) =7, b D(2/k)}.

(vo;x(p) means the Kronecker’s character number of p related to
2/k, i.e. the number of the distinct prime factors of p of the relative
degree 1 in £2.)

Indeed we can express Kronecker-GaBBmann’s ‘‘Randwertsatz” as
follows:

XIV. Two finite extensions 2./k and 2,/k are quasi-conjugates,
that is, we have for each subgroup  of O,

(number of elements contained in ;N ( U 6'D0a))
ceE®

= (number of elements contained in H.n( U ¢'Dr)),

cEG

(or, for each conjugate class € of O,
(number of elements contained in H;NE)
= (number of elements contained in 9.n¢),)
if and only if

Yok (]J) :Vﬂz/lc(p)
for-almost every prime ideal p of k.

As for the proof of this theorem, see Nakatsuchi [14]. Further
we can find many interesting results concerned with this theorem in
Cassels-Frohlich [5].
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