Some questions on Cohen-Macaulay rings

By

Masayoshi Nagata

(Received, July 21, 1972; Revised Nov. 27, 1972)

In the present paper, we shall deal with the following type of problem on Cohen-Macaulay rings.

Let $R = \sum_{i=0}^{\infty} R_i$ be a graded noetherian ring, R_i being the module of homogeneous elements of degree i. If R_0 is a field, then it is easy to see that R is Cohen-Macaulay if and only if R_M is Cohen-Macaulay, M being the irrelevant prime ideal (i. e., $M = \sum_{i \ge 1} R_i$).

Our problem is to generalize this characterization.

For instance, one can ask the following questions:

Question 1. Assume that R_M is Cohen-Macaulay for every maximal ideal M such that $M \supseteq \sum_{i \ge 1} R_i$. Does it follow that R is Cohen-Macaulay?

Question 2. Let K be the total quotient ring of R_0 . Then, does the condition that both $R \otimes_{R_0} K$ and R_0 are Cohen-Macaulay imply that R is Cohen-Macaulay?

To the writer's knowledge, Question 1 is unsolved yet and Question 2 has a negative answer. In the present paper we discuss some facts related to these questions, and main results relate to the case where R is a projective module over R_0 .

In connection with these question we ask the following

Question 3. Assume that R is Cohen-Macaulay. Does it follow

that R_0 is Cohen-Macaulay?

We have really a negative answer to this question, and on the other hand, we have an affirmative answer under an additional assumption that R is a projective R_0 -module.

We add here a remark that the condition that R is a projective R_0 -module is equivalent to that R is a flat R_0 -module. This fact follows from that each R_i is a finite R_0 -module (for, R is noetherian and therefore R_0 is noetherian and R is finitely generated over R_0).

As for the term "Cohen-Macaulay ring", we understand it as the same as "locally Macaulay ring", namely, it is a noetherian ring T such that for every maximal ideal M of T, the local ring T_M has a system of parameters which is a regular sequence.

Throughout this article, we maintain the notation that $R = \sum_{i=0}^{\infty} R_i$ is a graded noetherian ring, R_i being the module of homogeneous elements of degree i.

The writer wishes to express his thanks to Professor Lascu of the Univercity of Montreal pointing out a wrong statement contained in Theorem 1.1 in the first manuscript of the present article.

1. The case where R_0 is an Artin ring.

Theorem 1.1. Assume that R_0 is an Artin ring. If R_M is Cohen-Macaulay for every maximal ideal M containing $\sum_{i\geq 1} R_i$, then R is a Cohen-Macaulay ring.

Proof. R_0 is a direct sum of Artin local rings: $R_0 = R_1' \oplus \cdots \oplus R_s'$ Let e_i be the identity of R_1' . Then R is the direct sum of Re_i $(i=1,\cdots,s)$; M contains all e_i except for only one e_i and $R_M = (Re_i)_{Me_i}$. Therefore, it is sufficient to prove the assertion under the assumption that R_0 is an Artin local ring. Let m be the maximal ideal of R_0 , then $M = m + \sum_{i \ge 1} R$. Now, if R_0/m contains only a finite number of elements, we consider $R_0(x)$ instead of R_0 .

Thus we can reduce to the case where R_0/m contains infinitely

many elements. Since R is noetherian, R is finitely generated over R_0 . Therefore, there is an R_i , say R_d such that R is integral over $R_0[R_d]$. Then, by the normarization theorem, there are $z_1, \dots, z_t \in R_d$ such that (i) z_1, \dots, z_t are algebraically independent over R_0 and (ii) $R_0[R_d]$ is integral over $F = R_0[z_1, \dots, z_t]$. Then R is integral over F. Then $M \cap F = m + \sum z_i F$. Since R_M is Cohen-Macaulay and since z_1, \dots, z_t is a system of parameters of R_M , we see that length $R_M/(z_1, \dots, z_t)^n =$

(length $R_M/(z_1,\dots,z_t)$) (length $(R_0/m)[z_1,\dots,z_t]/(z_1,\dots,z_t)$ ").

Therefore the theorem of transition holds for the extension $R_M / R_0[z_1, \cdots, z_l]_{(z_1, \dots, z_l, m)}$.

Let f_1, \dots, f_n be a set of homogeneous generators for R over $R_0[z_1, \dots, z_t]$ and let N be the kernel of the natural surjection of a free module $F = \sum_{i=1}^{n} R_0[z_1, \dots, z_t] X_i \rightarrow R$. Let $\{g_{ij} \ (j=1, \dots, n(i); i=1,\dots, e \text{ with } e \text{ such that } m^e=0)\}$ be a set of homogeneous elements of N (with a gradation defined by $\deg X_i = \deg f_i$) such that $g_{i1},\dots, g_{i,n(i)}$ modulo $m^iN + \sum z_iF$ form a linearly independent basis for $m^{i-1}N/(m^iN + (\sum z_jF\cap N))$ over the field R_0/m . Then, letting $\{U_{ij}(j=1,\dots,h(i); i=1,2,\dots)\}$ be the set of all monomials in z_1,\dots,z_t with $\deg U_{ij}=i$, we see that $G_i=\{g_{ij}U_{\alpha\beta} \ (\text{for all possible } j,\alpha,\beta)\}$ form a linearly independent basis for $m^{i-1}N/m^iN$ over the field R_0/m .

This property and the fact that $R_0[z_1,\dots,z_t]$ is a Cohen-Macaulay ring imply that R is Cohen-Macaulay.

2. Question 3.

We begin with an affirmative case:

Theorem 2.1. Assume that R is a projective module over R_0 and that R_M is Cohen-Macaulay for every maximal ideal M containing $\sum_{i\geq 1} R_i$. Then R_0 is Cohen-Macaulay.

Proof. We may assume that $M \cap R_0 = m_0$ is the unique maximal ideal of R_0 . If m_0 contains a non-zero-divisor a, then considering R/aR, we can proceed with our proof by induction on Krull dim R_0 .

Therefore we assume that m_0 consists only of zero-divisors. x_1, \dots, x_n be homogeneous elements of R which generate R over R_0 . We consider a polynomial ring $P=R_0[X_1,\dots,X_n]$ with a gradation such that deg $X_i = \deg x_i$. Then we have an R_0 -homomorphism φ : $P \rightarrow R$ so that $\varphi X_i = x_i$. Let I be the kernel φ . I is homogeneous, and we have an irredundant expression $I=Q_1\cap\cdots\cap Q_s$ with homogeneous primary ideals Q_1, \dots, Q_s . Now, our assumption that m_0 consists only of zero-divisors means that some of these Q_i , say Q_i , \cdots , Q_i $(t \ge 1)$ contain some power of m_0 . If all of these Q_i contain a power of m_0 , then m_0 must be nilpotent and R_0 is an Artin ring, Assume the contrary, i.e., $\sqrt{Q_i} \supseteq m_0$ for $i=t+1,\dots,s$; t < s. Since R = P/I is Cohen-Macaulay, I has no imbedded prime divisor. Therefore, for each i>t, there is a homogeneous element $y_i \in Q_i$ which is not in any $\sqrt{Q_1}, \dots, \sqrt{Q_t}$. Note that deg $y_i > 0$ because $\sqrt{Q_i} \supseteq m_0$ for every $j \le t$. Set $y = y_{t+1} \cdots y_s$ and let m'' be a power of m_0 such that $m''\subseteq\bigcap_{i< l}Q_i$. Then $m''y\subseteq I$. Since R is a free R_0 -module and since $m'' \neq 0$, we see that $y \in \ker \varphi = I$, which contradicts our assumption that $y_i \notin \sqrt{Q_j}$ for $j \leq t$. q. e. d.

Next we give an example which shows that Question 3 has a negative answer.

Let (R_0, m_0) be a (noetherian) local ring of Krull dimension one such that m_0 consists only of zero-divisors. Then

$$0 = q_1 \cap \cdots \cap q_u$$

with primary ideals q_1, \dots, q_n such that $\sqrt{q_1} = m_0$ and $\sqrt{q_i} \neq m_0$ for every $i \geq 2$. Consider a polynomial ring $P = R_0[X]$ whih gradation such that deg X=1. Set $Q_i = q_i P + XP$ for $i \geq 2$ and $Q_1 = q_1 P$. Then

Example 2.2. $R = P/(Q_1 \cap \cdots \cap Q_u)$ is the required example.

Proof. Each Q_i is obviously a primary ideal of P, and Krull dim $P/Q_i=1$. Therefore R is of Krull dimension one, and the zero ideal of R has no imbedded prime divisor. Thus R is Cohen-Macaulay. $Q_i \cap R_0 = q_i$ and therefore $R_0 \cap Q_1 \cap \cdots \cap Q_u = 0$. Therefore

under the natural gradation, the degree zero part of R is R_0 which is not Cohen-Macaulay because m_0 consists only of zero-divisors.

We add here one obvious remark: It is not true that "R is Cohen-Macaulay $\Rightarrow R$ is a projective R_0 -module". The example above is one of such examples. There are many other much easier examples to this. For instance, we get such an example among $R = R_0[x_1, \dots, x_n]/(l)$ with (R_0, m) a Cohen-Macaulay local ring of Krull dim $\geq l$ and with $l = a_1x_1 + \dots + a_nx_n$; $a_i \in m$.

Therefore, for further investigation of these questions, it is necessary to find out a good method to deal with the case where (R_0, m) is Cohen-Macaulay local ring of Krull dim ≥ 1 and every elements of m is a zero divisor in R.

3. Questions 1, 2 in case R is a projective R_0 -module.

Theorem 3.1. Assume that R is a projective module over R_0 . If R_M is Cohen-Macaulay for every maximal ideal M containing $\sum_{i\geq 1} R_i$, then R is Cohen-Macaulay.

Proof. Let d=Krull dim R_0 . Let N be an arbitrary maximal ideal of R and we have only to show that R_N is Cohen-Macaulay. Let $S=R_0-(N\cap R)$. Then considering R_s instead of R, we may assume that R_0 is a local ring and that $m=N\cap R_0$ is maximal. If d=height m=0, then R is Cohen-Macaulay by Theorem 1.1. If $d\ge 1$, then let a_1, \dots, a_d be a system of parameters of R_0 . By virtue of Theorem 2.1, R_0 is Cohen-Macaulay, hence a_1 is not a zero-divisor in R_0 . Since R is a projective module over the local ring R_0 , a_1 is not a zero-divisor in R. R/a_1R is a projective module over R_0/a_1R_0 , and therefore by an induction on d, we see that R/a_1R is Cohen-Macaulay. Since a_1 is not a zero-divisor, It follows that R_N is Cohen-Macaulay.

It is nearly obvious that Question 2 has a negative answer. But we give hare a concrete example.

Let (R_0, m_0) be a Cohen-Macaulay local integral demain of Krull

dimension at least one. Let P be the polynomial ring $R_0[X_1,\dots,X_n]$ with $n\geq 2$. Let Q be the prime ideal of P generated by X_1,\dots,X_n , where the integer r is chosen so that $r\geq 1$ and that $r\neq K$ rull dim R_0 . Let Q' be the prime ideal m_0P . Considering the natural gradation, we have

Example 3.2. $R = P/(Q \cap Q')$ is the required example.

Proof. Since $Q \cap R_0 = 0$, we see that the degree zero part of R is R_0 and is Cohen-Macaulay by our assumption. Since Krull dim P/Q' = n and since Krull dim P/Q = n - r + Krull dim $R_0 \neq n$, we see that R is not Cohen-Macaulay. Let K be the field of quotients of R_0 . Then $R \otimes K \cong (P \otimes K)/(Q \otimes K \cap Q' \otimes K)$. Since $Q' \supseteq m_0$, we see that $Q' \otimes K \ni 1$, whence $R \otimes K \cong K[X_1, \dots, X_n]/(X_1, \dots, X_r) \cong K[X_{r+1}, \dots, X_n]$,

Even if we add an assumption that R is a projective module over R_0 , we still have a negative answer of Question 2.

Example 3.3. Let R_0 be a discrete valuation ring with a prime element p. Let u, v be algebraically independent elements over R_0 . Let R be $R_0[u^3, pu^2v, uv^2, v^3]$ with $\deg u = \deg v = 1/3$. Then R is the required example.

Proof. Consider the natural homomorphirm $\varphi: R_0[x, p, z, w] \to R$. The kernel I of φ is generated by $y^2 - p^2zx$, $y^3 - p^3wx^2$, $z^3 - w^2x$, yz - pwx, $yw - pz^2$. Hence $\varphi_p: (R_0/pR_0)[x, y, z, w] \to R/pR$ has kernel I_p generated by y^2 , y^3 , yz, yw, $z^3 - w^2x$. Therefore p, x form a maximal R-sequence in the homogeneous maximal ideal, hence R is not Cohen-Macaulay. On the other hand, $R \otimes K$ is nothing but $K[u^3, u^2v, uv^2, v^3]$, which is clearly Cohen-Macaulay. Since R_0 is a discrete valuation ring, we see easily that R is R_0 -free. q. e. d.

KYOTO UNIVERSITY