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Introduction

A  general theory about permutation groups o f arbitrary rank,
in particular, of rank 3  was studied in D. G. Higman's papers [2]

and [3] . In th is note, making use of methods and results in the
above papers, we shall be concerned with permutation groups of
rank 4

First, in sections 1 and 2 w e have a general discussion about
rank 4 permutation groups in the same way as th at about rank 3
in Higman [2] . For example, Lemmas 1. 1, 1. 2 and 2. 3 correspond
to Lemmas 6 and 7 in [2] .

Second, let G  be a primitive permutation group o f rank 4 with
subdegrees 1, k, 1 and m .  Then the next problem occurs naturally:
When k, 1 and m  are given, determine G .  Some answers to this
problem will be given in Theorem of section 3 (this corresponds to
Theorem 1 in [2] ) and some propositions of sections 1 and 3. For
the most part, results obtained are of negative nature. In dealing
with this problem, all the lemmas in sections 1, 2 and many relations
among k , 1  and m , i.e ., (4. 1) and (4. 2) in Higman [3] are used
repeatedly.

Finally we may determine the primitive extension of rank 4  of
alternating groups which act naturally, using results obtained so far,
in the same way as T. Tsuzuku's paper [5] . However, this discussion
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will not be given in the present note.
A ll the calculations practised in this note are quite elementary,

but results obtained are not so trivial.
The author wishes to thank Professor Toshiro Tsuzuku and

Professor Hiroshi Kimura for their suggestions and encouragements.
He is also grateful to Mr. Eiichi Bannai for giving him valuable
remarks and suggestions, in particular, for giving the latter halfs of
proofs of propositions 1. 3, 1. 4.

O. Notation and quoted results

The following notation will be fixed throughout this note. Let
be a set of n  letters and let G  be a transitive permutation group

of rank 4 on D . For each a E Q , G ,  denotes the stabilizer of a.
decomposes into exactly 4 G,-orbits,

D= {a} + 4(a) + T' (a) + A(a) ,

where the notation is chosen so that

z l(a)g= A (ag), r(a)g= r(ag), A (a)g = A (ag) for all aE,S2,

We set k = I (a) I , 1= I r (a) I and m  I A (a) I , which are independent
o f choice o f a E ,Q .  1, k , 1 and m  are called the subdegrees of G.
Set ro (a) = {a} , 1' (a) =  (a) ,  F2 (a)= T(a), r3 (a) = A (a)  and j =

r c ,(b )  n i ( a )  I for b E r , ( a ) .  In (4 .1 ) and (4 .2 ) of [3] , Higman
and M. Suzuki have given relations among k , 1, m  a n d  0 .  We call
these relations parameters-relations. Moreover, the 4 x 4 matrix Ma

= (0)1, , is called the intersection matrix of P.-.. Let f =  f ,  f 2
and f  be the degrees of the irreducible constituents of the permu-
tation representation of G . Hence

(0. 1)n = 1 + f 1 + f 2 - F f 3 .

Since G is of rank 4, one of the next two cases occurs (see §16
in [6] ).
I. O f three non-trivial G„-orbits, only one orbit is self-paired and
the other two orbits are paired (we may assume that r ( a )  is self-
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paired and 4(a), A (a) are paired).
II. A ll the G„-orbits are self-paired.

In Case I we can write paramenters-relations as follows.

4(b) r(b) A(b) row sum

zl(a)

r( a)

X Xi X k - 1 bez l(a)

p Pi P2 k b e r( a )

A.

ih

VI 3,2 k beA (a)

T.' Xi 1 b ed (a)

p i p' p i 1- 1 b e r( a )

Xi X' vi 1 beA (a)

A (a)

1)2 YI X m b 4(a)

p2 p i 16 m b E r  (a)

X Xi X m -1 beA (a)

k=m , kv i =1,az ,  la' =112,, lai=lp.

For example, ,i(Ai, A resp.) means I 4(a) n 4 (b) I (I 4(a) nr (b)1 ,
14(a) fl A (b ) I resp.) for b E 4 (a )  and A +21 +2=k— 1. In  th is  table

nine parameters appear, but we see easily that two parameters 21, /2'
and k , 1, m  determine the other seven perameters.

In Case II we can write parameters-relations as follows.

zl(b) r(b ) A(b) row sum

O a )

X XI X2 k - 1 bŒ4(a)

16 pi /42 k b e r( a )

u vi vi k beA (a)

r( a )

Xi X ' X3 1 b 4(a)

p i 14' 163 l - 1 b e r( a )

vi V Va 1 beA (a)

zl(a)

X2 X3
A.// al bG4(a)

1.62 P3
p f / m b E r(a)

V2 1)3 s t/ m -1 bE il(a)
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l 21 =lp, la' =lpi, la2 =m v , kA" -=mv2,
lp3=-. m y ', lp'' = m u, , la 3 =lp2 =mv i .

In this table 18 parameters appear, b u t a s  before we see that
six  parameters 2, 1), 2", I/ and k , 1, m  determine the other para-
meters.

Rem ark. In  both cases, by (4. 10) in  Higman [3] , any two
intersection matrices commute with each other. This commutativity
gives parameters-relations and some other relations (e.g., see ( i )  in
Proposition 1. 4).

Let A , B  and C be incidence matrices for the orbitals 4, r  and
A, respectively (2. in  [3] ).
Namely

1  if  iE d ( j)
A = (a 1)  where aii= 

{
0  otherwise.

if  i r ( j )
B= (b 1)  where b13 = 11

0  otherwise.

{ 1  if  iE A (j)
C = (c i)  where _13 — 0  otherwise.

The rows and columns of A , B  and C are indexed by the points of
12 in  some given order. Then, all the diagonal entries of A , B  and
C  are O's and by (2. 1) in  [3]

(0.2)I + A + B + C = F

where F  is  th e  matrix with all entries 1. A  (resp. B , C )  has k
(resp. 1, m ) l's  in  each row and column.

For a subset X  of S2,  Gx  (resp. Gpo )  denotes the pointwise (resp.
setwise) stabilizer of X.

Following results are often used.

Proposition 0 .1 .  (Proposition  4.5 in  C . C . Sims [4] ). I f  G
is prim itiv e a n d  k l .< m ,  then 1K le an d  m k l .  I f  in  ad d i t io n
4 (a)  is self -paired, then 1<(k -1)k  and rii (k -1 ) l.
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Proposition 0. 2. (H. Wielandt [6] , p. 5 1 ) .  I f  G  is primitive
and one of k , 1, m , say  k  is  equal to  2 ,  then 1=m = 2 ,  G  is  a
dihedral group of order 2•7 and all the Ga-orbits are self-paired.

1 .  Case I

Throughout this section, we assume that Case I  holds. In this
case we can treat G  in the same way as rank 3  groups. Namely,
as in rank 3, following lemmas hold (cf. Lemmas 6 , 7  in  [2] ).

Lemma 1. 1. The incidence m atrix  B  fo r  T ' satisfies

(B -11) {B 2 — (2' —2')B— (l — A')I)= 0.

Therefore, in addition to  the eigenvalue 1 (o f multiplicity  1) B
has exactly the two distinct values s  and t, where

{s } ( t t i  2 ' )  ±  d d = ( t/  —  2 0 2 + 4 (/ — .2

Lemma 1. 2. Using the above notation, the following holds.
At least one of f i , f 2 ,  f 3 is equal to

21+ ( II ' — A ') (2k +1) ±V d (2k-1-1) 
+2V d

Therefore
0  if  d  is not a square, 21+ (p' —A')(2k+1)=0

ii) if d  is a square, V d  divides 21+ ( a' —A')(2k+1)
and the eigenvalues (i.e. 1, s and t )  of B  are integers.

Proof of Lemma 1. 1. We see easily B. 1.13=1I+A 'A +11B+1C.
Since r (a ) is self-paired, by (2 . 3) in  [3] , we have

B 2 =1I+124.+11B+2'C.

Therefore, by (O. 2)

F= B 2 — (p' —2')B— (1— 2')I.

On the other hand, since BF= 1F
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— I) {B 2 — — A') B — — A') I} =0.

Proof o f Lemma 1. 2. If B  is similar to

f a

t / (see §29 in  [6] ),

taking traces we have

0 =l+s ( f i+f 2 )+tf 3 .

On the other hand, since f1+f2+f3= k  +l+m =2k +l,

+ s(2k+l) _   2l + (p i — A ') (2k+ l) + (2k + l) 
J  3  - s—t 2-V d

and so on.

Lemma 1. 3. G  is primitive on i f  a n d  only  if  11#1-1  and

P ro o f. Let G be primitive. If t i=  / —1, then aU P(a)=bU r(b)
fo r b e P ( a ) .  Let g  be an element in  G  such that ag =b . Then
(aU r (a))g=agUr(ag)=bUr(b) = a U P ( a ) .  Therefore G„ G{ u ,-.(„)}

which contradicts the primitivity o f G . Th u s it' / — 1 . If
A' = 0, then 121 = 0  since kA' =lpi , which means p ' = l - 1 since pi + / /
+,u f  = / —  1. This is contrary to the first assertion. If A '=l, then
r (a) = r (b) for b .ô l ( a ) .  As before, taking an element g  such that
ag =b , we have r (a)g = r ( a ) .  Hence G G[r( o i G, a contradiction.

In reality, the present lemma is easily seen from (4. 8) and the
first equality o f (4. 1) in  [3].

Using above lemmas, we obtain following propositions (see also
Proposition 3. 1).
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Proposition 1. 1. There exists no prim itive group satisfy ing
Case l a n d  1>k ( k - 1 ) .

P ro o f .  Let G  be a primitive group satisfying the above con-

dition. B y  Propositions O. 2  and 3. 1, w e have k > 2 .  Parameters-

relation l21=111, 1> k ( k - 1 )  and 21 k— 1  imply 21 = it =O. Hence we

have 2 2 = k - 1  since 2+ 2 1 + 2 = k — 1. Now, suppose p 2 *  O. T h e n

kv1=1p2, 1>k (k - 1) and imply /22= 1  and vi = k .  So A=0 since

2+v i  +v2= k. Hence k - 1 =2 2 =0 ,  which is a contradiction. Thus

P2 = 0  and so vi  O. Therefore, since 2i + 2 '+ v i= / ,  we have 2' =

which is contrary to Lemma 1. 3.
Similarly we have at once

Proposition 1. 2. There exists no primitive group satisfy ing
Case I  and k>1(1— 1)/2.

Next two propositions correspond to Theorem 1  in  [2].

Proposition 1. 3. There exists no transitive group satisfy ing
Case I  and 1=k ( k - 1 ) .

P ro o f .  Let G  be a transitive group with the given condition.
From the values of subdegrees G is primitive and k >2  by Proposition
0 . 2 .  k v 1 =1 1 /2  and 1 k mean /22= 0  o r 1. Similarly kl i = li t  and

—1 imply /1= 0 o r 1. Therefore we have the next possibilities.

12 122 01= h —  p — ib2 12' =  1 —1 -2 /6 1 T.' =*- (1 / k) p i ----- (k —1) p i /2' —X' 1—x'

0
0 k k2 —3k —1 k(k —1) — (2k +1) 0 (1)

1
k - 1 le' —3k +1 ( k - 1 ) 2 —k k - 1 (2)

1
0

1 k - 2 k2 -3k-F3 (k —1)(h —2) 1 2 (k -1 ) (3)

Set d = (p ' —  2 +  4(1— 2').

Case ( 1 ) :  In  this case d== (2k+1) 2 and so, by Lemma 1. 2,
V d  = 2k+  1  divides 2k(k — 1)—  (2k +1) { 2k +k(k-1)}  = — k {k(2k +1)
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+ 3 ) , which is impossible. Thus case ( 1 )  cannot happen.

C ase  (2 ): d  =le + 4 (k  — 1). Since 2k (k —1) — k {2k + k(k —1)}
1:), d  must be a square by Lemma 1 . 2 .  Set d  = cz  (c>0). Then

4 (k —1) = (c — k)(c + k) . Since c— k and c+k are even or odd simul-
taneously, c— k is even and we can set c— k=2e where e  is a positive
integer. T h u s  c+ k= 2 (e + k ) and so k —1= e(e + k) , which is a
contradiction. Thus case ( 2 )  cannot occur.

C ase  (3 ): d  =8k  — 7. By Lemma 1 .2 , d  must be a square and

V d = V 8k —7 divides 2k (k —1)+1. {2k + k(k — 1) } = k (3k — 1). Since
( 8 k - 7 ,  k )  divides 7  and ( 8 k - 7 , 3 k - 1 )  divides 1 3 , it follows that
8k —7 172 43 2 . Hence k = 7 ,  2 2  or 1036. In case k = 22, we may
assume that

j fi +f2= 2 • 9 • 11
o r  

if id -f2= 4•7•11
1 f  3 =4.7.11 f3=2.9.11.

But these are contrary to a theorem of Frame, Theorem 3 0 .1  in [6 ].

Similarly k =1036 is excluded, too. In case k = 7 , b y  the same
reason we can eliminate except the case f1= f2=  19 and f 3 = 1 8 . But
this exception is also excluded in the following way. The inter-
section matrix of 4  is

/0 0  0  1
7 0 1 0
0 6 5 6

\0 1  1  0 /

and so its characteristic polynomial is

(1 .1 ) (x —7) (x 3 + ax 2 + 2x + 1) .

By (4 .1 1 )  and (4 .1 2 )  in [3 ] ,  this polynomial is the minimum poly-
nomial of the incidence matrix A  for J. Let 7 , s ,  t  and u  be the
characteristic roots of A .  Then, since A  is similar to
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/7

    

we have
\ ,

7+19s+19t+18u=0.

On the other hand, by (1 . 1) s + t + u = —2 and  so u= —31. B u t
this is not a root o f (1 . 1), which is a contradiction.

Proposition 1. 4. There exists no transitive group satisfy ing
Case l a n d  k=1(1— 1)/2.

P ro o f.  Let G be a transitive group with the given condition.
As in the first part of the proof of the previous proposition, we
have 1=3, 7  or 57.

(i) / = 57:
ctively. Then

Let M1, 1112

7 00 0 1\

be intersection matrices

7 00 1 0 \

of d , r , respe-

M, =
k 2 P A

1112=
0 2, pi vi

0 vi p i 2, 5'7 A' t i f A'

\ 0 y2 P2 A/ \  0 vi, p i 21/

where k= 57 .28, th = 28, 1 = 1 ,  p '  = O.O. By (4.10) in  [3] , any two
intersection matrices are commutative and so

M 1
111

2 -  .
111

2 M1 •

Hence, considering (3, 4)-entries of the both sides, we have

14+28+g - 57+2A.

On the other hand, since 21 + v1 = 56 and 22 = 57 . 28 — 1—A1 by para-
meters-relations, we get 21= 24 and A = (57 . 28 — 1 — 24)/2, which is
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not an integer. This is a contradiction.
(ii)  1 = 7 :  L e t  u s  consider G',;( ' ) . By Theorem 1  in  P . J.

Cameron [1 ] , this is not doubly transitive. Hence, I GP ) =  (1 )  7 ,
(2) 7.2 o r  (3 ) 7  •  3 . However, in case of ( 1 )  and ( 2 ) ,  by Theorem
18.4 in  [6] G. I is not divisible by 3 ,  which contradicts k =7 3 .
In case of ( 3 ) ,  I G„1= T • and I GI =2 h  where h =7' • 3Y  52. Hence
G contains a normal subgroup H  of order h .  Since G is  primitive,
H  is transitive and so 5 2 .2  must divide h, which is a contradiction.

(iii) 1= 3 :  As in ( i i )  or by  [7] , this case is excluded, too.

2. Case II

Throughout this section we assume that Case II holds. We have

easily
A 2= A • A = k l+ 2A + pB + vC,

A B =B A =2 1 A +12 1 B +v i C.

Substituting C= F—  I— A— B ( (0 . 2 ) )  for above equalities, we have

(2. 1)A 2 =  ( 2 - 0  A + (12-0B + (k —  01+1,F,

(2.2)A B =  (2,— vi) A + (jij —vi)B— vi I+ pi  F.

Multiplying (2 . 1 ) by A and using A F = kF,

= (A — v) A 2 + v)A B + (k—  v)A + vkF.

Substituting (2 . 1 ) and (2 . 2 ) for above,

(2.3) A3 =+  ( t e —  v) (2 1 — Pi) + k ■J'f  A
+ (A— y + —vi) (, — v)B

+  (A -  v )(k  v )—  (/1— v)vi}
+ {(A — v)v+ (p—  v)v i + kv} F.

Cancelling (12-- v )B  from (2 . 1 ) and (2 . 3 ), we hare

{(tt —  v)vi+ kv — vi)] F

=  —  (A— v+ pi— vi)A 2

— {k— v+ v) vi)— (A—  v)(1•11 —  vi)} A
+  (k — v) (/11—Vi) + (m— v)vir
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This equality and A F =k F  conclude

Lemma 2 .  1 .  The incidence matrix  A  fo r d  sa tis fie s  (A — kI)
-g (A )=0 , where

g(x)—  x 3 — (A—v+ pi—vi)x 2

— fk — v + (g— ) 01—v1)— (2 —  v)(tei— pi)} x
+  (k— id) ( p i — vi)4- (p— v)v,} .

(In the coefficients of g (x ) ,  only six parameters appear. From now
on s , t  and u  denote the roots of g (x )=0 .)

From the above lemma, the minimum polynomial of A  is  (x—k).
(a  divisor o f g ( x ) ) .  B ut if th is  polynomial i s  (x— k). (a  linear
divisor of g ( x ) ) ,  we may assume that A  is similar to

(k

S ! (see §29 in  [6] ).

Taking traces we have 0= k  +(n -1 ) s , which is a contradiction since
s  i s  an algebraic integer. Thus the minimum polynomial of A  is
(x— k). (a quadratic divisor of g ( x ) )  or (x — k )g(x ).

Lemma 2 .  2 .  If the m inim um  polynomial of A i s  (x— k). (a
quad ra tic d iv iso r of g ( x ) ) ,  then

— te) {k 2 —, u 1 +  1 ) k +  (Ad- 1)/21 - 21 p } = 0 .

P r o o f . We may assume that the minimum polynomial of A  is
(x— k) (x — s)(x — t) and so

A 3 — (k +s+t)24 2 + (k s+st+tk )A — k stI= O.

Substituting (2 . 1 ) and (2 . 3 ) for the above, we have

(2. 4) {(2 —v)(A k—s—t)+ (11—v)(21— v1)
+k — v +k s-Fst+tk IA

+(ti — v)(2 — v+111 — vi — k— s— t)B
+ {(k — ) (2 — v— k— s — — (p—p)v i — kst} I
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+ {(2—v—vi—s—t)v+ pv i } F=0.

(1, 1) entry of the above is

(k—v)(2— v—k—s—t) — (p—v)v i

— kst+ (A —v—v i  — S — O v  ttv  = 0

and so

(2.5)S t  = A—  k —s —t.

Now le t  A  have ( i, j)  entry 1 and let B  have ( j', j ')  entry 1.
Then the ( i, j)  and (i', j ' )  entries of (2. 4) are

(2—v) (A — v — k  — s-0+(tz— v)(A i— vi)+k— v+ks+st+tk
+ (2— s— t)v+ /iv, — 0,

and
(P — v) (2 — v+k — s— t)  + (2 —  v —  v i —s—t)v- tev i = 0,

that is (using (2. 5)),

(s+ t) (k -1 -2 )=2 (k +v -2 )+ (v i —k + l)v —  p + 2 i v —

and

(s+t)p= (2— v+

Cancelling s+  t from the above two, we get a  desired result.

Lemma 2. 3. If the minimum polynomial of A is (x— k)g(x),
then we have followings.

(i) f 1+f 2+f 3=k +l - Fm

s f 1 -l-tf 2 +uf3=— k

s' f  t 2 f ,+u 2 f 3 = k(l + m +1).

(ii) k — l=m  or at least one of s , t  and u  is  an integer.
(iii) I f  f ,  f ,  and f 3 are all different, then s , t  and u are all

integers.

P ro o f . ( i )  The first equality is obtained at once from (O. 1).
Since we may assume that A  is similar to
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taking traces we get the second equality.

k
A 2 =k 1+2A + p B  + =

(see §29 in [6] ),

is similar to
k ,

le

  

and so, taking traces we have the third equality.

(iii) From the proof of (C ) of Theorem 30 .1  in Wielandt [6],
it follows that all the eigenvalues of A are integers.

(ii) Suppose g (x )  is irreducible over the rational field.

Then, by (iii), some two of f ,  f ,  and f ,  are equal (say f i= f , )  and
so we have by (i)

s f i + t f i +uf ,=— k .

On the other hand, by Lemma 2.1

s f i + t f i +uf,— (A  -  ±  -

Hence u ( f i — f,) is  a rational number and so f i = f 3 since u  is ir-
rational. Thus f 1= f2 = f3 , which implies k =1 =m  by Theorem 30.2
in W ie la n d t [6 ] . This completes the proof.
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A  similar argument as in Lemma 1. 3 shows

Lemma 2.4. G  is primitive on D if  and only i f  2 * k - 1 ,  t i k ,
v * k ; A' # 1 , d * 1 -1 ,  / l ;  A " Om, p " * M ,

3. On primitive permutation groups o f rank 4
with given subdegrees

Continuing propositions of section 1 , in this section we consider
the next problem: W h e n  w e  are given  k , 1  and m , determine
primitive permutation groups of rank 4  which have 1  and such k, 1,
m  as subdeg rees. In dealing with this problem, our procedure is:
First, making use of parameters-relations and Lemma 2. 4  we deter-
mine six parameters appeared in the coefficients of g (x )  (see Lemma
2 . 1 )  as exactly  as possible. N ext, in  view  o f  Lemma 2 . 3 , we
examine an integral root of g(x ) = 0  and compute the values of

f 2 ,  f 3 .  Only the cases that such values are integers are remained.
Computations are quite elementary, but routine and tedious.

Here we remark

Proposition 3. 1. L et 1 , k , 1  an d  m  (k K 1K m ) be the subde-
grees of a primitive permutation group o f  rank 4 , then l<k ( k - 1 )
and m <k (k -1 ) 2 .

In fact, if 4 (a)  is self-paired, the conclusion is immediate from
Proposition 0 .1 . I f  k =1 , then / =  m = 1  since 1<k 2 , m <k l, and so
G  i s  o f order 4  and not primitive. Thus k * l .  If k =2, then by
Proposition 0 .2  1=m  = 2 ,  a l l  the Ge-orbits are self-paired. I f  4(a)

and r(a) are paired, then k =1 and so the conclusion is  a t  once since
m <k l and k 2. I f  4 ( a )  and A (a ) are paired, then k =1 = m.

Lemma 3. 1. L et G be a transitive group o f  rank 4  on n with
subdegrees 1 ,  k (arb itrary ) , 1 =k (k -1 )  an d  m =k (k -1 ) 2 . Then
k =2, I  DI =7  and G is  a dihedral group of  order 14.
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Proof. From  the values of subdegrees G  is  primitive on P.
By Proposition O. 2, it suffices to show that k =2. In  th e  following,
suppose k > 2 .  Then we have k <1 <m  and so all the G.,-orbits are
self-paired (i.e., Case II holds). We shall determine the values of
six parameters A, i ,  id, A i, and v1 . Parameters-relations k22= m v

and ,12 <k — 1 imply v=0, 2 2 = 0 . Similarly, from =/,/2= k(k - 1)ti
and 2+ Ai + 22 =k - 1 ,  it  follows that (1 ) A =0, 12=1, Ai = k — 1 or (2)
te= 0, 2 1 = 0 .  But, in case (2) A+ Ai + 22 =k - 1  implies 2= k —1, which
contradicts the primitivity o f  G  by Lemma 2. 4. Thus case (1)

must hold. From mvi = k23 , we have ( k - 1 ) 2v1=23-1-2,— IK1— A ,
—(k— 1) 2 and so vi  =0  or 1.

vi  — 0 ( m 2 3  — 1 3  (22 + /13 + 2" =

contradicts Lemma 2. 4.

— 1 
((k - 1) 2 v1=23) -

>  2 3
—

( k
-

1 ) 2  (kA 3 =1 2 ) -
>

= k - 1 (tt+ th+ p2=k ) . 4 1 2 1 — ° '

Thus we have

2 =0 , te =l,  v =0 , 21 = k —1, pi = 0 and vi  = 1.

Therefore, by Lemma 2. 2, t h e  m inim um  polynom ial o f  A  is
(x — k )g(x ) where g(x )= x 3 + x 2 - 2 ( k - 1 ) x — ( k - 1 ) .  By Lemma 2. 3.
(ii) g(x ) = 0  has an integral root s. Hence

s 2 ( s + 1 )   =k -1 .
2s+1

Since ( s ,  2s + 1) =1 and (s + 1, 2s + 1) =1, we have 2s + 1= +1, i.e.,
k =1, which is a contradiction. Thus Lemma 3. 1 is proved.

A s  a  corollary we have a next result, which corresponds to
Theorem 1 in Higman [2] .

Theorem. Let G be a primitive permutation group o f rank  4
on ,Q w ith subdegrees 1, k , 1 and m  w here k  and 1  are arbitrary
and m =k ( k - 1 ) 2 . Then k =2 , IQ  = 7  and G is  a dihedral group
of order 14.
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Proof. It suffices to show that k = 2 . I f  (k ) m.<1, then k =2
by Proposition 3. 1. Similarly, i f  l < k (5 m ) , we have k= 1. Thus
we may assume that k K l< m . I f  a ll the G„-orbits are not self-
paired, by Propositions 1. 1 and 3. 1 we have k =2, which contradicts
Proposition O. 2. That is, a ll the G,,-orbits are self-paired. Hence,
by Proposition O. 1  1 must be equal to k (k -1 )  and by the previous
lemma we have a desired conclusion.

Similar arguments as in Lemma 3. 1 yield following propositions.

(These are necessary for determining the primitive extension of rank

4  of alternating groups which act naturally).

Proposition 3. 2. There exists no primitive permutation group
of  rank  4  with su b d eg r e e s  1, k, 1, m such that

(i) 1 = k(k — 1), m = k(k —1)(k  —2)

(ii) 1=k(k-1)/2, m=k(k — 1)(k - 2)

(iii) 1=k(k - 1)/2,m = k ( k - 1 ) ( k - 2 ) / 2
(iv) 1= k(k -1), m = k(k -1 )(k  —2)/3

where in  all the cases k is arbitrary.

Proof. By Wong [7 ] , k
( i )  and (ii) Omitted.

(iii) Suppose that there exists a group G  satisfying condition
(iii). If k =4, then the degree o f G  is equal to 2 3 .  Hence, by
Therorems 11. 6 and 11. 7  in  [6 ]  G  is  a Frobenius group and the
order h  of Frobenius complement is a divisor of 2 3 -1 , while h  must

be a multiple of 4. This is a contradiction. Thus k 5  and in our

usual way we have the next possibilities (of course, all the G„-orbits
are self-paired since k<1<m).

X 0 v Xi P i vi

(k -1 )/ 2 1
0

(k -1 )/ 2 1
1

(1)

0 2 k - 1 0 (2)
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By Lemmas 2. 1 and 2.2 the minimum polynomial of A  is (x— k )g(x )
where

{ X
3 k — 1

x
2 3 (k -1 )  

X + 1 (case (1))2 2g (x )=
x 3 + x 2 — (3k -4)x — k +2 (case (2))

By Lemma 2 . 3 . ( i i)  in both cases g(x ) = 0  has at least one integral
root s  and so case (1 )  cannot happen. In case (2 )  the equality

9k= 3s2+2s+11+  s+ 7 
3s + 1

holds and (s+ 7, 3s+1) divides 22 . 5  and so 3s+1 divides 22.5.
Thus we have s =  3 , k = 5  or s= —7, k= 16. B u t ,  by Lemma 2.3.
( i )  these cannot occur either.

(iv) Suppose that there exists a group G satisfying condition
( i v ) .  I f  k = 4 ,  then 2 1 , p  = 0 , v  = 1 , Ai =0, Pi= 2, . ' =3 o r  2 = 0,
p = 1 ,  p = 0 ,  =  3 , p=  l, v1=3 and in our usual way we have a con-
tradiction. I f  k = 5 , then the degree of G is 2 .2 3  and this is contrary
to Theorem 31. 2 in 16]. Thus we have k 6  and as before there
are the following possibilities (of course, Case II holds).

X 16 Y X1 161 1,1

(2k -  1)/3 1 (1)

0 1 0 k -1 (k +1)/3 2 (2)

1 3 (3)

The minimum polynomial of A is (x —  k)g(x) where

3 2(k — 2) 2(k — 1)x+ 2 " 3
—  2 )x , +13 (case (1))

g (x) 3 k  —

3

5  

x2(2k  —  3)x  +  k ( k —  5 ) +2 (case (2) )3
(x + 1)(x 2 + x— 2k+ 3) (case (3 ) )

In all the cases g(x ) = 0  has an integral root s  by Lemma 2. 3. (ii).
Case ( 3 ) :  Set s= — 1, t = (-1+ V  8k  — 11 ) / 2  and u = ( -1

- -V8k — 11 )/2. Then by Lem m a 2 .  3 .  ( i )  w e  have f2+ f3=
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k 2 (k— 1) (k+ 1)/3(2k—  3), which is a n  integer. T h is  an d  k  6
imply k = 9, which is contrary to Lemma 2. 3 (i).

Case ( 2 ) :  Since

3g(s)=k 2 —(s 2 +6s+5)k +3s 3 +5.92 + 9s+ 6 =0,

it follows that

(s 2 + 6s+ 5) 2 — 4(3s3 + 5s2 +9s+ 6) = (s2 + 1) 2 + 24s(s+ 1)

is a square (say d ', d 0 ) .  Moreover, since s  is neither 0  nor —1,
we have

0<24s(s+ 1) = (d— (s 2 +1))(d+ s 2 +1)

and so we can s e t  2c= d — (s 2 +1) where c  is  a positive integer.
Hence

(6— c)sz + 6s— (c2 + c) =0.

If c  6 , then 3' + (6— c)(c 2 c )  must be a square and so c= 4, s  = 2
or — 5, k= 17. I f  c= 6 ,  then s = 7  and k = 79 o r  17. But, since
ii1 =  1 ) /3  must be an  integer, k * 7 9 .  Thus we have k =1 7  at
any rate. Hence g ( x ) =( x - 2 ) ( x - - 7 ) ( x +5 )  and  pu t s = 2 ,  t= 7,
u= —5, getting f 3 = 17.250/7 by Lemma 2. 3 (i). B u t this is a
contradiction since f ,  must be an integer.

Case ( 1 ) :  Follow case (2).

Thus Proposition 3. 2 is established.
In the same way as above, we have following propositions.

Proposition 3. 3. I f  there  ex ists  a prim itive perm utation
group o f  rank  4  w ith subdegrees 1, k , 1, m  such that

(i) 1=k (k -1 ) , m =k (k -1 ) (k  — 2)/2
Or

(ii) 1=k (k - 1)/2, m =k (k -1)(k —  2)/3.

then k= 5.

R em ark. For k =5 , we have the following.
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I m n N o v x i i s a v i s t u fa f i f a 1 1 2  • 
5 .1

 .  
m

f i . f . . f .

(i) 20 30 56 0 1 0 4 1 2 —3 1—Y2 1+1/1 15 20 20 25.7'

(ii) 10 20 36 0 0 1 0 1 2 —3 —1 2 9 10 16 302

However the author doesn't know if a  group of type (i) for k=5
exists. O n  the other hand, Mr. E. Bannai and Mr. H. Enomoto* )

have kindly informed that the automorphism group of the symmetric
group of degree 6 operating by conjugation on the set of the Sylow
5-subgroups gives an example of type (ii) for k=5.

Proposition 3. 4. Let G be a primitive permutation grov p of
kran k  4  w ith  subdegrees 1 , k  (arb itrary ), l=k (k ---1 ), m =( 3 )=.

k (k -1 ) (k  -2 )/ 6 . T hen  k =5 or 6 and in f act such G exist.

Rem ark. The case k =5  is quite the same as type (ii) for k=5
above. As such G  for k= 6, there exists PSL (2, 19) operating by
righ t multiplication on the cosets of a subgroup isomorphic to the
alternating group of degree 5. In the latter case, the values of f l ,
f2, f3 are 18,18,20 and this group gives a counterexample to Frame's
conjecture (B) on p. 89 of [6] since

•6 30.20572 •  _5.192
18•18.20

is not a square." )

Proposition 3. 5. (c f . Prop. 1. 3 )  Let G be a transitive group
of rank  4 w ith subdegrees 1, k  (arbitrary ), 1=k (k  — 1), m =k  and
suppose th at  all the a,-orbits are se lf -p aired . T h en  k =2  and G
is  a dihedral group of order 14.

Proposition 3. 6. There exists no primitive permutation group
G  of rank  4  such that a, acts doubly  transitive on 4 (a) , a ll  the
a-o rb its  are self -paired and the subdegrees are 1, 1 4 ( a) I =k

*) The author wishes to thank both of them.
**) Professor N . Ito has kindly informed the author that this had already been

known in P. M. Neuman: Primitive permutation groups of degree 3p
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(arbitrary), l=k(k—  1)/2, m = k.

Proposition 3. 7. L et G be a primitive permutation group of
rank  4  such that a, acts doubly  transitiv e on 4 (a)  and the sub-
degrees are 1 ,  1z1(a) =k , l=k (k  — 1)/2= G I, m =k(k  —1)(k— 2)/6= (I Then k =7  and in fact such G exists.3

R em ark. A s  such G  fo r k =7, we have a primitive rank 4
extension of the symmetric or alternating group of degree 7 with a
regular normal subgroup. It will be seen in  a  subsequent paper,
which deals with primitive extensions of rank 4  of alternating groups.

In the proofs o f the last two propositions (in Prop. 3. 7, for
k 6  and k 8), from the 2-transitivity of G1( ' )  we may assume that
2 =0 , 21 = k— 1  and A 2 =0 (see the proof o f  Theorem 1  in Cameron
[1] ). Probably, however, the assumption of 2-transitivity of G"» )  in
Proposition 3. 7 may be omitted.
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Added in proof: According to our usual method, in Prop. 3. 7,
the case k =2 3  also remains besides the case k = 7. This careless
mistake was pointed out by Mr. H. Enomoto, and he has informed
the author that the case k =23 cannot occur. His method is graph-
theoretical. Moreover, he has pointed out that the assumption of
2-transitivity o f G', "  is omitted. Here the author wishes to thank
Mr. H. Enomoto.


