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1. Introduction.

In this paper we shall treat the following system;

i _ & ol -
(1.1) A(t, x)—a—t—— j; B; (¢, x) ax; +C(¢, x)ii,

where A(t, x), Byt,x) (j=1,...,n) and C(t,x) are NxN matrices
whose entries are all analytic in a neighborhood of (¢, x)=(0, 0),
and i@ =ii(t, x) is the unknown of N-vector valued function. We
consider the Cauchy problem for (1.1) with initial data on the hyper-
plane t=0, and are concerned only with the solution which is analytic
in a neighborhood of (t, x)=(0, 0), therefore we use the term ‘‘solu-
tion” only for analytic solution in what follows.

We assume that the initial plane =0 is characteristic for (I.1),
say, A(t, x) is singular at r=0. Roughly speaking, the situation will
be divided into two cases; one is where det A(f, x) vanishes only at
t=0, and another where detA(z, x) vanishes identically in a neighbor-
hood of the origin.

As for the former case, Y.Hasegawa [4], defining the notion of
double characteristic, was mainly concerned with the existence of the
analytic solution for single equations. And M. Miyake [5] showed
that her method was applicable to some first order systems.

Our interest here is concentrated to the latter case, and we are
concerned only with the uniqueness of solution. In our case we can
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not classify, in general, the characteristic of the initial surface in the
manner of [5]. Therefore, we introduce a different classification of
the system, since we have no approach to completely general ones.

Definition 1.1. The system (1.1) is said to be of type (p, q) in
a neighborhood of the origin ¥°, if and only if the following condi-
tions are fulfiled;

(1.2) the rank of A(t, x) is constantly p in ¥,

(1.3) the degree of det(tA(t, x)—C(t, x)), as a polynomial in 7, is
constantly g in .

Of cource we see g<p<N, and in our case p<N.

Section 2 is devoted to the preliminaries from ordinary differential
equations which will suggest why we give Definition 1.1. In the third
section, we shall give a necessary and sufficient condition for the solu-
tion of the system of type (p, p) with constant coefficients to be unique.
In the fourth and final sections, we shall treat the system of type
(N—1, N—1) with variable coefficients.

2. Preliminaries from ordinary differential equations.

In this section we treat the following Cauchy’s probelm for the sake
of preparation for the succeeding sections;

dii

2.1) 4

=Bi, i(0)=4,

where A and B are NxN constant matrices and i =ii(f) and ¢
are N-vectors.
As for the uniquness of the solution of (2.1), we have

Theorem 2.1. A necessary and sufficient condition for the solu-
tion of (2.1) to be unique is that F(t)=det(tA—B) does not vanish
identically as a polynomial in t.

Proof. (i) Sufficiency; let F(t)#0, then as is well known, each
component of # must satisfy
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2.2) F(d]dt)yp=0, v(0)=0.

Thus we can apply the Laplace transformation to the solution, and
denoting its Laplace image by U(r), we have

(2.3) (tA—B)U(1) =0,

hence by the analyticity of U(r) we obtain U(t)=0 and consequently
ii(1)=0.

(ii) Necessity; if F(t)=0, by considering suitable linear combinations
of the row and column vectors of (t4—B), that is, by considering
P(tA—B)Q for regular matirces P and Q (which are independent of
1), our equation is reduced to

2.4 dii Jdt =Kii,+ Li,, ii,=0, Mii,=0,

for some non-negative integers p,q and r with p<N and p+q+r
=N, where i, denotes the k-vector.

If the column vectors {l;,...,1,} of L are linearly dependent,
then we may assume [, =0. Thus we have a null solution ii,=0, ii,=0
and i,=%0,...,0, a(t)) with «(0)=0.

When {/,...,l,} are linearly independent, we can see easily Ker M
#{0}, and then for an arbitrary non-zero vector ¢ in KerM, put
ii,=p(t)¢ with p(0)=p'(0)=0. Thus we have Li,=(f'()—p(t)K)é, and
by the assumption on L there exists a matrix L, such that L,L becomes
the rxr unit matrix. Hence we have a null solution ii,=p(1)¢, ii,=0
and i, =Lo(B'(t)— B(NK)E.

Since F(1)=0 it follows r#0, hence the proof is completed.  Q.E.D.

Now let us introduce the general solution of the equation Adii/dt
=Bil.

Definition 2.1. Let the degree of F(t)=det(t4—B) be m. An
N-vector valued function ii(t) satisfying the equation Adii/dt=Bii is
said to be a general solution if and only if i(f) contains m arbitrary
parameters, namely i(f)=ii(t; c,,..., C;).
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Theorem 2.2, Let F(t)#0, then the general solution ii(t) is given
by

Sy 1 | T P
(2.5) i) ST glr(tA B) levédr,

i

where I' is a Jordan curve enclosing the all roots of F(1)=0 and
¢ is an arbitrary vector in CV.

Before proving above theorem, we prepare

Proposition 2.1. Let us define a matrix P by

(2.6) pe =T;i_<$r(m —B)-'edr,

where I' is a Jordan curve enclosing the all roots of F(r)=0 and
¢ is in CN, then the rank of P equals to the degree of F(1).
For the proof of this proposition, we prepare some lemmas.

Lemma 2.1. Let 7t,,...,7, be arbitrary complex numbers, then
<§» [I(t—1;) *dt=0,
rj

for any k-tuples of non-negative integers a=(x,...,0,) with |a|=2,
where I' is a Jordan curve enclosing 14,..., T,.

Proof. As is well-known, we can write

k

aj .
[[(t—t) =2 ﬂzl Ap,(1—1))7h,
J i

= =

and since |¢|=2, we have

A4]=0.

M~

1

1

J

Thus by the well-known Cauchy’s theorem, we can prove our asser-
tion. Q.E.D.

As an immediate consequence of Lemma 2.1, we obtain
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Lemma 2.2. Under the same conditions of Lemma. 2.1,

<§ [l (r—1;)"*dt=0,
r Jj

for any non-negative integer o with o <|a|—2.
The proof is carried out by Lemma 2.2 and the induction in o.
Now let rank A=p. When p=0 or p=N, the matrix P in (2.6)
is clearly zero matrix or Ey, the unit matrix of degree N, therefore
we assume O<p<N. Moreover, we may assume

E, O B, K
A= and B= ,
0 0 L B,
where E, denotes the pxp unit matrix.

Lemma 2.3. If the (N—p)x(N—p) prinicpal minor B, is regular,
then the assertion of Proposition 2.1 is valid.

Proof. Since detB,#0, the degree of F(r) is p and moreover
we may assume B,=Ey_,, K=0 and L=0. Thus we can easily see
P=E, by Lemma 2.2. Q.E.D.

Lemma 24. Let p=N—1 and B,=0, then the assertion of Pro-
position 2.1 is valid.

Proof. Let L=(l,,...,1y_;). Since F(r)#¥0, we may assume
Iy, #0 without loss of generality. Then consider the matrix inter-
changed the (N—1)-th and the N-th vectors in 14— B;

T—% ok i %

x T—% 1 %
¥ i T—%

ETIRTRY *OilN—l

Thus, after a suitable linear combination of row vectors and column
vectors, we may assume the N-th row vector is of the form; (0,...,0
Iy-4). Proceeding this procedure in the (N—1) principal minor, we
may assume that (tA—B) is as follows;

>
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for some integer k (ISk<N-1), where b; (j=1,2,.,k+1) are
non-zero constants and pj(t)=t+c;. Then, as is easily seen from

Lemma 2.2, P is given by
Ey_j-q *
0 0/,

and since the degree of (tA—B) is (N—k—1), our lemma is proven.
Q.E.D.

Lemma 2.5. Let p<N—-2 and B,=0, then the assertion of prop-
osition 2.1 is valid.

Proof. We prove this by the induction in N. Of course, we
may assume N2, and when N=2, by Lemma 2.4 it is correct.

Now, let B, be gx g zero matrix, then we may assume that t4A—B
is as follows;

and if B’ is regular, then by Lemma 2.3 we accomplish the proof.
When B’ is singular, we may assume that B’ is given by
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0 0
0 E, /)
with some m, and thus, since it suffices to consider the first (N —m—gq)-

principal minor, by the assumption of induction we complete the proof.
Q.E.D.

Lemma 2.6. Let p<N-2 and detB,=0, then the assertion of
Proposition 2.1 is valid.

The proof of this lemma is reduced to that of Lemma 2.5.

Combining from Lemma 2.3 to Lemma 2.6, we can obtain Prop-
osition 2.1.

For the proof of Theorem 2.2, we prepare some lemmas further.

Lemma 2.7. (Resolvent equation) Let T and o be arbitrary complex
numbers which do not make F(t) vanish, then it follows
(2.7) (tA—B)"'—(6A—B) '=(c—1)(tA—B)"'A(cA—B)~ .

Lemma 28. Let t; be the root of F(1)=0 and I'; be a Jordan
curve encolsing only t;, and then define P; by

.1 =1
(2.8) ch—z—m,%n(rA B) 1édr,

then it follows
(2.9) P=3% Pj,
J

where 6, stands for the Kronecker's delta.
Thus, if we set Q=AP and Q;=AP;, we have

2.11) ImQ=3@®ImQ; (direct sum).

Proposition 2.2. We have rank Q =rank P.

Proof. At first we show that A is one to one on ImP. Let A¢
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=0 for some ¢ in ImP, say $;P$, then PAP=P follows from
Lemma 2.8, so we have 0=PAg =PAPy =Py =¢.

Now let rank P=p and {d,,..., »,} be a base of ImP and 3} c;4A®;
=0, then we have ch(bj=0 since A is one to one, and havé c;=0
for each j, and this Jproves rank Q =rank P. Q.E.D.

Now, let us consider

L1 ot _ p-1a
(2.12) S@)e= 37 %re (tA—B) 'édr
and

A= | Tt _ -1z
(2.13) S;@)é= > %r,e (tA—B) '¢dr,

where I' and I'; are Jordan curves enclosing the all roots of F(1)=0
and only the root t; respectively. Let the multiplicity of 7; be a
and the cofactor of tA—B be A4(r), and expanding e into Taylor
series about t7=1;, we have by Lemma 2.2,

it

T aj—1
(2.14)  S;(0)é= Sm' . ’zo(r—rj)~t~/;<!(r—r,)-we(r)Edr,
J K=

where 0(t) is given by

(2.15) ()= T1 (1—1,)"*4(1).
k#j

Proof of Theorem 2.2 (1) (when each t; is simple root).

It suffices to show that the rank of S(t) equals to the degree
of F(r) for any t, equivalently to the rank of P by Proposition 2.1.
Obviously, S()=3Si(t)=>e"'P;, and since PAP;=P; by Lemma
2.8, we see ImS(t)cImP: and consequently rank S(f)<rankP. On
the other hand, AS(t)=3e"'Q; thus rank AS(r)=3 rankQ;=rankQ
=rank P by (2.11) and Plroposition 2.2, hence ranké(t)%rankAS(t):
rank P. Q.E.D.

In order to prove our theorem when F(r)=0 has multiple roots,
we introduce some notations. We define following matrices;
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1 | -
(2.16) Pj‘k=W§rj(t_Tj)k('tA_B) 'dt,
and
(2.17) Qju=APj,,

where k denotes a non-negative integer.

The following lemma is easy.

Lemma 2.9. The following equations hold.

(2.18) P APy =0imPjksn
(2.19) Qi kQmn =0mQj k4 m
(2.20) Q=04 1.

aj—1
Now denoting R(t)= :;0 t*QF |, we have
(2.21) AS()=e"'R(1)Q;.

Lemma 2.10. For any t, Rt) is one to one on ImQ; and con-
sequently rank AS;(t)=rank Q;.

Proof. Let R{(1)Q;¢=0 for some ¢ in CM. Multiplying Q%/7'
to both sides and noting Q% =0 (k=a;), we obtain Q%7!Q;¢=0,
and proceeding this procedure we have Q% ,0;6=0 for kz1. This
shows Q;¢=0. The latter part is obvious. Q.E.D.

Proof of Theorem 2.2 (1I) (when F(t)=0 has multiple roots).
Using Lemma 2.9 and Lemma 2.10 and observing AS(f)=3 ASy(1),
we can complete the proof as well as the case when F(1)=0 hlas only
simple roots. Q.E.D.

Suming up the results obtained above, we have

Theorem 2.3. The Cauchy problem (2.1) has a unique solution
ii(1), if and only if det(tA—B)#0 as a polynomial in v and ¢ belongs
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to the range of P. Moreover, then ii(t) is given by S(1)A§ and it
is contained in the range of P for any t.

3. The case of constant coefficients.

In this section we consider the equation;

dil _ & o O
(3.1) A5 = X Bigy+Ch,

J

where A, Bj’'s and C are N x N constant matrices and & =ii(t, x) is an
N-vector valued function which may be allowed to take complex values.
We consider the Cauchy problem for (3.1) in a neighborhood of
(t, x)=(0, 0) with the initial data on the hyperplane t=0. Our main
interest here is of the uniqueness of the solution which is analytic
in a neighborhood of (¢, x)=(0, 0). We shall be concerned only with the
analytic solution, the term ‘‘solution” means always the solution which
is analytic in a neighborhood of (¢, x)=(0, 0) hereafter.

According to Theorem 2.1, we obtain immediately

Theorem 3.1. It is necessary that F(r)=det(tA—B) does not vanish
identically as a polynomial in 1t for the solution of the Cauchy
problem for (3.1) to be unique.

However, we can see easily that F(t)#£0 does not give the suf-
ficient condition for the uniquness. For example, let n=1, and A,
B=B, and C be as follows;

1 0 1 0 1 1
A= ’ B= ’ C= s
00 0 1 0 1
then we can see easily that the Cauchy problem for (3.1) has a null
solution.
For general equations, it seems difficult to state the condition
under which the solution is unique, so we restrict oursleves to rather

special equation, that is, of type (p, p).
The following lemma is easy.
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Lemma 3.1. Let the equation (3.1) is of type (p, p), then (3.1)
is reduced to

E, 0\ i "P(D) K(D) s 0
0 0/9% \LD) QD) 0 Ey,
where D stands for (0/0x,, .., 0[0x,).
We state the principal result in this section.

Theorem 3.2. A necessary and sufficient condition in order that
the solution of the Cauchy problem for (3.2) is unique is that
the matrix Q(&) is nilpotent for any unit vector &=(&,,..., ).

The proof of sufficiency is very easy, so we may omit it. For
the proof of necessity, we make some preparative considerations. Our
aim is to show that there exists a null solution of (3.2) if Q(£) is not
nilpotent for some unit vector £. In this case we may assume, after
a suitable exchange of independent variable if necessary, that the
coefficient matrix of 8/0x, in Q(D) is not nilpotent, and we write it
Q also. We seek a null solution which depends only on t and x,,
and we remove the suffix 1 of x,. For P(D), K(D) and L(D), we
denote by P, K and L the coefficients of d/0x, respectively. Hence
we seek a null solution of

E, 0\ . (P K\gz (S O
() e
0 0 Lo 0 Ey.,

Let > i, (x)t" be the formal solution of (3.3) with iiy(x)=0, then
we have

(3.4) (n+ ,(x)=Pv,_,(x)+ Kw/_(x)+ Sv,_,(x)
and
(3.5 0= Loy(x)+ Qwp(x) — wy(x),

for n=1, 2,..., where ii,(x)="(v,(x), w,(x)) and ' means the differentia-
tion by x.
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First, let us assume that Q is regular, and denoting its inverse
matrix by Q also and rewriting Q'L and —L also, we obtain from
3.5

(3.6) wi(x) =Qw,(x) + Lvj(x) .

Here we introduce the notations |c| and | 4] to denote the length
of a vector ¢ and the operator norm of a matrix A respectively.
Since vo(x)=v,(x)=0 and w,(x)=0, we have by (3.6)

3.7 ' w,(x) =e*Cc

for some constant (N —p)-vector ¢, and we assume |c|=1. Let us
define w,(x) for n=2 by

(338) o= eeray
0

then we have two sequences {v,(x)} and {w,(x)} by using (3.4), satisfy-
ing (3.4) and (3.6).

» Now. take £>0 so that ¢|Q| <1, then there exist a(n, k) and
b(n, k) which may depend on & with satisfying

3.9 [0 (x) | La(n, k)|Q|"+ 1
and
(3.10) Wi (x) | £b(n, k)IIQ] " 1,

where n and k run over all natural numbers and |x|<e¢, and we can
take a(l, k)=0, b(l1, k)—'s1|1p lex@l and a(2, k)=|K|/2 for all k. It

should be noted that (3.9) and (3.10) are lead by induction, if we
notice (3.4) and (3.6). Since we may assume Q| .is larger than 1,
we may assume S=0 by (3.9). Thus, we obtain

(3.11) (n+ Da(n+1, k)| Plla(n, k+ 1)+ | K| b(n, k+1)
and

(3.12) b(n, k)<b(n, k—1)+||Lla(n, k+1),
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with  b(n, 0)SM|L|a(n, 1), where M=M()= sup [e*"¥¢|. Hence

Iyls]|x|
|x|=e

we have
k+1
(3.13) (n+Da(n+1, k)L ||Plla(n, k)+mMa(n, 1)+m SZI a(n, s)

with m=| K[| L].
Now let o¢=2max.{||P|, mM, m}, and set A(n, k)y=nla(n, k),

then we have

Lemma 3.2. [t follows
(3.14) A(n, k)Lo" 2| K| n¥n!,
for n=22 and kz=0.

Proof. We shall prove (3.14) by induction in n. For n=2,
it is easily seen that (3.14) is valid for all k=0, and assume (3.14)
for some n and all k=0. From (3.13) it follows A(n+1, k)<[K]|
k
a"‘zn!(llPI!n"“+mnM+m‘Zlns), and hence A(n+1, k)<o" !'|K|(n+
s=1
k+1 k+1
DS ws(n+1)-1. Thus we obtain (3.14) for n+1, since 3 n* <

s=1 s=1
(n+1)**!, and this completes the proof. Q.E.D.
By virtue of Lemma 3.2, we have

(3.15) lo ()l e 2IK[Q]"!
and
(3.16) lwa(x)| S ne" M| K[|IL|Q]" 1,

for n=2, if we notice (3.9) and (3.10), and this leads the convergency
of our formal solution when o||Q|||t|<1. Thus we can obtain a null
solution which is analytic in a neighborhood of (1, x)=(0, 0).

Now consider the case when Q is singular. In this case we may

Qs!
( 0 R>,

assume Q is given by
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where Q, is a regular matrix of degree (N—p—r) and R a nilpotent
of degree r, and r is a positive integer less than N—p. Then, for
formal solution ZXii,(x)t", with i, (x)="(v,(x), W (X)) ="(V,(X), A,(X), H,(x)),
we obtain for n=0,

3.17) (n+1)v,, (x) =Pvy(x)+ Kwj(x)+ Sv,(x)
(3.18) 74(x) = Qo)+ T J0P(x)

and

(3.19) H(x)= T Lol (),

with some suitable matrices J; (1Ss<r+1) and L, (1<s=<r).
Set

(3.20) Ay(x) =exeoc

for some (N—p—r)-vector ¢ with |c|=1, and for n=2
x r+1

(3.21) 1) =0l o (T S o)y
0 s=1

then we obtain three sequences {v,(x)}, {4,(x)} and {u,(x)} satisfying
(3.17), (3.18) and (3.19).

Similarly to the previous case, for a small ¢>0 such as ¢[|Qyl| =1,
we have a(n, k), b(n, k) and c(n, k) such that

(3:22) [0()] < aln, k) Qo,r-2)r+ 1r+ers
(3.23) AL)] < b(n, k)| Qo D+ 1+
and

(3.24) |LR(xX)| L e(n, k)| Qo (=D Dtk

where n=2 and k=0, and |x|<e. Moreover, we may set a(l, k)=c(1, k)
=0 and b(1, k)= sup |ex2°||. And repeating the arguments as in the
|x|Se

proof of Lemma 3.2, we can obtain
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(3.25) a(n, k) <o sup [[ex||wm=2nk || Qg || (n=2)(r+ Dk
x| Ze

where « is a positive constant and @ is a positive number which
depends on ¢ and r, and (3.25) yields the convergency of formal
solution if w|Ql""!|f|<1l. Summing up the above arguments, we
can complete the proof of Theorem 3.2.

4. The case of variable coefficients I (necessary condition)

Let us consider the case of variable coefficients. Here, we treat
only the equation of type (N—1, N—1), so after some transform of
dependent variables, if necessary, we may start with the following
equation;

’EN-I 0 617 n

i,
J

<Bj(t, x) K;(, x)>ﬂ+<C(t, x) P(, x)>
Lyt x) wite, )%\ 0 -1
where Bj(t, x) (j=1,...,n) and C(t x) are (N—1)x(N—1) matrices
whose entries are all analytic functions in a neighborhood of
(t, x)=(0, 0), and so are all other coefficients also.

The principal aim of this present section is to establish the fol-
lowing theorem.

Theorem 4.1. It is necessary
4.2) ¥i(0,00=0  (j=1,....n)

in order that the solution of the Cauchy problem for (4.1) is unique.
To prove Theorem 4.1, we must show if ¥J(0,0)#0 for some
Jj, then there exists a null solution of (4.1).
Set ii=*!(v, w), where v denotes the (N —1)-vector given by the
first (N—1) compoents of ii, then (4.1) is written as follows;

(4.3) dv/or= i} B(t, x)0v|dx,;+ i] K;(t, x)ow|ox;
i= Jj=

+ C(t, x)v+ P(t, x)w,

and
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4.4) 0= i L;(t, x)ov[dx;+ i Yi(t, x)ow/[0x;—w.
i=1 j=1

Now let ¥!(0, 0)#0 without loss of generality, then after deviding the
both sides by y!(t,x) and denoting x, and (x,,...,x,) by y and
x' respectively, it suffices to consider

(4.5) owjdy = i2¢f(z, ¥, X)owlox;+alt, y, x')w
P

n N-1
+ 2 ¥ alt, y, x')ov,/ox;,
=1 k=1

in place of (4.4), where a(t, y,x") and ak(1, y, x') (1< j<n, 1k
N—1) are all analytic in a neighborhood of the origin.

We have to show there exists a non-trivial solution (v, w) satisfy-
ing (4.3) and (4.5) such that v(0, y, x)=0 and w(0, y, x")=0. In doing
so, our main tool will be the method of the majorant series.

Let us consider the formal solution of (4.3) and (4.5) and denote
it by

4.6) u(t, y, X')~ X0, tPyax'
and
4.7 w(t, y, x')~Zw,,tPyix’r,

where r is given by multi-index (r,,...,r,). By the initial condition
we have to set vg,,=0 and wg, =0, and after expanding all the
coefficients into power series and using (4.3) and (4.5), we can
determine v,,, and w,, successively if we give w,,, for p#0 and
for all r. Then take w oo=1 and w,,,=0 when (p, r)#(1,0).
Consider now the equations which all the coefficients are replaced
by their majorant series, we call it the majorant equation, in (4.3) and
(4.5), and denoting the formal solution of the majorant equation by

(4'8) V(tv Y, xl)~ZVP‘1rtpyqxlr

and
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4.9) W(t, y, X')~ EW,, 1PyIx",

we can see easily

(4.10) Wi <Vi,  (=1..,N=1)

and

@.11) [Wogrl S W,

where viq, and V{;q, denote the j-th component of v, and V,,

respectively, if we choose V{,q, (j=1..., N=1), Wy, and W o,((p, 1) #(1,0))
non-negative and W,,,21.

Now put z=ogy+x'+pt=0y+x,+:-+x,+pt, where o and p
are positive constants which should be determined later, then for all
the coefficients of (4.3) and (4.5), take a common majorant series of
the form; M{l—z/y}~!, where M and 7y are positive constants which
can be determined only from the coefficients. Thus we consider the
majorant equation of (4.3) and (4.5) of the following form;

m=1 j=

@12) VK =M -z { S S avnjox, + j_il oW ox,

+ S vmew), (k=1....N=1)

m=1

and
4.13) aW/ay=M(1—z/)y—'{Ni: 3 ovmiox;+ 3 wjox,+ W
m=1 j= j=

We seek the solution of (4.12) and (4.13) which depend only on z,
and moreover we assume all the components of V are same, which we
denote by V also. Thus denoting the differentiation with respect to
z by ', we obtain from (4.12) and (4.13)

(4.14)  pV'(@)=yM@y—2)"{(N=1)o+n—1)V'(2)+(c+n—DW'(2)
+HUN=DV(2)+yW(2)},

and
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4.15) W' (2)=yM(y—z) " {(N=1)(e+n-1)V'(2)+(n—1)W'(2)
+yW(z2)}.

It should be noted that the system (4.14) and (4.15) has a unique
analytic solution in a neighbornood of z=0 for any initial data, and

a0
hence we expand it into power series as follows; V(z)= > V,z* and
v=0

W(z)= i W,z’. And then, introducing new parameters yMp and
v=0

yMo instead of p and ¢, and denoting them by p and o also, we

obtain from (4.14) and (4.15) the following equation

(4.16) ypvV,—(N—=D)(c+n—1)wV,—(c+n—1)yW,=p(v—-1)V,_,
+IN-DV,_ +yW,_y,

and

4.17) yovW,—(n—1)vW,—(N—1)(oc+n— 1wV, =yW,_,.

Thus if we take p and o sufficiently large so that

(4.18) {yp—(N—=1)(yo—n+D}yo—n+1)—(N—1)o+n—1)2>0,

we can see easily V,20 and W,>0 for v=1, if we choose ¥V, and
W, non-negative. Moreover, since W, is given by

419 Wi=yl{rp—(N-D@yo—n+Diyo—n+1)—(N=1)e+n-D]™!
x {(N—=1)2(c+n—1)Vo+(No+(N =2)(n—1)W,},

we can take V, and W, which may be dependent of p and o, of
course, with kept the non-negativity of V, and W,, so that W,=1.
This yields the convergency of the formal solutions given by (4.6)
and (4.7) and they give a null solution of (4.1). This completes the
proof of Theorem 4.1.

As an immediate consequence, we have

Corollary 4.1. Let us consider the following equation of type
(N—p, N—p);
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20 (EN_,, 0>a_a= . (Bj(t, x) K, x)>ﬁ+<C(t, x) P, x))ﬁ-
0 0)9% S\Lex) Mt,x))?% \ o  -E,

A necessary condition in order that the solution of the Cauchy prob-

lem for (4.20) is unique is that the matrix iéij(O, 0) is singular
Jj=1

for any unit vector &=(&,,..., &,).

5. The case of variable coefficients II (sufficient condition)

In this section we give a sufficient condition under which the
solution of the Cauchy problem for (4.1) is unique.
Our result can be stated as

Theorem 5.1. Let A,,..., 4, be eigenvalues of the matirx (0y’(0, 0)/
ox,) (j, k=1,...,n). If, for any multi-index o=(«,,...,®,) with com-
ponents of non-genative integer, it holds

(5.1) b L,
2

then the solution of the Cauchy problem for (4.1) is unique.
To prove Theorem 5.1, we prepare two lemmas.

Lemma 5.1. Consider a first order differential operator T;
(52) I= 3% yi(x)0/ox,,
j=1

where yJ(x)=vyi(x,,..., x,) (j=1,...,n) are all analytic functions in
a neighborhood of the origin (which may be valued in complex
number) with satisfying y/(0)=0 for all j and 0yJ(0)/0x,=0 for k>j.
If, for any multi-index o=(ay,..., ®,) with components of non-negative
integer, it holds

(5.3) ji o,0y9(0)/0x, #1,

then the equation

(54 JX)=Tf(x)
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has no solution which is analytic in a neighborhood of origin except

f(x)=0.

Proof. Let f(x) be a solution of (5.4). We expand it into power
series and show D*f(0)=0 for any multi-index «. We shall carry
out the proof by the induction in |«|. Clearly f(0)=0, and now
consider the case of |x|=1. Differentiating both sides of (5.4) in each
x; and observing the equation which the n-vector, ordered the first
order derivatives of f(x) at x=0 lexicographically, satisfies, we can
see easily D*f(0)=0 (Ja|=1 from (5.3).

Now let D=f(0)=0 when |a|<m, then applying D*=D3%:.... Dn
(Jel=m+1) to both sides of (5.4) and using the formula of Leibniz,
we have

n

(55) D)= 3. 3 ady/(0)/3x, D Dfe" DD, £(0)
J= =2J
Hence if we order all the (m+1)-th derivatives of f(x) at origin lexi-
cographically, we can see that any D*f(0) is given as a linear com-
bination of those terms which should be ordered after it. Thus (5.3)
implies D2f(0)=0 when |¢|=m+1, and this completes the proof.
Q.E.D.

Lemma 5.2, Let I'= ﬁyf(x)ii/@xj, where yi(x) (j=1,..., n) are
analytic in a neighborhooglof the origin. There exists a constant
unitary matrix U such that if we introduce the new coordinate variable
y by y=U"1x, then it follows

(5.6) 079(0)/ayx=0  (k>)),

where f=zn:7f(y)6/6yk is the expression of I' with respect to the
=1

new variable y.

Proof. As is well known, we can find a unitary matrix U which
makes U~1(0y/(0)/0x,)U triangular type, and this U is our demanded
one. Q.E.D.
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Now we are in a position to prove Theorem 5.1. Set u="(v, w)
and I'= i Yi(t, x)0/0x;, and expand (4.1) into power series in ¢, then
i=1

we obtain for n=0,1, 2,...,

(5.7) (n+ 10,4, =k§0 B,_,(x, 8/0x)v, + kgo K,_(x, 8/0x)w,

+ Z Cn—k(x)vk+ z Pn—k(x)wk’
k=0 k=0

and
(58) 0= 3 L, .(x, 0/0x)v,+ kz":orn-k(x, 010x)Wy— Wy
k=0 =

comparing the coefficients of ¢ for each n, where B,(x, 0/0x) and
the rest denote the coefficients of the expansion of iBj(t, x)0/0x
j=1

and the rest respectively.
At first, we have

(5.9) w, =Iy(x, 8/0x)w,,

since v,=0, wy=0, and hence v,=0 by (5.7). Observing Lemma
5.2, and noticing (5.1), we can apply Lemma 5.1 to I'y(x, 0/0x) and
obtain w,=0. Repeating this procedure, we can obtain if,=0 succes-
sively. This completes the proof.
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