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Introduction. In the study of harmonic functions on an open
Riemann surface it is often useful to consider a compactification of
the Riemann surface, as one can define the boundary values and gene-
ralized normal derivatives at the ideal boundary.

It is known that every canonical potential, especially every harmonic
measure assumes constant values quasi-everywhere on each component
of Kuramochi boundary. Such a property for boundary behavior was
first shown in Kusunoki [5] by using the generalized normal derivatives,
and further investigated by Kusunoki-Mori [7] Ikegami [4] and
Watanabe [11] in various methods. At the same time it was investi-
gated by Kusunoki [5], [6] and Watanabe [12] that whether this boundary
behavior would characterize those functions, but the problem is still
not settled.

In this paper we shall deal with this problem from the viewpoint
of generalized normal derivatives and show several equivalent statements
with applications and examples concerning the boundary values and
generalized normal derivatives.

Here 1 wish to express my hearty thanks to Professor Y. Kusunoki
for his valuable suggestions and encouragément.

1. Let R be a hyperbolic Riemann surface and R* be a resolu-
tive compactification of R. We denote by 4 the ideal boundary of R* '
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and by w, the harmonic measure on A with respect to a point a=R.
Particularly we fix a,eR and write w,, as w. We denote by L2=
L2(4) all functions on A square integrable with respect to dw and
by I'=I(R) the space of all square integrable differentials on R. L2
and I' are Hilbert spaces with the scalar products

(. 9)=(%. )= fodo,

<0, T> =<0, T>R=S o*T,
R

respectively. Let I', be any subspace of I' whose each element is
a harmonic differential. We say that R* is I',-normal if and only if
for any harmonic function u with duel, there exists a resolutive
function f, such that

u@ = f.do,=H,@.

holds for any aeR. Such a function f, is uniquely determined as
an Ll-function and we shall call f, the boundary function of u and
write it i from now. Hereafter we shall use same terminologies and
notations in Constantinescu-Cornea [2] and Ahlfors-Sario [1] without

repetitions.

2. We shall use later the following fact (cf. Doob [3], Maeda
[8D).

Lemma 1. Let R* be I',-normal and u be a harmonic function

with duerl’,, then @t is in L2. Especially if u(ag)=0, we have
a2 = a12de < Mlaul?,

here the constant M is independent of u.

Proof. It is sufficient to show the inequality for real u with
u(ag)=0. Let g, be the Green function on R with pole at b and we
set
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P(b) =5 gnd*d(u?),

then we know P(b)(x%o) is a potential. Now we take a constant
N,>0 so that V,={pER; g,(p)>N,} becomes a parametric disk i.e.
e~(ov*i*av) gives a conformal mapping from V, to {z;|z|<e N¢}. We
can write d*d(u?)=2{uZ+u2}dxdy on V,. We have

2{u+u2}<K<oo on V,,

and

SN USRS e
PB)= 5 ad )+t gdrdiu?)
s gudxdy+ Reau)?
. Vb n

. e Nb(2n 1 N
hmg S <log———>rdrd0+—”||du||2<oo.
£ € 0 r T
We take a C¥-function f on R such that f=0 on R—-V,, f=1 on
V,={peR: gy(p)>N,(>N,)}. Since fu? is a Cg-function, by well
known formula (cf. [2], p 34) we get

wa)=fur@) == 5| g.drdfer),

for aeV,. We set

h(c)= — %SRgcd*d{(l —f)u)

for ceR, then h(c) is harmonic on V,. This shows that —P=fu?+h
is a C=»-function on ¥V, and Laplacian ‘A(—P)=A(fu2)=A(u2) on Vi,
therefore P+u? is harmonic on V,. Since b and V, are arbitrary,
P+u? is a harmonic majorant of u2. Also \ fi2dw, is the least har-

4
monic majorant of u? for variable a and

|lal =Sdlﬁ|2dws P(ay) + u?(a,) = P(a,)
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1

R-V

e Ng
=Llim3

T g0 Je R-

° 2n 1 1
So <log 7>k(r, 9)/'drd9+—2—;g Vaog,,od*d(uZ)

where k(r, 0)=u2+u?. Since k(r, 0) is subharmonic, K(r)=g2"k(r, 0) do
0

is a monotone increasing function, and for a=e Nao

y;K(r)dr: 7’{30’ *(a— P K(Pdr + S:/Z(a— AK(P)dr+ SZrK(r)dr}
=< %{S:ﬂ(a —r)K(a—r)dr+ S:/ZrK(r)dr + S:rK(r)dr}

< S:rK(r')dr.

Q| w

Now we may assume rIonggN,,oe'N“o, hence it follows that

3Na e""a0 2n | N 5
a2 <~ °So SO k(r, 0)rdrd0+FS g, d*d(u?)

R-V
3N, N,
S~ Il 4 dull® S Midu

3. We denote by H=H(R) the Hilbert space of all HD-functions
on R with the scalar product

{u, v) = <du, dv> +u(a0)v(To),

and by Hy(I'y) a Hilbert subspace of H such that ueHy(I',) vanishes
at ao and du is in I',. Since (u, v)=<du,dv> in Hy(T,), we use
the scalar product <du, dv> instead of {(u,v) in Hy(l)).

We assume that R* is I',-normal from now on to the section 5.

Let Ly={feL?4); Sdfdw=0}. Now we define I',-generalized normal
derivative of ue HD by the function f in L, for which <dv, du> =
S 8fdw holds for any veHy(TI,). N(I',) denotes the all HD-functions
h;ving I' -generalized normal derivatives. Let No(I',)=Ho(I',)N N(T")),
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and Lo(I,) be the closure of {feLy; HyeHyI)} in L%*(4), which
is a Hilbert subspace of L2(4). Here we have

Lemma 2. For any feL, there exists a unique ueNy(T,) such
that f is a I -generalized normal derivative of u.

Proof. Consider a mapping v—»S pfdw, veHy(I,), then this is
4
a bounded linear functional, because by Schwarz’s inequality and
Lemma 1

ifdo|” <( 1512dw - { 1712do < Mjdo)211712.
a4 a4 a4

Hence by Riesz theorem there exists a unique ueHy(I',) such that
<duv, du>=S pfdw for any veHyT,), which is to be proved.
4

For given f we write above u as u,. By this Lemma we can define
a mapping A, from L, to Ho); A,(f)=u,; and a mapping B, from
Ho(I',) to L2(4); B,(u)=a.

Let A, denotes the restriction of A, to Lo(I',), when R* is also
I',-normal. We set

Fup=AueBy: Holy) — Ho(l,),
Gy =Byo Ayt Lo(Ty) — Lo(Ty).

We shall treat these mappings for any fixed I', and I',.=TI,, so from
now on we shall omit the index and write A(=A4,), F(=F,,) and
so on. From definitions directly we have

Lemma 3.
<du, d(4f)> =Sdafdw =SAB(u)]dw=(B(u), N,

<dv, d(Fu)> =Sdﬁ§dw - SAB(D)B(_u)dw —(B(v), Bw)),

<d(4f), d(ag)> ={ BoA(Nzdo={ G(Ngo=(G(N. 9).
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Lemma 4. (1) A,B,F and G are bounded linear operators, and
all are injective.

(2) F and G are positive definite self-adjoint operators.

Proof. It is clear that A and B are linear. and by Lemma 1
B is continuous. Also A is continuous, because by Lemma 1, 3 and

Schwarz’s inequality

1d(Af)][2 = <d(Af), d(Af)> =§ABoA(f)fdw

<{| 1Bardo - | 17120}

=B AN I I SMIdAN IS -

It follows [|d(4f)||<M|f]. And F=A.B, G=B-A are linear and
continuous. Let A(f)=0, then

0= <du, d(Af)> =S 0 fdo,
a4
for any ueHy(I',). Since B[Hy,)] is dense in Lo(I',), f=0. This
shows A is injective. Also B is injective. Hence F and G are injective.
This completes the proof of (1). Next F and G are self-adjoint, because
<du, d(Fv)> =S ﬁ5dw=§ bidw
a4 a4

= <dv, d(Fu)> = <d(Fu), dv>

and (Gf. 9) =SAG(f)§dw= <d(4f), d(Ag)> = <d(A4g), d(4f)>

— SAG(g)fdco=(Gg,f)=(f, Gg).

If we set u=v or f=g, we know that F and G are positive definite.
(q.e.d)

For generalized normal derivatives we state next
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Proposition 1. F"[Hy(I',)] is dense in Hy(I',), where F" means
n-times iterates of F.

Proof. If v is in Hy(I,). and <dv, d(Fu)> =0 for any ueHy(T)),

then by Lemma 3 S piidw = <dv, d(Fu)> =0. Particularly we choose
4

u=v, then 0=S [#|2dw, hence =0 and v=0. This shows that
F[H\(I')] is der;lse in Hy,). Similarly F¥*!'[Hy(I,)] is dense in
F¥[Hy(T )], and F"[HyT,)] is dense in Hy(I',) which completes the
proof.

Since  Ho(I'))DNo(I')=A,(Ly)DA,[Lo(I",)IDF[Hy(T,)], we have

Corollary 1.1 The set of all HyT,)-functions which have I ,-

generalized normal derivatives is dense in Hy(I)).

4. Next we shall use the following basic theorem for Banach space
(cf. [9], p 61).

Theorem. Let B and E be Banach spaces, T be a bounded linear
operator from B to E, then the image T(B) is either of the first
category in E or E itself. Moreover if T is injective and surjective,

then the inverse of T is well defined and continuous.

This shows that F[Hy(I,)] and G[L(T',)] are either of the first
category in Hy(I',) and Lo(I',) or identical with Ho(I')) and Ly(T,)
respectively. If B[Ho(I'))] is of the second category in Ly(I,), then
B[HyTI'))] is Lo(I')) and B~! is continuous i.e. for a suitable K>0,

dufl=[ld(B~"al|<K|all.

Here we have

Lemma 5. The following (1), (2), (3) are equivalent;
(1) B[H(I')]=Lo(I'y)
(2) A[Lo(I')]=H(T))

(3) F[Ho(I')]1=H(T))
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Proof. (1)=(2) and (3): If B[HyI')]=LyTI,), then for any
feLyT,) there exists a ueHy(l',) such that B(u)=f. By the conti-
nuity of B!, Schwarz’s inequality and Lemma 3

1f12 =SAB(u)f'dw: <du, d(Af)>

< llduflld(AN I = K[[BW) (AN -

It follows that | f||<K|d(Af)l. For any veHy/r, by Proposition 1
there exists a sequence {f,} in Lo(I',) such that {d(Af,)} converges to
dv in Hyr,. Then {d(Af,)} is a Cauchy sequence and also {f,}
is a Cauchy sequence in Lo(I",), because | f,—f,II<KI|d(A(S,—f ).
So let f, converge to fe&Ly(l,), then A(f)=v. Hence A[L\(I')]=
Hy(,). Moreover since B[Hy(T',))]=Lo(I")), F[Ho(I'))]=A-B[Hy(I,)]=
A[Lo(I')1=H(I).

@)= (): If A[Lo(I"))]=H(T,), by above Theorem | f{|<K"'[|d(Af)||
for any feLo(l',) and for any ueHy(I',) there exists a feLy(T,)
such that A(f)=u. Thus

[dull> = <du, d(Af)> =(B(u), f)
SB[/ 1= KB ld(Af)]] -

It follows that ||du||<K'||B(u)||. Since B[H(I',)] is dense in Ly(I")
we get the conclusion by the similar argument as above ((1)=(2)).

(3)=(2): Since  B[HyI')]cLyT,). if  Ho(I'))=F[Hy(T,)]=
AeB[H(I'))]. then Hy(I',)c A[Ly(I",))]. This completes the proof of
Lemma 5.

Remark Let u be in Hy(I',,) and u, be the orthogonal projection
of u onto HyI",). Suppose that u, has a I ,-generalized normal
derivative f, then for any ve Hy(",)

<dv, du> = <dv, du,> =S ﬁfdw=g of dw,
¢ 4 4

fi being the orthogonal projection of f onto Lo(I,). This implies
that if all functions in Hy(I',) have I -generalized normal derivatives
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then all functions in HD have I',-generalized normal derivatives, which
belong to Lo(I).

Proposition 2. Any HD-function has a T ,-generalized normal
derivative if and only if there exists a constant K>O0 such that
Idull=Klla|| for any ue&H(I}).

Proof. 1If any HD-function has a I',-generalized normal derivative,
from above remark we have A[Ly(I)]=HyI,) and by Lemma 5
B[Hy(I'))1=Ly(I,). 1t follows that [du||<K]|a] for any u&HT,).
Conversely if this inequality is satisfied, we know that B is surjective
by the similar argument as proof of Lemma 5, hence every function
in HyT',) has I',-generalized normal derivative and we get the con-
clusion by above remark.

Remark 1. This inequality is independent of the compactification
R* as far as R* is I',-normal. In fact [|i]|? is the value at a, of the
least harmonic majorant of |u|2.

Remark 2. If ReO}, R* be I'j-normal, then all HD-functions
have I.-generalized normal derivatives. Because Hy(l,,) is of finite
dimension and F[Hy(T,.)] is dense in Hy(l'},), it follows that F[Hy([,,)]
=Ho(Iye)-

Let C(4) be a Banach space with supremum norm which consists
of all finite continuous functions on 4. The compactification R* is
called regular if and only if B[HD]NC(4) is dense in C(4), here
feB[HD]INC(4) means that f is in C(4) and H,e HD. Note that if
R* is regular, Ly(I',,)=L,. In fact since C(4) is dense in L2, B[HD]N
C(4) is dense in L2. For any feLy(cL?) there exist f,c BLHD]N C(4)
which converge to f in L2?. And f,—H/ (ap)CLy(I};,) converge to f
in L,. By definition of Ly(I',.) Lo(I'.)=L,.

Corollary 2.1 (H. Tanaka [10]) Let Re0}p,—0}%p —0%p

(1) Let u belong to the class HB(R) but not to the class
HD(R). If I,-normal compactification R* of R is regular,
then u can not be represented by harmonic measure of R*,
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(2) Martin’s compactification R¥ of R is not regular.

Proof. (1) Suppose we can represent u—u(ay,) by harmonic
measure: u(a)—u(a0)=g fdw,. Since u—u(a,) is bounded, f belongs
to L0=L0(F,,L,)=B[H0(F,,5]. On the other hand u—u(a,) does not belong
to Hy(l,,). This is a contradiction. (2) In Martin’s compactification
all HB-functions are represented by harmonic measure.

5. We consider here in what case all HD-functions have I',-gener-
alized normal derivatives. At first we show a simple example. Let
R* be Iy, or I',-normal and ¢ be a boundary point of Kerékjarto-
Stoilow’s compactification R* of R and 4,=n(UNR) (U; neighborhood
of e in R¥ and closure is taken in R*).

Example 1. If the Kerékjarto-Stoilow’s boundary consists of an
infinite number (countable) of components, then harmonic measures
(hence HD-functions) have not always I',,-generalized normal derivatives
hence I',.-generalized normal derivatives.

To show this example consider a rectangle

D(a, b)={(x, y); 0<x<a, 0<y<b},

and a family of curves C={y} such that each y is parallel to x-axis
and connects two vertical sides. Then the extremal length A(C)=a/b.
Let h be a harmonic function in D(a, b) such that

h=0 on x=0,0<y<b, h=1 on x=a, 0<y<b.

then \/hZ+h? is an admissible function, for
—_— - 1
[ vrzemas=( yrrnzaxz | inlax=1
b4 0 0
and b/a=l/A(C)§SS [h2 +h2]dxdy = ||dA] .
D(a,b)

Now let € be the extended complex plane, and

E,={x+iy; x=a,, 0<y<b,}
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where {a,} is a monotone sequence converging to O and {b,} is a
sequence such that b,, | =b,,2b5,+1=bsy+2-

We set R=C—"UE, and R* be the closure of R in C. Let W,,-1 be
the harmonic function in R such that

Wz,,_,=1 on E;,_;, 0 on Ef(j#2n—-1)
The Dirichlet norm of W,,_,:
ldWa— i gz IdWa— (I Z b2nl(@20- 1 — a20)

where D’'={x+iy; (x—a,,)+iyeD(ay,_,—a,,, by,)}. While the L2-

norm of W,,_,: |[W,,_,I<!. Now we choose a,, b, such that b,,/
(az,——a,,)— oo, (for instance b,,=1/n, a,=1/n?, then b,,[(as,-1—a3,)
_ 4n(2n—1)?

v —o0). Then by Proposition 2 harmonic measures have
not always I,,-generalized normal derivatives.

Next we shall show that if R satisfies the condition:

(C) A Green function g,(b) converges to 0 as b converges to the ideal
boundary of R, (this condition is independent of the choice of Green
function)

then any ue Hy(I')) has a I',-generalized normal derivative if and only
if the dimension of H(I')) is finite.

First we note that under the condition (C) B is a compact operator
(cf. [3]). In fact let u, converge to 0 weakly in Hy(I',), then u, converge
to 0 uniformly on any compact set K, and

. 1
2 <o ga,d%dwd)

_ 1 * (2 LS * (12
- 2 SKgaod d(un)+ 2 R—Kgaod d(un .

For any ¢>0 there exists a compact set K scuh that g, (b)<e for

beR—-K, and @l|a"||2§@%|ldunllz. Since ||du,|| are uniformly
bounded and ¢ i; uaolrbitrary,"Boo is a compact operator. Since B is a
compact operator, F=AoB, G=BoA are so. Now let {s,} be the eigen-
values of F, Then by Hilbert-Schmidt expansion theorem there exists
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a complete orthonormal base {u,} which consists of eigenvectors for
{s,} including multiplicity. Now F(u,)=s,u,, hence BeA-B(u,)=s,B(u,)
ie. G(f,)=s,0,.

L 0 if i#j

S 0,(85]5;)de = <duy, du;> =
4 1 if i=j.

Since boundary functions of Hy(I',) is dense in Lo(I",), {8,/\/s,} forms
an orthonormal base in Ly(I)).

By the fact that {s,} accumulates at most one point 0, and the
eigenspace for each s, is of finite dimension, and by Proposition 2, we
know our assertion. Note that the above conclusion is valid under
the condition that F is a compact operator.

6. We know that if harmonic function u satisfies duerl’,,, then
fi is constant w a.e. on each A4, (cf. [5], [7]). While according to M.
Watanabe an HD-function which is constant w a.e. on each 4, is
not always a harmonic measure. Here we shall give another such an

example.

Example 2. Let R={z:;l/4<|z|<l}, K a generalized Cantor

set on [—é— —é—} whose linear measure is positive, and E={(r, 0); re K,

0<0<n}. Set R"=R—E. R* R'* are Royden’s compactifications of R,
R’ respectively. It is clear that d(—log|z|)eTl,,(R), *d(rcos ) *I', (R).
Since we have the orthogonal decomposition I'y=1I, +*I,.,

0= <d(—log|z|), *d(rcos0)>
= —SS sin 0drd0 < —SS sin 0drd0
R R’

= <d(—log|z]), *d(rcos0)>. .

While *d(rcosf)e*l, . (R’), so above inequality implies d(—log|z|)&
Ip(R’), but —log|z| is an HD-function in R’ and constant on each
connected component of the boundary.
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7. In this section let R* be I,normal and A=4,,. From
Proposition | we know Ny(T,,) is dense in Hy(I,,). Here we consider
the next problem:

Whether Ho(I',) N No(I',,) is dense in Hy(I',) or not? At first

Lemma 6. Function feL, is a I',,generalized normal derivative
of some v in Hy(I'y) if and only if f belongs to LT, where
Lo(I'y)* (resp.I'y) is the orthogonal complement of L(I',) in L,
(resp. of T, in I'}).

Proof. For any ueHyI,) fi belongs to LyT,).
Hence if f belongs to Lo(I'))*,

0 =Sdafdw= <du, d(4f)>.

It follows that d(Af) belongs to I'y and A(f)eH(I'}).
Conversely if f is a I.-generalized normal derivative of v in Hy(I'}),
then for any ue Hy(T,),

0=<du, dv> =S ajdo .
a

Since B[H(I'))] is dense in Lo(I")), it follows that fe Ly(I',)*
(q.e.d.)

Proposition 3. The following (1), (2) are equivalent;
(1) Ho(I'y)NNo(I'y,) is dense in Hy(I'y).
(@) B[Ho(I'y)1N Lo(I',)={0} .

Proof. (1)=(2): Suppose there exists a f (#0) in B[Hy(I3)]N
Lo(I')) and let u be in Hy(I'y) such that B(u)=f, then for any ge
Lo(I' ),

0 =Sdfgdw= <du, d(4g)>.

Since by Lemma 6 A[Lo(I')*1=Hy(['$)NNo(T}.), u(#0) belongs to
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(AT N N1 N Ho(T).

(2)=(1): Suppose Hy(I'¥)NNo([4,) is not dense in Hy(I)*.
Then there exists a ue[Ho(I'y)NNo(lh)l*NHy('3), u+#0. Since
A(@)EH(I'y) N No(I'y) for any geLo(I'y)*,

0=<du, d(4g)> =§ fgdo,
a4

and we get fieLy(I',))N B[H(y)]. (q.e.d.)

We write the class of harmonic Schottky differentials by I'..
Let Fo=L N\ ey Tig=*TheN Ty, .
We know the next orthogonal decompositions,
The=Toet oo+ Toy =Ty N ¥+ Tog=Tp+ Ty

Here we have,

Corollary 3.1 (M. Watanabe [12]) Hy(T,, )N No(l,.) is dense in
HO(Fhm)'

Proof. Let {u,} be a sequence of KD-functions such that {a,}
converges to B(u) in the sense of L2 where u is an HD-function.
Then u, converges to u uniformly on any compact subset, hence

S *du=limg *du, =0

Y n=0 Jy
for any dividing cycle y. This shows u is a KD-function and B[Hy(I;,,)]
N Lo(Iwy)={0}. By Proposition 3 we get Hy(I,,) N No(l,,) is dense in
Ho(T'ym)-

Corollary 3'2 Ho(res) n NO(rhe)7 HO(res+ rae) n No(rhe) and HO(Fes+
Tae) n NO(Fhe) are dense in HO(Fes)s HO(Fes+rae) and HO(res+fae)
respectively.

Proof. We can prove these by the similar argument as in Corol-
lary 3.1.
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Corollary 3.3 Suppose T',,-normal compactification R* has the
ideal boundary A=A4,UAd,, 4,N4,=¢ such that A, consists of con-
nected components {4,} each of which has a positive harmonic measure,
and A, is of harmonic measure zero, then every HD-function u which
is constant w a.e. on each A, is a harmonic measure if and only
if Hy(T)N No(Ty) is dense in Hy(I'y).

Proof. 1t is sufficient that we show this for real u. We have
a decomposition u=uVv0+uA0. Since boundary function of ueHD
is constant w a.e. on each 4, boundary function of HD-function
uVvO0 (resp. uA0) is also constant w a.e. on each 4,. Now we con-
sider a harmonic function v, which takes a positive constant w a.e.
on only one 4, and vanishes w a.e. on the other components. v, is
obviously a harmonic measure if 4, is isolated. In general v, can be
approximated in the sense of L2 by decreasing harmonic measures.
Since the number of {4,} each of whose element has a positive harmonic
measure is countable, by monotone convergence theorem we know that
uVO(resp. uA0) can be approximated in the sense of L? by a linear
combination of those harmonic functions {v,} and so @ —u(a,) belongs to
Lo(T},). Moreover by orthogonal decomposition we may assume that
du belongs to I',,, From Proposition 3 we get the conclusion.

At last we note that the set of all KD-functions each of whose
function has a I'y,-generalized normal derivative is not always dense
in the space of all KD-functions. Because in Example 2 we know
easily —log|zl€eLy([},), so by Proposition3 Example2 gives this
example. In fact for arbitrary small ¢>0 there are real numbers
{r:}i<i<n such that r;& K (K: the generalized Cantor set in Example

2) and ;——5=r1<r2<r”=%+5,5>0, logr;,;—logr;<e. Let E;=

{(r, O€E; ri<r<riti}icisn-1s Eo={22lz|=%},fi be a harmonic
measure such that f,=—logr, on E;, =0 on the other connected

n—1
components of boundary. We set f=§0ﬁeHo(Fhm).

Then it is clearlyg |—log|z| - f|2dw<e?, and —log|z|€ Lo(T,,).
A4
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