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§ 0. Introduction

The purpose of this paper is to determine the integral cohomology
ring of EVII in E, Cartan’s notation which is a compact hermitian
symmetric space. This completes the determination of integral co-
homology rings of all compact hermitian symmetric spaces combined
with the results of [7,§16] and [12].

Throughout this paper the symbols F,, E;, E; denote compact sim-
ply connected forms of these exceptional Lie groups and H*(X)
denotes the integral cohomology ring of X. We use the same nota-
tions and terminologies as in [12] without specific reference.

Then our main results are stated as follows:
Theorem A.
H* (EVII) = Z[u, v, w]/(sm, S14y 513)
where ue H*, ve H", we H"® and
sw=v"—2wu, s,=—2wv+18wu’—6vu’+u"

s1s=w? + 20wvut — 18wu’ + 2vu®®,

Corollary B.
o+ (E7/Ee) = Z{l, Z10, %18y Zs7y 245y 255} + 7, {223}

where 1€ H®, z;e H' and non-trivial relations among them are
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210 = 218w =25 And ==y, (mod 2).

Furthermore n* (v) =2z, and n*(w) =z for the natural projection
7[: E7/Ea__)EVII.

Let T be a maximal torus of E;. Then we have a fibering
E/1"—E,/T—>EVII

where T’ is a maximal torus of E;. General description of the co-
homology ring H*(G/T) is given in [11] for compact simply con-
nected simple Lie group G and its maximal torus 7. In particular
we have determined the cohomology ring H* (E;/T’) explicitly [12].
On the other hand it is known by Bott [8] that H*(EVII) has no
torsion. Thus analogous arguments to [12] can be applied to the
above fibering. In the course of computing the ring structure of
H*(EVII), we obtain Corollary B as a by-product.

This paper is organized as follows. In §1 we choose a basis of
H*(BT) and discuss the action of the Weyl group on it. The ra-
tional cohomology ring of EVII is determined in §2. §3 is a prep-
aration for § 4 in which we determine H*(E;/T) for dimension <18,
§ 5 is devoted to prove the main results.

The author wishes to thank Professor H. Toda for his advice
and helpful criticism during the preparation of this work.

§1. The Weyl group of E;

Let T be a maximal torus of E;. According to Bourbaki [9],
the Schldfli diagram of E; is

a; Qs y s [27) ay
O O O O @) @)

O

224

where a;’s are the simple roots of E;. The corresponding fundamental
weights @, ’s may be identified with generators of the polynomial ring
H*(BT), w;s H*(BT)=H*(E,/T), as explained in [7]. Let R;
denote the reflection to the hyperplane «a;=0.

Now we put
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(1.1 t; =Wy,

te=R; (t;) = 0 — 0,

ts =R, (25) = 05 — g,

t,=R;(8) = 0y — s,

ty=R,(t) = 0+ 03— 0,

t; =Ry (2;) = 01+ 0 — s,

t=Ri() = — o1+ 0,

and zx=w,=%c¢, for ac;=t+t+-+.

Then x and ¢, 1<<i<<7, span H®(E,/T) since o; are integral linear
combinations of x and ¢’s. Thus

1.2) H*(BT) =Z[z, t,, -, t]/ Bz —c1).

Denote by U the centralizer of the one dimensional torus T'!
defined by «;(¢) =0(1<<;<<6,¢t=T). Then U is a closed connected
subgroup of maximal rank and of local type E,-T' with E,nT'=2,
(the center of E;). The quotient manifold

EVII=E,/U

is a compact irreducible hermitian symmetric space of dimension 54[10].
The Weyl groups O(E;) and & (U) are generated by R, R,, -+,

R; and R, R,, -+, R, respectively. From the definition we have the

following table of the action of R;’s for the generators x and Z;s.

(1.3) R, R, R, R, R, R, R,
| L X —ly— 1t
2 12} x—1l—1; 12
3 x—ili—1, t, U
I ts s
¢ ty L
g ts &
t s
x —xt bttt
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where the blanks indicate the trivial action.

Putting
u=t;, X=x—u and t;=t;—%u for 1=1,2,---,6

b

we have
H*(BT;Q)=Q[u, %, t1, -, t5] /(3% —&,) for &,=tv,+-+1,

and the following table:

1.4) R, R, R, R, R, R,
Ty | T2 X~ Ta—Ts
T2 | T1 X—T1i—7Ts T3
Ts X—T1—7T2 T2 T4
Ty Ty T
Ts Ty To
Ts ‘ Ts
X =X+ T+ T+ T
u

Since E;NT=T’ is a maximal torus of E;, we have a commut-

ative diagram of natural maps

Ee E7

E/T —~U/T-> E/T

R

BT’ -5 BT —— BT

where the columns are fiberings. Here we remark that H?(E,/T)
is identified with H*(BT) by the isomorphism ¢*, since E; is 2-con-
nected. Thus we have generators ¢,=¢,* (%), t.=1¢0% (%), -+, =6" (),
n=6*(x) e H*(E,/T) with a relation ¢,=37,.

We shall consider the relation between the elements just defined
and the elements ¢/, %, -+, 4", 2" =7, of H*(E;/T’) which stand for
the generators #,, t,, -+, ¢, x=7; in [12,§4]. As to the cohomology
of the fibering

(1.5) U/T—>E,/T—>EVII
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we know that all three cohomologies are torsion free and have vanish-
ing odd dimensional part (see Bott [8]). Therefore from the Serre’s
exact sequence of (1.5) we have a short exact sequence

0— H*(EVII) -2 H*(E,/T) —s H*(U/T) —>0.

By 14.2 of [7], Im p* is spanned by w, and ¢*(w;) may be identified
with the fundamental weights w,” of E; for i=1,2,---,6. Since the
elements ¢, ¢/, -+, t,’, ' € H*(BT’) are defined by the equalities given
by replacing #;, w; with ¢, o,/ and putting #=w0,=0 in (1.1), we
have

(1.6) gri* (¢) =t (1<i<6),g**(&;) =0 and G** (1) =71/
or equivalently

1.6)’ g*(t) =t/ (1<i<6),9* (&) =0 and g*(x) =x'.

§ 2. The rational cohomology ring of EVII

First recall the definition of invariant forms of E, given in [12].
Put

x/ =2t/ —x" for i=1,2,..- 6.
Then the set
S ={x/+x,/ (<)), " —x/, —x' —x/}
is invariant under the action of @(E;). Thus we have invariant forms

L'= Y y"e H™(BT'; Q)*"»

VES’

and
2.1 H*(BT’; Q)w("’e) =Q[L, LI, I/, I, 1, 11/2] .

The table (1.4) shows that the action of @(U) on g, 71, 73, -+, Ts
is the same as that of @(E,) on z’,¢t/, t,, .-+, t;’. Therefore if we

represent
In, :¢n (x/: tl” tZ” Tty te’) € H2n (BT,; Q)Q(EO)’
then

2.2) H*(BT; Q)" =Q[u, Jy, Js, Jo, Js, i, J1a]
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Where Jn=¢" (X, T1y Ty *"0y fe) EHZ'IL (BT; Q) 0((/).
Next put

xi=2t;—x for 1=1,2,---,7 and xz=uzx.

Then it follows from the table (1.3) that the set

S={zi+zx;, —xi—x,<J)}
is invariant under the action of @(E;). Thus we have invariant forms

L= X y" e H"(BT; Q)"

yES
Consider now the following
To=1"—2wu,

TI.= — 2wv + 18wu’® — 6vu’ + u

and
T =’ + 20wvut — 18wu’ + 2vu®
where
u=t,
T 38140‘]”:_? “
and
1 g 1. 52984,

W 741447 T 81 19683

Then we have the following

Lemma 2.1.

(i) H* (BT, Q)o("}’) ZQ[Iz, Is, I, L, 1y, Iy, Ixa] .
(i) H*(EVIIL; Q) =Q[u, v, w]/ (T, T, Tis) .
Proof. Put

E¢=O'i(t1, tz, ey tg) and R=Q[u, El, Ez, "',Ee].

R is a subalgebra of H*(BT; Q) containing ¢;, x=¢,/3, c;=0:(ty, T3,
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1), A=x—u, di=0y(xy, Ta, -+, x5) and H*(BT; Q)°*», H*(BT;
Q)°™, Denote by

a; C R (résp. bi cH* (BT’ Q) 0(”))

the ideal of R(resp. of H*(BT; Q)°") generated by I;s for j<i,
je{2,6,8,10,12, 14, 18}.

We assume the following sublemmas (2.3), (2.4) which will be
proved in the last half of this section.

In H*(BT; Q)Y =Q[u, Js, Js, Js, Js, Js, J1z] we have

2.3) I;=2.J;+decomposables for 1=2,6,8,12,

(2. 4) L,=2".3%.5.7-T,, mod by,
L,=2".3.7-11.29-T,, mod &,

and

1185222‘33'1229' fle mOd bu.

By (2.3) and (2.4) we see that, for i=2,6,8,10,12, 14, 18, I,
is not a polynomial of I,’s for j<(i. Since H*(BT;Q)°**=H*(BE;
Q) =Q[xy, Tiz, Tisy Tooy Loty Tosy Lo, T:EH? (see [6]), (i) of Lemma
2.1 is proved.

The rational cohomology spectral sequence associated with the
fibering

2.5) EVII—> BU—BE,

collapses [4]. By (2.2) and (2.3), H*(BT; Q)’V’=Ql[u, L, v, I;, I,
w, I;;]. Then we have

H*(EVII; Q) =H*(BU; Q)/(H*(BE;; Q))
=H*(BT; Q)" /(H"(BT; Q)°"")

ZQ[u’ 'U, w]/(jm, Tu, jls)
using (2.4). Q.E.D.

Proof of (2.3). By (1.6)’ we have

9*(x) =2/ (1=<i=<6), ¢*(z))=—z' and ¢*(zs) =7".
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Then
P*S={z/ 4z, 2" —x/, —x'—x/}U{—x/ —x,, —2'+x/, 2 +z}
=S5"u (=95).

Hence ¢*(Z,) =2-1,” for even x.
Again by (1.6)’ we have

9*(zd) =t/ (1=<i=<6), ¢*(u)=0 and ¢*(y) =z
Then ¢*(J,) =1, and ¢g* induces an epimorphism
H*(BT; Q)" —H* (BT"; Q) ¥
whose kernel coincides with the ideal («). Thus we have proved
(2.6) I,=2J, mod(x) for even n.
(For odd 7, I,=0 by the definition.) (2.2) and (2.6) imply (2.3).
Q.E.D.

Proof of (2.4). Let us calculate I, in the following way. We
use the notations:

Sp=x"+ 2"+ -+ x" and  di=0:(x1, x3, 1, L)
s, is written as a polynomial on d;’s by use of Newton’s formula
2.7 Sa= 192@ (=D lsuidi+ (=D 'n-d, (d.=0 for n>8).
Note that
5=8 and d;,=s5=0
since

8 7
di=Y ;=2 t;—6x=2(c;—3x) =0.
=1 i=1

From Y.1./nl=3lic; (€% +e7>20) =3 [(3le”)  + (Die )2 — Y

(@ +e79], it follows

L,=(16-2Ys,+ Y <7?>sisn_, for even .
0<i<n \ 2

Then long but straightforward calculations yield the following data
and result:
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n s, mod a,(n<9) s, mod (di, a,)
1 0 0
2 —2d, 0
3 3d; 3d,
4 —4d, —4d,
5 5ds 5ds
6 3(—2d;+dy) B4l
7 7 (d,—ddy) —7dds
8 | 4(—2ds+2dids+drl) 7(dsds+ 3 d4)
9 3(—3did,+ 4 d)
10 5(ds’ — 1 didy’)
11 11(dids’ + 1 didy)
12 — Y didds—5d°+ %5 di*
13 B(Ldids+ Y dsd —5d.ds")
14 7(—2dd, +5 dids’ + % d.’dy’)
15 5ds’ —45dsd.dy —% d'ds + 2 di
18 B didy+ % diid —1 didds® ) did + Y di

(2.88)  I,=—24d,,
=36 8ds+ds?) mod a,
L,=80(24d; —3dsd, +2d2) mod as,
I,=2!.3%.5-7d mod (ds, a),

11252.3.5<—108d5d4d5+64d43—% d;) mod (ds, @),

L—=2.7-11-29 <2d:d4 + % dids? —d,2d32> mod (ds, as)
and
I,—=2-3-1229 ( —9d,idy+ 8dyd: — % dod dd +4d, st + 595 s )

mod (d7, Clg) .
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Remark. The reason for introducing the ‘elements x;’s is to
simplify the above calculation. The reader should notice that the
simpler form of the invariant set S one get, the much easier becomes
the calculation,

Let e;=0;(xy, x3, -+, z;). Then

2.9 di=ei+e;_1x.
Since x;=2t;—x for i=1,2,---,7, we have

(2. 10) ea= 33 (—D)mi2! (7“,>c,xn-‘ (=0t tay -, £1)).

n—i

So d,=2", mod (x). Now we assume the following (2.11) which
will be proved at the end of this section.

(2.11) () In R/(x,d:, a)) we have the following relations

(@ a=z=0,
(b) =0,

(© c=—%c,
@ =0,

(e) =3 cses,
(&) u'=iclutcut —c’+ o',

(i) R/(x, dr, a)) has a basis{cs*c/u*, ci*cicu’; i, j=0, 6=k
>0}.

Then we have
2.12) 1,=2%.32.5.7c mod (x,d; a)
and
I,= —2".3".5(27c' + 32c;5¢cic;) mod (x, ds, as).
Similarly we assume the following
(2.13) (i) In R/(x,d;, ai) we have the relations
(@) ¢'=0,

() &'= —g—i C5C4Cse
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(i) R/(x,dy, an) has a basis {c'u!, cici’*t?, cses'el?, cecics’d?;
3>i=>0,6=>;=0}.

Then we have
(2.14) I,=2".3.7-11-29¢,," mod (z, ds, aw)
and
L;=2%.7.1229c,c;' mod (z, ds, @) .
Next we need the following result.
(2.15) Jy= —2".3-5(F;— i+ cax’ —C2° +2%°)
and
Jo=21.3%.7(3CsCy — CsCu— 2CsC2’ — 6TsCax + T% + 2C4C5°%

+ 172482y — sy’ — 2258:"" + 15Cey* — 162,80°

+ 28, — 385G,y + 1722, + 33 ° — 215,%y°

—35¢5%° + 69,y —70%"),
where ¢;=0;(ty, T2, -+, Ts). Lo show this, by (2.2), we must prove
that I’ (resp. I,’) has the same expression as in (2.15) replacing
¢, x with ¢/, 2’ (c/ =0:(t’, ts’, -+, t’)). Following the method as in

[12,§ 5], we calculate I, (resp. I’) once more without taking modulo.
We exhibit the data and the result:

1= 0,
So= — 2d2,,
Ss = Sdsla

si=—4d/ + 24",

s3=5bdy’ —5dyd,’,

ss= —6dy’ +6d,/d,’ +3dy"* —2d,",

si=—Tdy'dy’ —7d/dy’ +7dydy"”,

ss=8dy’dy’ +8dy’dy +4d/* —8d,/dy’* —8dy*dy’ + 2d,",

sy= —9dy’dy —9dy’dy +9dy’dy’* +18d/dy’'dy’ + 3dy”’ —9dy’'dy”,
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I/ =—2.3.5(dy +dyx”
and
Iy =22.3"-7(3dy’dy —dy’d/ —2dy'dy’" + 2dy'dy’ x'° + 2d/dy’ '
—2dydy x"" —5dy’ x’" +5dy’dy ' — 2dy x”°

where d;=0;(x/, x’, -+, x’).
Then (2.15) follows by rewriting 4,/ in terms of ¢/. (For
details see [12].)

Since u=t; and (A+2a) Qi c)=]lioiA—Lu+t)=>1.(1

—Lu)" %, we have

n n—-1 . .
(2. 16) Eot 2wz, =3 <—l> (7 ’,)etu"—*.
3 i= 3 n—i

=l

Using (2.11) we have easily

52519? #* mod (x,a,)
113
Ta=cCy— o7 #* mod (z,a),
Ti=c(—2cu+ 239 u* mod (z,a),
55565—%C4u+263u2—% % mod (z,as)
and

_ 4 13, 40 ,, 1093 ,

=Cy— — 4+ Zclt—= g+ u mod (z, as).
CoE G T g BTy A T T a9 (. a5)

Put Js=— (1/27-3-5)J; and J,= (1/2"-3%-7)J,.
From (2.15) we deduce

1 + 35
2.17 =—Js+ = u°
( ) v 5 s 81u
=—% cs——é—c,u+%cau2 mod (z, as)

and
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w=—1—jg+lvu‘—752984 u’
6 81 19683
1 1 1
= — % CsCy — 1_6 Css —_ —é—' C5Cstt + E 04[33”2 ‘—% Cszus"l“ E- Caue

mod (z,ds, as).

(cf. (5.1))
Since I, I, and I3 belong to H*(BT;Q)°Y =Q[u, Jo, Js, Jo, Js,

Jo, Juu] =Qu, L, v, I, Iy, w, I;], we may put
I,,=2".3.5-7T(As0* + ewu + lyve® + Au'®) mod by(=by),
1,=2%.3.7-11-29 (ttywv + tywrs® + o’ + pu'*)  mod by,

and
[;=2%.7.1229 (y,w’ + yswvu' + yywu’ + yyvu® + yu'®) mod by

for some 1 4;, v.€Q. We consider the upper relation in R/(x, ds,
as). By (2.12) we have

(2.18) =0+ lowu + how’ + L mod (z,dy, as).

Using (2.17) and (2.11), (i), we have

1 1 2 1 1
WZE 1052— — Cs5CylU + E C5Cau2 — '§ C4C3u3+ Z ngu“,
1 1 1 1
W= — — cscatt + 3 CsCatt: — 5 cicatt® + N citul,
1 1 1 1 1 1
vul= 16 clu+ > CsCath? — 5 cicut® + 0 ciltut 4+ 5 csu® — 3 cqub,

1 9
u'= 3 cs*u + csesu’ — cicqtt® + 3 cltut + cyu® — c b,

Using (2.11), (ii), as the solution of (2.18) we obtain
ls=4,2,=—8 and 2,=1,=0.
Thus
I,=2".3".5.7(4v* —8wu) mod by,

=2".32.5.7],.
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The proof for the remaining two I, I}s is a similar direct calcula-
tion using (2.13) and (2.14), so we omit it.

Finally it remains to prove (2.11) and (2.13). But the proof
is quite similar to that of (5.15) in [12]. So we only indicate the
various steps of the proof of (2.11).

First we show that R=Q[u, ¢y, ¢, -+, ¢s] is naturally isomorphic

to Qlu,ci, ¢ ooy 1]/ Cicocr_i(—u)*). Then

R/(x) =Q[u,c -+, 1] /(cr—corr+ -+ —coti® — ")
Since d;=2"¢; mod (x), we have

R/(z,d?) =Qu,coy 6]/ (—cott+ -+ —cot® — ")

It is easy to deduce from (2.8) that the relations (b), (c) and (e)
are derived from the relations I,=0, I;=0 and I;=0 respectively.
Thus

R/ (x, dq, as) =Qu, s, ¢4, ¢s, cs]/ (Bcs+ ¢, —2¢ + Bcses,
—cgtt+ - et —u')
=Q[u, ¢, €1, 5]/ (—2¢2 + 3eses, § cs’u+ csu’
—ci* +eut —u’),
and (2.11) follows. The proof of (2.13) is done similarly.
Consequently (2.4) and Lemma 2.1 are established.
§ 3. The mod p cohomology ring of EVII
The object of this section is to prove the following

Proposition 3.1. H*(EVII) is multiplicatively generated by
some three elements ue H?, 3 H" and we H".

Remark. In the light of Lemma 2.1, (ii), this proposition as-
serts that no divisibility occurs in H*(EVII).

Proof. It is sufficient to prove the mod p case of the proposi-
tion for each prime p.
For p=5 the proof is easy. For, since U has no p-torsion [5],
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the spectral sequence mod p associated with the fibering (2.5) col-
lapses [4]; from this the mod p version of Lemma 2.1, (ii) is valid
and the result follows.

For p=3 we start from discussing the cohomology mod 3 of E;/E,.
Consider the mod 3 cohomology spectral sequence (E,”?) associated
with the fibering

3. 1) E,/F.—>E;/F,—E,/E,.

We now put F=E;/F,, E=E,/F, and B=E,;/E,. The mod 3 cohomology
rings of F and E are given by Araki [2], [1]:

3.2) H*(F; Zy) =A(ys, y11),
H*(E; Z;) = A (x19, Xa1, Z35)

where y;e H! and x;€ H!. Hence E,»?=0 for ¢+0, 9, 17, 26 and
r=>2. Since H'(E; Z,) =0 for 0<i<19, we see that 1X)y, and 1Qy,;
are transgressive. Thus we obtain

(3-3) H*(B; Z)) =Z{1, zy, 215} for dim. <18,
In total degree 19 there are two possibilities:
pos.(a): 25, =0. 2,&Qy, survives to H®(E; Z,).

pos.(b): 230. i (210&@ys) =25&1 and there exists an
element 2,;®1 which survives to HY(E; Zy).

But pos.(b) does not occur. In fact, if pos.(b) occurs, then

d (219®y9) = —Zmzm@l

which is non-zero since H*®(E; Z;) =0. Remarking that B is an ori-
entable manifold of dimension 55, we have, by Poincaré duality,

H*(B; Z,) =H"(B; Z;) 0

whose generator is denoted by zj,. It is easy to see that 2,1 is a
surviving cycle, which contradicts to H*(E; Z,) =0.

Obviously H*(B; Z;) =0 for 18<(i<(27. Summarizing these we
have

(3. 4) H* (B; Za) =A (Zlo, zlg) for dim. 326.

Again in total degree 27 there are two possibilities:
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pos.(c): 21zis=0. 2uQys survives to HY(E; Z,).
pos.(d): zizis70.  di(215Q¥s) =21215Q1 and there exists an
element 2,;1 which survives to H*(E; Z;).

In §5 we will prove that pos.(d) is impossible.
Thus we have determined H*(E;/E;; Z;) for dim. <27 (with
some ambiguity). Then Poincaré duality implies

(3.5). If pos.(c) occurs, then
H*(Ei/Es; Z3) = Z3{1, 21, 218, 231, 25, Zss}
with relations zy2s==z2wen==2s. Lf pos.(d) occurs, then
H* (E,/Es; Zy) = A (2, 215, 201) .

Using (3.5) we shall compute H* (EVII; Z;) as follows. Apply
the Gysin exact sequence for the circle bundle

(3.6) T')Z,— E,/E,——EVII.

Since H*(EVII) has no torsion and H®(EVII) =0 for odd i, we

have exact sequences

[ pos.(c) H**(EVII; Z)) —5H*(EVII; Z;) —> Z:{1, 2y, 215 —0,
pos.(d) H**(EVII; Z)) = H* (EVII; Zy) —> A (210, 215) —>0.

Thus in either case the desired result follows.
For p=2 the following result is known by Araki [2]:

(3~ 7) H* (E7/E6; Zz) =4 (zw, 218y z27) .

So the same proof as in the case p=3 holds and this completes the
proof of Proposition 3.1. Q.E.D.

Remark. The generator # of Proposition 3.1 can be chosen
such that p*(«) =¢;; this fact was essentially proved in §1 (see also
the first paragraph of §4).

§ 4. The integral cohomology ring of E;/T

Since H*(EVII) is torsion free and has vanishing odd dimen-
sional part, the following sequence
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H*(U/T) ——H*(E,/T) << H*(EVII)
is exact as rings [12, § 1], that is,
(4.1) p* is injective, i* is surjective and Keri*= (p*H* (EVII)).

In the next section we will settle our ring generators (u,) ¥, @
of H*(EVII). By (4.1) it suffices to choose the elements (z=p*(%),)
T=p* (@), w=p* (@) of H*(E;/T) such that

4.2 Ker*= (u, 7, @).

In order to investigate Keri* we need the following

Theorem 4.1.

H*(E:/T) =Z[ty, -, t1, 71, Y5, Yo T5 751/ (015 025 035 045 055 08 O, 0s)
for dim, <18 where t,, -+, e H?, 1,€ H* and

1=c—3711, P=c—4r", 0:=c—27s,

pi=ci+27 =371, ps=cs—ciit eyt —21,° — 275,

05 =26+ 7" + 715" — 374" — 21571,

08 = 2171 — 9oy’ —71° —6757:° + 167,71 — 6747571+ 375 + 12757.° — 27474,

09 =CeCs — BcoT:" + cor e + 17 W 4 rartdt 4 vt + rtu” — 27,

Sfor c;=0:(y, by -+, t) and u=t,.

Proof. We extract the following description of H* (E,/T) from
Theorem 2.1 and Proposition 3.2 of [11]:

(4.3) There exist generators y;€ H*(E,/T), deg y;=2i for i=3, 4,

5,9, and relations p,€ Z[ty, by, -+, tr, T1, Ts, To» Ts» 7o)/ (01), deg p,=2j
for j=2,3,4,5,6,8,9,10,12, 14, 18 such that

(1) H*(E:/T) =Z[t, ts, -+, b1, T3y T3, Tos Tss 751 /01 02, 03 **5 0145 016) -
(i) p:i=2y;—0; (¢=3,5,9) and p.=37,—0,
where §; (1=3,4,5,9) is an arbitrary element satisfying
(4. 3.a) 05=Sq0:, 0:=5q'0;, 0,=S¢*s (mod2),

and 0,=Pp, (mod 3), respectively.
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(iii) Other relation p; (j=2,6,8, 10, 12, 14, 18) is determined
by the maximality of the integer n in

(4. 3.b) : n-p;=0*1,.
Here the relations, say P, in (4.8.a) and (4.8.b) are con-
sidered in
Z[ty by oy by 11 5 70/ (01 -+, Om)

for deg ., degpn<deg P,.
Direct calculation using (2.9) and (2.10) yields _

(4.4) IL,=-2°.3(c,—4x),
I,=2°%.3*(8¢s + ¢’ —dcsx —4cyx® +42°) mod a,
and
I,=2".5(—3csc3 + 2¢,2 + 12c1x — 3cicsx — 6cex” + e’ 2 + 12¢52°
+2¢c,x' —12¢,2° +142%)  mod as.
In view of (4.3), (iii) and (4.4) we have
02 =c,— 47/ .

Apply Wu’s formula S¢***c,=3 7-0 cpri€n_i_iy (mod 2) to (4.3),
(i1). We have

0s=S¢*0,=S¢’c;=cs+ c;c;=cs (mod (2, py)),
05=3Sq0s=Sq'cs=c; + cic1 + csca=cs + cu11
=c—cqiteor’—2r°  (mod(2, ps, 0))
and
0:=3S8¢°05=S5¢" (¢s + cu11)
=103+ CoCs + CsCa+ €71+ (1 + Cocr + €562 + €acs) T4
= (cott + cstt® + ctl® + 110" + 4" + co11) T
=cocs — 3ceys’ + cayitu + 77U + Tartdd + %+ 1T
(mod (2, ps, 03, 05, 06))

using the relation ¢;=Y7_,(—1)*lc;_u’.
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Then the required forms of gy, ps and p, follow. We have also

645@1025916'2 -QJITlZE t;, (t£2 -+ t,z) titj —2')'1‘

=dcy— 01— 20" + e’ — 271 =c+ 27, (mod (3, p)),

and the form of p, follows. Those of ps and p; follow immediately
from (4.4). Q.E.D.

Remark. To obtain the whole structure of H* (E;/T) one needs
only to determine the integral form of I, mod a,.

Corollary 4.2. Keri*= (u, 75 79).

Proof. Since §: E;/T’— U/T is a natural isomorphism, the fol-
lowing result is just Theorem B of [12]:

(4.5) H*(U/T)=Z[ts, ts, -+, ts, 71, T3, 741/ (D1, D2, Ds, Ds, s, Do, O, D, O12)
where t;=g*"'(t/) € H?, v,=0*"'(y/) € H* and

O1=c1=371, D= —471", Bs=cs— 273,
Di=ci+21"' =31y, Ds=cs—cintor 277,
Oe=2cc—cy’ —1:° + 714,
Os= —9cer" + 351" — 1"+ 3ri (ra— e+ 2119,
o= —3wt 4+, pp=0'+150*%"—9uws®

for
ci=0;(t, by, -, be), t=71—1

and

o=ri—cn1+ 27+ (=27 + it — it + 9 ¢t
From (1.6) it follows that
*(c) =c;(1<<¢<<6) and i*(c;) =0.
Then we have
*(r)=r:(=1,3,4), i*(y5)=0 and i*(p) =p; (=26, 8).
Thus Ker i*= («, r;) for dim. <18,
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By (2.15) it is not hard to observe that
4.6) Iy =2".3%7(cs’cy’ —3cs’x’””) mod ay

and the element in parentheses gives the relation 7,/ = —3w”*#’ +¢’° in
H*(E,/T") (cf. (5.7) of [12]). This implies *(y,) =0 and Ker i*
= (%, 15, 7o) for dim. <18,

By (4.2) the above fact holds without dimensional restrictions.

Q.E.D.

§ 5. The integral cohomology ring of EVII and E;/E,

In this section we identify H* (EVII) with Im p*, and H*(EVII;
Q) may be regarded as a subalgebra of R/a, for n>>18. Moreover
Theorem 4.1 permits us to consider the elements 7y, 7s, T4, 75 7o
e H*(E,/T) in R, so that, for example, 1,=x=%4c¢,eR.

Before proving Theorem A, we note the following

5.1 .75Ecs—zc4u+csu2—7—0u5 mod (x, as),
3 81
e 3 9 1
Jo= —csci— — ¢;° — csestt + 2ci050° — = c’u’ — — cou’
9 5C4 g 3 — Cs5Cs 1C3 4 3 27 5
2 s, 80 ¢ 105968
+ = e’ + — cu’ + ¥’ mod(x,ds, a)®
81 " 27" 6561 (@, dn, as)

which was implicitly used in (2.17).
Proof of Theorem A.
By Lemma 2.1, (ii) we may write
v=a-Js+B-4° (in H*(EVII; Q))

for some a, Q. ¥ is unique up to f(mod1). On the otherhand,
by (4.2) and Corollary 4.2 we may write

v=7:+f (in Imp*)
for some fe H*(E,/T) n (x). Hence
rs=a-Js+B-4°—f (in R/as).

* Tt will be convenient for later computation to leave the term z°.
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Multiplying the both sides by 2 gives
cs—aqitart—2r°=2( Js+B-u’—f) modas
First consider this relation modulo («,as). Then by (2.15) we have
cs—cit eyt —27° =20 (cs —cox + ¢,x* —22°) mod(u, as).
Hence a=1/2. Next consider it modulo (z, as). Then by (5.1) we
have
Cs=C5— 2 cat + o + <28—@>u5—2f mod (x, as),
3 81
and so

f=—ra+trd’+ (B_g—f> «’ mod(z, as).

Since f is integral, we may take §=35/81. (Strictly speaking, we
have used (2.11), (ii).) Thus v= (1/2)Js+ (35/81)«° can be chosen

~

as our generator .

Similarly we may write
W=e-Jo+C vu'+y-u’ (in H*(EVII;Q))
=71o+¢ (in Im p*)

for some ¢, &, 9€Q and g H*(E,/T) n (u,v). @ is unique up to
Z(mod 1) and y(mod1). Then

o€y — 3ceri’ + Coritu + 1ar "t v ar W eyl
=2(e-Jo+ & vu'+9-4°—g) mod a,
In R/(u, v, as), by (4.6) we have
cocs — 3cer’=2¢ (Bcocs — 9cex®)
and hence ¢=1/6. In R/(x,d, as) we have
1

1 1 1 2 3 1
— = — 3 C5Cs— T it — 3 CsCatd + 3 cicaut — " ctut+ <C _8_1> csutt

8
2. 2 80 105968
(BBt oy S
3t o) T\&tgy) e (21 Jgpea ¥ —20
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From similar reasons we may take {=1/81 and 5= —52984/19683.
Thus w= (1/6)J,+ (1/81) vu'— (52984/19683) %’ can be chosen as @.
Combining these with (2.4) follows the theorem. Q.E.D.

Proof of Corollary B.

By Theorem A we have the relation 2wwv= (18w —6wvu'+u°) o’
in H*(EVII), which implies

(5.2) 2vwe (u).

Considering the Gysin exact sequence of the fibering E,/E;——EVII
(see (3.6)), we conclude that (5.2) implies

(5.3) n* (vw) #£0 in H*(E,/Es; Zy)
and
n* (vw) =0 in H*(E,/Es; Z,) for odd prime p.
This proves that pos.(d) is impossible and
H* (E;/Eq; Z3) = Z3{1, 210, 215, 231, Zuss Tss}

with relations 224 =225 =25 for the generators z,=7*(v) and zy
=g*(w) (see (3.5)). Similarly we can show that H*(E,/Es; Z,)
has the same structure as in the case p=3 for each prime p=>5.
H*(E,/E; Z,) is seen in (3.7). Then the corollary follows from
the universal coefficient theorem. Q.E.D.

Remark. There is an alternative proof of Corollary B in which
we work with integer coefficients, but we need some computations
and so we abandon it.
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