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In 1941 G. Randers introduced first a special Finsler metric
ds =(g;j(x)dx'dx )2 + b(x)dx’,

in a viewpoint of general relativity [12]*. Since then many physicists
have developed the general relativity based on this metric. (See Refer-
ences of [5]).

From the standpoint of Finsler geometry itself Randers’ metric is
very interesting, because its form is simple and properties of the Finsler
space equipped with this metric must be described by the ones of the
Riemannian space equipped with the metric L(x, dx)=(g;j(x)dx'dx/)!/?
together with the [-form f(x, dx)=b,(x)dx'. For example the curvature
tensors Ry, Py and S, of the Finsler space must be written in
terms of Riemannian tensors, that is, the curvature tensor, b; and its
covariant derivatives with respect to the Riemannian connection. But
we have few papers concerned with the Finsler space in viewpoint of
Finsler geometry [4], [5], [10], [13]. This situation seems to come
from the fact that we must hit at once against insuperable difficulty
of exhausting calculations to obtain the concrete form of Cartan’s
rx,.

The purpose of the present paper is to write the torsion and
curvature tensors of the Randers space (the Finsler space equipped

* Numbers in brackets refer to the references at the end of the paper.
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with Randers’ metric) in terms of Riemannian tensors. The idea to
overcome exhausting calculations is only the equation (1.3), from
which the algebraic equations satisfied by the differences of r¥,
from Christoffel symbols of the Riemannian space are derived easily
and then I'%', are completely found by supplying certain algebraic
equations. The torsion and curvature tensors are found by making use
of those algebraic equations, not of the concrete form of I'*!,.

From a geometrical standpoint it seems to be more important that
a Randers space is C-reducible [10] and we show in the third section
that the notion of C-reducibility proposes interesting special forms of
torsion and curvature tensors of Finsler space. Therefore important
problems arise to study Finsler space with torsion and curvature tensors
of such special forms.

The terminology and notations are referred to the author’s mono-
graph [8], which are a little different from Cartan’s ones.

§1. Common quantities of Finsler spaces F" and *F*

Let M" be an n-dimensional differentiable manifold and F" be a
Finsler space equipped with a fundamental function L(x, y)(yi=x%)
on Mn. If a differential 1-form pB(x, dx)=b(x)dx! is given on M",
then we obtain another Finsler space *F" on M" whose fundamental
function is defined by

(1.1) *L(x, y)=L(x, y)+ B(x, y).

Throughout the paper we assume that *L(x, y) satisfies the ordinary
conditions as fundamental function. If L(x, y) is Riemannian, then
*Fn is called a Randers space. In the first two sections we shall be
concerned with a generalization *F" of a Randers space such that
L(x, y) is a general Finsler metric.

It follows from (1.1) that

(1.2) *Li=Li+bi'
Throughout the paper we shall use the notations

L;=3,L, L;=0,0,L and etc.
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Following E. Cartan we shall denote by [’ the normalized supporting
element yi/L. Then (1.2) gives the relation between the normalized
covariant supporting elements:

(1.2) *L=I+b;.
Next we obtain from (1.2)

(1.3) *L‘J':L

i
If we denote by g;(x,y) the fundamental tensor 0,0,L?/2 and put

(1.4) hij=gi;— 1l

Jj°
then (1.3) is written in the form
(1.3) *hij/*L=hy/L.

In virtue of (1.4) the equation (1.3") is rewritten as the relation between
the fundamental tensors:

(1.3”) *gU=T(gU_III_I)+*Il*I.I’ (‘C=*L/L)'

From (1.3”) the relation between the covariant components of the fun-
damental tensors will be easily derived as follows:

(1.5) *gli =1~ lghi4 plili — 1= 2(bI + 1ibY) ,

where we put p=(Lb?+p)/(*Lt?), b2 =b;b' and bi=g'ib,.

The equation (1.3) is essential to discuss the Finsler space *F",
because it is equivalent to (1.1) and characterizes the fundamental
function *L of *F". Further (1.3) shows that all common quantities to
F" and *F" consist of L;; and their successive derivatives with respect
to x* and y*.

In particular L;j, L;j, L;j, and etc. are components of tensors
common to F" and *F". We have already shown L;=h;/L. We
next treat the common tensor

(1.6) *Lijk=Lljk'
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From the equation

(1.7) 3khij=2Cijk—L_l(lihjk+ljhik),
we obtain
(1.8) Lijk=2L—1Cijk—L_z(hijlk+hjk1i+hkilj)3

where we put C,-jk=5kg,-j/2. Therefore (1.6) is rewritten as the relation
between C;; and *Cj:

(1.6") *Ciju =1Cijx+ (hyymy+ h yom;+ hy;m)[(2L),

where we put

1.9) m;=b;—(B/L)I;.

It is noted that the vector m; is orthogonal to the supporting element.
Finally we deal with another common tensor

(1.10) * Ly jie = Lpijuc
From (1.7), (1.8) and 0;l;=h;;/L we obtain easily
(1.11) Lyiji=20,Cpij/L = 2(1,C i+ LiChjx + 1;Chix + 1,Chi )| L2
— (hpih ji+ hyjh+ hygch; ) L3 + 2(hyl 1+ hy s
+ hyg il + hyldy + h il + byl L) L3
Thus (1.10) will be rewritten as the relation between 8,*C;; and ,Cyi;,

which will be used later on.

§2. Cartan connection of the space *F"

Continuing the last section we shall consider the common quantities

2.1) 8L, =08,L

ij ij s

which are not components of a tensor. We shall be concerned with
Cartan’s connection of F" and *F". The connection parameters of the
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connection are denoted by (F;!,, Ni, C;%,). That is, the h- and v-
covariant derivatives X;;, X;|; of a covariant vector field X; are de-
fined by

X,);=0;X;—N70.X;—X,F;,
Xi|j=ani“‘XrCi'j,
where N;=F,"; (=y*F,";) and C;;=g"*Cy;. Thus we obtain
Lij=0,L;j— L;;,N,— L,;F " — Ly,F ;.
In virtue of L;;, =0 we obtain
2.2) OyL;j=L;j,N\+ L, ;F "+ L, F ).

The equation (2.1) serves the purpose to find the relation between
Cartan connections of F" and *F". For this purpose we put

(2.3) Djik=*Fj‘k—Fjik.

The difference Dj, is obviously a tensor of (1,2)-type. In virtue of
(2.2) the equation (2.1) is written in the tensorial form

2.1) Li;,Do"y+L,;D;"+ LDy, =0.

In order to find the difference D;’,, we have to construct sup-
plementary equations to (2.1'). From (1.2) we obtain

24) 0*L;=0;L;+0;b;.

From L; ;=0 the equation (2.4) is written in the form
*Ly*NY+*L*F [ =L Nj+LF/ +b,;+bF/;,

or, by means of (1.2), (1.3) and (2.3), in the tensorial form

24) LDy ;+(I,+b)D; j=by;.

The difference tensor D;!, is now found from (2.1') and (2.4'),
namely,
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Proposition 1. The Cartan connection of *F" is completely deter-
mined by the equations (2.1') and (2.4') in terms of the one of F".
To prove this, we shall note the following fact:

Lemma. The system of algebraic equations
(2'5) (1) Lerr=Bi’ (2) (lr+br)Ar=B’

has a unique solution (A") for given B and B; such that B;l' =0.
It follows from (1.4) that (1) of (2.5) is written in the form

(2.6) g, A"=LB;+1(1,47).
Contraction of (2.6) by b! gives
b,A"=LBg+(B/L)L A",

where and in the remainder of the paper we shall use the subscript
p to denote the contraction by b'. Then (2) of (2.5) is written as

2.7 L,A"=1"1(B—LBy).
Therefore (2.6) is written as
(2.6") A'=LB'+1(B—LBy)l*,

which is the concrete form of the solution of (2.5).
We are now in a position to show the proof of Proposition 1.
It is obvious that (2.4') is equivalent to the two equations

(2.8) LDy ;+L;. Do+ 2(l,+ b,)D;"; =2E;;,
(2.9) LDy ;—L;Do";=2F;;,

where we put

(2.10) 2E;;=b;;+by; 2F;j=b;;—by;.
On the other hand (2.1') is clearly equivalent to

(2.11) 2L;, D"+ L;;uDo"x + Ljs,Do"s — Ly;,Do" ; =0.
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Contraction of (2.8) by y/ gives
(2.12) L,Dy"o+2(l,+b)Dg"; =2E; .
Similarly we obtain from (2.9) and (2.11) respectively
(2.13) L;Dy"o=2F,
(2.14) LDy ;+L;Do"i+L;;,Do"6=0.
Moreover contraction of (2.12) gives
(2.15) (,+b)Dy"o=E,.

Now we shall first consider (2.13) and (2.15):
Q) LDy o =2F;, (I,+b,)Dy"o=Eq, .
We can apply Lemma to (I) to obtain
(2.16) [.Do"o =1 (Ego—2LFp),
2.17) Doty =2LFi+1 Y(Ego—2LFg)l*,

where we put Fj=g/F;,.
Secondly we add (2.9) and (2.14) to obtain

(2.18) LDy ; =G,
where we put

(2.19) Gij=Fij_Lier0'0/2-
The equation (2.12) is written in the form
(2.12) (l,+b)Dy";=G;,
where we put

(2.20) G;j=E;o—L;Dy"/2.

Substituting from (2.17) in (2.19) we obtain

483
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(2.19) Gij=F;;—LL;;,F5+ L;(Eqo —2LF,)/(2*L).
In virtue of (2.13) G; are written as
(2.20) G;=E;,—Fj,.
Thus we have obtained the system of equations (2.18) and (2.12):
an L,Doy";=G;;,  (L,+b)Dy";=G;.
Applying Lemma to (II) we obtain
(2.21) I,Dy";=1"1(G;—LGy)),
(2.22) Dol ;=LGi+171(G;— LGyl
where we put G;=gG,;.

Finally we deal with (2.11) and (2.8):
(11m) L,Dy=H;p, (l,+b)D;,=H,
where we put
(2.23) H;j=2""(Ljy,Do"i— Li;,Do" j—L;j,Do"s),

Hj=Ej—2"(L;;Do" + LiDo" ).

In virtue of (2.22) H;; and Hj are written in terms of known quan-
tities. Then, applying Lemma to the system of equations (III) we can
find the concrete representations of D;’, and the proof is completed.

§3. On C-reducible Finsler spaces

The remainder of the paper we shall restrict our consideration to
the case where L(x, y) is Riemannian, i.e., the space *F" is a Randers
space. Then (1.6") and (1.3') give

(3.1) *Cipe=*Ni* M +*hy* M+ *h *M

where we put *M;=m;/(2¥L). In a previous paper [10] the author
introduced a notion of C-reducibility of Finsler space:
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Definition. A non-Riemannian Finsler space of dimension n=3
is called C-reducible if the torsion tensor C,; is of the form

(3.2) Cij=hi M+ hyM;+h;M;;

It is remarked that the equation (3.2) holds good for any 2-
dimensional Finsler space and M,.=C{j/(n+l). It then follows from
(3.1) and (1.9) that a Randers space *F" (n=3) is C-reducible, provided
p#0.

In this section we shall treat a general C-reducible Finsler space
F" and consider components of the (v)hv-torsion tensor Py, hv-curvature
tensor Py, v-curvature tensor S,; and another important tensor
Thijlu

First components P,; are equal to C;,. Hence (3.2) gives im-
mediately

(3.3) Phtj=hhle+hleh+hthl 9 (Pi=Mi|0)‘

Secondly components P, are written in the two forms as follows:
Prijie=Cijiin— Chjrji+ Chje Pl — Cijn Pk
=P;jiln— Pujeli + PierCr" j— Pt Ci7 -

Therefore (3.2) or (3.3) gives the following form of P, :

3.4 Phijk=hpiPu—hijPuc+ hyPji— hy Py —hp Pl |,

where we put

L4

Py=(M,Pr[2)hy,— M, ;+ M, P;
=(M,P"[Q)hy—(l;P,+1,P)/L— P,|;+ M,P;,

3.5) Py =—(M,Pr[2)hy— M;,— P;M,

= —(M,P"[2)hy,— (I;P,+ ,P)[L—P,|;— P.M;,

Ply=Py—Pyy=—Pj+Pi;.
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Hence we have
(3.6) Pyli+ P+ [P/ L=M,;.
Thirdly components S,;;, are given by
Shije=CneCi"j— CpjpCi

Hence (3.2) gives immediately

3.7 Shije=huM;;—hy;My~+h;;My,—hy M, |,

where we put M;;=(M,M"[2)h;;+ M;M ;.
Finally we consider the tensor

(3.8) Thijre=LChijle+ Chijli+ Cril j + Cp i + Cily

We were recently conscious of the importance of this tensor [7], [11].
It was proved [10] that there exists a scalar M such that

In virtue of this and M,|;=M;|; we obtain easily

(3.9) T;rijk=LM(hhihjk+hhjhki+hhkhij) .

These simple forms (3.3), (3.4), (3.7) and (3.9) of important tensors
lead us to some interesting problems of Finsler geometry. In fact
these tensors are all equal to zero if the space is Riemannian and
Py;; =Py =0 if the space is locally Minkowskian. Thus some important
problems arose from this situation, for example, to consider a Finsler
space with Sy;; =0 (Brickell’s theorem [2]), or P,;=0 (Landsberg.space
[5]), or T,;=0[7]; those correspond only to the trivial problem of
Riemannian geometry to consider a Riemannian space with vanishing
curvature. So far as the author knows, interesting special forms (#0)
of these tensors don't be known yet except L2Sy;;=S(hhy— hyh;;)
noticed by the author [9]. We now obtain more interesting problems
of Finsler geometry, for example, to consider a Finsler space with the
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(v)hv-torsion tensor P,;; of the special form (3.3). It is noted that the

author gave another C-reducible space in the paper [10]. It is remark-

able that the tensor h;; plays an important role in those special forms.
§4. The v-curvature tensor of a Randers space

We shall return to the consideration of a Randers space *F".
Then (1.6") reduces to

4.1 *Cijp=(h;jm+hym;+hgm[(2L).

In virtue of (1.5) we obtain easily

4.2 *Cjt =(himy+him;+ h;m")/(2*L)
—(L[2*L?)(2m ;m+(b% — B2[L2)h )l

from which we obtain *C;=(n+1)m;/(2*L), or, in virtue of (1.2')
and (1.9)

(4.3) d;log(*g)!/2 =(n+1)(b;—(B/*L)*I)/(2L),

where *g=det*g,;. This equation verifies Deicke's theorem [3] such
that *C;=0 is necessary and sufficient for *F" to be Riemannian,
because f=0 is immediately obtained from vanishing of the right-
hand side of (4.3).

We see from (4.1) and (4.2)

(4.9 *Cijip*Coh e =(m2hyjhy 4 2h mymy + 2hymgm i+ hym jmy
+ h,—kmjmh + hjkmimh + hj],mimk)/(4L*L) )

where we put m?=m'm,.
Now we shall consider the v-curvature tensor *S,;, =*C;,*C,", —
*Ci*Cy'j. It follows from (4.4) that

Proposition 2. The v-curvature tensor *S,., of a Randers space
*F" is of the form

L3 —
(4.5) L *Shijk - /1,,km,»j - h,,jmik + h,-jmhk - hik’n’,j 3
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where we put
(4.6) m;;=(t/4)(m?[2)h;;+mm)).

The form (4.5) of *S,;; has been known from (3.7), but it gives
*Snijr in terms of Riemannian tensors.

In virtue of (1.5) the Ricci tensor *S;, =*gh/*§,,, is of the form
4.7 *L2*Sy = —((n—1)m?[40)*hy— ((n— 3)[4)m;m .

Hence we have

Theorem 1. In a Randers space of dimension n=4 there exists
a scalar H such that the matrix |*L2*S;+H*h,| is of rank less
than two.

It is well known that *S,;, of any two-dimensional Finsler space
vanishes. As to a three-dimensional Finsler space it is shown [9]
that *S,;; is always of the form

(4~8) *Lz*shijk=*s(*hhj*hik_*hhk*hij),

which implies *L2*S;, =*S*h,. If a Finsler space *F" of dimension
more than three is such that *S,;;, is of the form (4.8), we shall call
*Fn S3-like. We consider an S3-like Randers space. It then follows
from (4.8), (4.5) and (1.3’) that

S(hhjhik - hhkhij) = hijmhk + hhkmij - hikmhj - hhjmik >
where we put S=*St2. Contraction by g*/ gives
S(n—2)hy=—(n—3)my— (mhjghj)hik .

Moreover contraction by g'* gives S(n—1)=—2m,;g"/, hence we obtain
(S/2)hy, = —my, from which and the definition of m;; it follows that
m;=0, i.e., =0 from (1.9). Thus

Theorem 2. A Randers space is S3-like if and only if =0, that
is, the space is Riemannian.
The following theorem will be easily verified from (4.5):
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Theorem 3. The v-curvature tensor *S,;, of a Randers space
vanishes if and only if B=0, that is, the space is Riemannian.

It is noticed that Brickell’s theorem [2] can not be directly applied
to a Randers space, because the fundamental function *L(x, y) is not
symmetric.

§5. The tensor T,;;, of a Randers space

We shall treat the tensor T, given by (3.8) of a Randers space
*Fr, In virtue of (1.11), (4.1),(1.2") and (1.9) the equation (1.10) for
*Fn is written in the form

(5. 1) ak*chij = - (h,,injk + h,,jn,-k+ hh,‘n,-j + h,-jn,,k + hjkn,,i + hkin,,j)/(ZLZ)
+(BI2L3)(hyih j + hyjhig + hyhyy)

where we put n;;=Im;+1;m; Therefore we obtain from (4.4) and

(5.1)

(5.2) *Chijle= — (hp*n e+ hy*ng 4+ hy*ng + hy*ny,
+ hj*ny+ hy*ny ;) — (TJAL3*L)(hyh
+ hyjhy + hychiy)

where we put *n;;=*;m;+*I;m; and T=L2b%+p%+2Lp.

Consequently we obtain *T,;; of a Randers space *F" as follows:

Proposition 3. The tensor *T,; of a Randers space is written
in the form

(5.3) *Thije= — (T/AL3)(hyih j + hyjhy+ hyhy;)

where T=L2b%+ 2+ 2L.
We consider *T,;;,,=0. Because T=0 reduces easily B=0, we
obtain

Theorem 4. The tensor *T,; of a Randers space vanishes if and
only if B=0, that is, the space is Riemannian.
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§6. The (v)hv-torsion tensor and hv-curvature tensor of
a Randers space

In virtue of (1.8) the tensor G;; of a Randers space *F" given by
(2.19') is written as

(6.‘) Gl]=FU+(1iFjO+1jFl0)/L+Ghij’

where we put G=(Eg,—2LFy,)/(2L*L). Differentiation of (2.13) and
(2.15) by y/ leads us respectively to

LirajDOrO =2F;;—L;,Dy",

(I,,'l' br)ajDoro =2E10 - Lj,DOro .

The right-hand sides of the above equations are equal to 2G;; and
2G; respectively, hence Lemma and the system of equations (II) of the
second section yield

(6.2) ajDoro =2D0l’j .

We are next concerned with the difference d,Do';— D, which are
nothing but the components of the (v)hv-torsion tensor *Pi,, because
of the definition

*Pi, =3, *Ni—*F i,
and (2.3). Since *I*Pi, =*[*C;i, =0, we obtain from (1.3")
*Pyiw="*LL,(0,Do";j—D;").
It follows from (2.18) that
L0 Do"j=0,Gyj— Ly Do" ; »
which and (2.11) yield
*Py i =*L(0Gpj— Ly Do" ;— Hyj) »

or, we obtain in virtue of (6.2)
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*Pyjx=—(*L/2)(Lyjx,Do"o + Ljt,Do"p+ Ly Do" j+ Ly, Do) -

Consequently, by means of (1.11),(2.13), (2.16), (2.20") and (6.1) we
obtain

Proposition 4. The (v)hv-torsion tensor *P,, of a Randers space

is written in the form

(6.3) *Pyjx=hyipx+ hjpy+ hiwpj

where we put

6.4) 2p;=(*L/L?*)F o+ Ejo/L—F4;— pl;— Gm;,

and G=(Eyo—2LF4)/2QL*L), p=1(2G+ Fpo/*L).

We now find a condition for a Randers space *F" such that the
torsion *P,; vanishes, namely, *F" is a Landsberg space. It follows
easily from (6.3) that *P,; =0 is equivalent to p;=0. We shall first
treat the weaker condition py=p;b'=0. From (6.4) we obtain

(6.5) 4*LL3pﬂ = [B(6L2Fp0 +2L2E50 - ﬂEoo) - Lzszoo]
+2L[(L2+B?+ L2b?)F 5o+ L*E;o— BEyo] .

The term in the first (resp. second) brackets of the right-hand side of
(6.5) is a polynomial of the fourth (resp. third) order with respect to
yi. Therefore py=0 is equivalent to

(6.6) B(6L2F 5o +2L2Ego — BE o) — L2b?Eq o =0,
(6.7) (L2 42+ L2b2)F o + L2Eyo — BEq o =0.

Assuming f#0 (6.6) shows that f must be a factor of E,,, so that
there exists a covariant vector c,(x) such that 2E;;=b,c;+b;c;, Then
(6.6) reduces to L?(6Fp+ fcg)—p?co =0, which yields ¢=0 (c;=0) and
E;;=0. Now (6.6) reduces only to Fz,=0 (Fs;=0). From E;;=0 and
Fg;=0 the equation (6.7) becomes trivial. It is noted that this condition
is equivalent to G =0.

We now return to the condition p;=0, which reduces to F;,=0
(F;;=0) only. As a consequence we have
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Theorem 5. A Randers space *F" is a Landsberg space (*P,;=0)
if and only if the covariant vector field b; is parallel with respect
to the Riemannian connection of the Riemannian space F".

This is a generalization of Theorem 1’ of the paper [5], in which
we referred to isothermal coordinates. Further it is known [10] that
the Randers space stated in Theorem 5 is Berwald’s affinely-connected
space.

If a Randers space *F" is a Landsberg space (Landsberg-Randers
space), then we obtain D;/, =0 from Proposition 1, so that *F;, are
nothing but Christoffel symbols constructed from g;(x). Then the
h-curvature tensor *R,;, of *F" is of the form

*Rhijk =Rhijk + *CltirROrjk s

where R,;, are components of the Riemannian curvature tensor. The
Ricci identities lead us to

bujie=bijw;= = bRy’ jp =Ry =0.
Paying attention to this we obtain in virtue of (1.3”) and (4.1)
(6.8) *Rhijk =TRy; i+ (mhROijk - miROhjk)/(ZL) .

We shall consider a condition for a Landsberg-Randers space *F”"
to be of scalar curvature in Berwald's sense [1]. Since the condition
is *Ry;or=*R*L2*h;, we obtain from (6.8) and (1.3')

(6.9) R0i0k=*R*L2hik'

Because Ry;o; is a polynomial of the second order with respect to yJ
and *L=L+f, it is easily seen that *R is not a constant, provided
B#0. If we put RL?=*R*L? and differentiate (6.9) by yJ, then we
obtain

Rji0k+R0ijk =L2hikajR +2RLhiklj_ RL(lihjk+ lkhjl') .

Subtraction from this the equation obtained by interchanging indices
J and k yields
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(6.10) 3R0ijk=hiij_hijT;u

where we put T;=L20;R+3RLIl;. Differentiating (6.10) by )" and
making use of Ry;;+R;;,=0 we obtain R=constant, so that F" is of
constant curvature R. Consequently we have

Theorem 6. A Landsberg-Randers space is of scalar curvature
*R if and only if F" is of constant curvature R, where *R=RL?[*L2,
The space is of constant curvature if and only if =0 and F" is of
constant curvature.

We return to the consideration of a general Randers space and
find components of the hv-curvature tensor *P,;. It is well known
that these are derived from *P,, as

*Phiji =ah*Pijk_ai*Phjk+*Phjr*cirk_*Pijr*chrk .
Thus, from (6.3) and (4.2), we have

Proposition 6. The hv-curvature tensor *P,; of a Randers space
*F" is written in the form

(6.11) *Phijk=hthik_hijPhk+hhkPji_hikPjh
(1) (1) (2) (2)
_hjkPhi,
(3)

where we put
(Il))ij=pﬂhij/(4*L)_(lipj+ljpi)/L_aipj+mipj/(2*L)’
(6.12) (lz))ij = “Pphij/("'*L)_(’in"‘ [jpi)/L_aipj_pimj/(Z*L) s

P,,=P,,—P,=—P,,+P,,.
R R R A AR T

§7. The (v)h-torsion tensor and h-curvature tensor of a
Randers space.

We shall consider the (v)h-curvature tensor *R¥, defined by

*RYy =0, *N'—0;*Ni —*N30,*N' + *N50,* N ,



494 Makoto Matsumoto

which is the contracted tensor *R,i;, of the h-curvature tensor *R,i,.
Paying attention to (2.3) and P%, =0 we obtain

(7.1 *Rijk=R0ijk+D0ij|k_DOiklj_DOrkarDOij"l'DO’jarDOik,
where R,ij, is the contracted tensor of the curvature tensor R,;, of

F". In virtue of (1.3”) the covariant components *R,; are written
in the form

(7.2) *thk =TRopj+ *LLhi(DOijlk - DOikIj - DOrkarDOij
+ Dy’ ;0,Do')).

In order to discuss a condition for *F" to be of scalar curvature
or of constant curvature in Berwald’s sense [1] it is sufficient to find
moreover contracted tensor *R,,,. From (2.18) we obtain

Lhi(DOijlk - DOik|j)y'7 =Gh0|k - quo ,
or from (6.1)
=2Fh0|k_Fhk]0 "(Ith0|o + ]th0|o)/L“ Glohhk .
In virtue of Bianchi identities we obtain the symmetric form as follows:
(7.3) Lhi(DOijlk_DOiklj)yj=Fh0|k+Fk0|h_(Ith0|0
+1Fho10)/L—Gohy -
Next it follows from (2.18) that
Lhi(DOrkarDOij - DOrjérDOik)yj = Do'kJ’jarGhj — Dy 00,Gy -
In virtue of (2.22) and (6.1) we have
Dy",y70,G, ;= — LG?hy + FyoFo/L— LF,,F, — F,o F5l,1/L
—2G(l,Fyo+ I,F o) — (L F + LF)F,, .

From (2.17) we obtain
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D" 08,Gy=2Lhy, F50,G +4F o Fo|L—2G(1,F 0 + 1, Fyo)
—2(,F, 4+ LF})F,, .
Therefore we obtain
(7.4)  Ly(Do"d,Do'j— Do* ;8,Do' ) yi = — L(G* +2F50,G)hy,
—F,oFyll,/L— LFF,—3F,oFyo/L+(,Fp+ LLF)Fy .
Consequently substitution from (7.3) and (7.4) in (7.2) yields

Proposition 6. The components *R,,; of the contracted (v)h-torsion
tensor or the contracted h-curvature tensor of a Randers space *F"
are written in the form

(1.5)  *Rip;=TRoi0;+*LLG hyj+ L2K;— LUK jo +1,Ki0) + Koo il
where Rg;o; is the contracted curvature tensor of F" and we put
(7.6) G'=G2+2F}0,G—Go/L,

1.7) Ki;=L(Fio;+ Fjo i+ LF,;F5+3F;oF ;o /L)[*L?.

Now, according to the definition of Berwald [1], the space *F"
is of scalar curvature *R if the equation *R;,;=*R*L2*h;; holds good.
If the scalar *R is constant, then *F" is called to be of constant
curvature *R. 1In virtue of (1.3') the equation is written as *R;,;=
*R*L3h;;/L.

Lemma. If the Riemannian space F" is such that there exists
a scalar R satisfying the equation Ry;o;=RL?h;;, then F" is of constant
curvature R.

Proof. Differentiating the given equation by y* and y* and referring
to the identities satisfied by R,;; we obtain

3Rhl'kj = 3R(hhkhij - hhjhik) + thi(lkal’R - ljakR)
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+ h;(L20,0,R +2L1,0,R+ L1,0,R+ R1,1,)
—hy(L?8,0,R+2L1,0;R+L1;0,R+RI,1)).
Thus the identity Ry ;+ Ryy;=0 is written in the form
2Ly (10 ;R — 1,0, R) + hy;Ry+ by iRy — hyRyyj— hyRy; =0,

where we put R;;=L23,0;R+L(l,0;R+1;0,R)—2RIl;. Contraction by
g" gives immediately [,d;R—1;0,R=0, so that d;R=0. Therefore the
proof is completed.

From Lemma we can show immediately

Theorem 7. Assume that the covariant vector b; satisfies the
equation K;;=Kg;;. Then the Randers space *F" is of scalar curvature
*R if and only if the Riemannian space F" is of constant curvature
R, and *R=(*LL?R+*LL2G’' +L3K)[*L3.

It is rather complicated to discuss a condition for *F" to be of
scalar curvature or even of constant curvature [6]. If *F" is of con-
stant curvature *R, then (7.5) is written in the form

L3AP + L2 A4 = (B +LB®)(L2g;;~yy,) s

where A{) and B® are polynomials of the order r with respect to y!
defined by

(7.8) A4 =L2K§§) -y K@ _yjK(i%) +FoF5yy;+(L2+3B%) R0

(1.9) AP =L*K{P—L2y;KH — L2y ;K +(BL*B+B*)Roio

(7.10) Kgf) =L2FriF'}+3Fion0, K(i})=Fi0|j+Fj0|i’
(7.11) B(5) =*R(5L*B+10L2p3 + p5)— L2G® — G,
(7.12) B® =*R(L*+10L2B% +584)— G -G,

G® = —3E;oFpo+2L*F,;F5—Eq¢ 0/2+ B3E,o F}
+F,0b"+F,oF5),

G =(3/4)(E¢0)? +3L2(Fpo)*>+ L*(BE,oF5 + Fy0)0b"
+F,oF5)+BL*F,5F5 — Eq010/2) -

(7.13)
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It is observed that K{? and G® are also polynomials of the order r
with respect to y*. Therefore we obtain

LZAE?) =B(4)(ngij—}’in) ’
(7.14)

L2A£;’?’ =B(5)(ngij_ yiyj)-

Hence it is obvious that L? must be a factor of B(4) and B,
This reduces to

(7.15) *Rp*—(3/4)(E¢o)*+BEoo|0/2=L*D?,
(7.16) 4*Rp3 —B3E,oFiy+ Fy90b"+ F,0F5) + Eqo|0/2
+3E00Fﬂ0 =L2D(1) N

where D™ is a polynomial of the order r with respect to y!. Then
(7.14) reduces to
A(i‘})=3(2)(ngij“YiJ’j)’

(7.17)
A%f) =B(3)(ngu—)’iy1) ,

where B™ is a polynomial of the order r with respect to y’. Sum-
marizing the above we obtain

Theorem 8. A Randers space *F" is of constant curvature *R
if and only if (1.15), (7.16) and (7.17) are satisfied.

The condition K;;=Kg;; of Theorem 7 is imposed on the skew-
symmetric parts of b;;. We shall now consider the condition imposed
on the symmetric parts of b;;; E;;=Eg,;, that is, b; is supposed to be
conformally Killing. It then follows from (7.15) easily that

Theorem 9. Assume that the covariant vector b; is conformally
Killing. If the Randers space *F" is of constant curvature, the cur-
vature vanishes.
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