A remark to the ordering theorem of L. de Branges

By

Shin'ichi KOTANI

(Received Jan. 26, 1976)

0. Introduction

In [2], L. de Branges gave a remarkable theorem on the order relation between Hilbert spaces of entire functions contained isometrically in some space $L^2(\sigma)$. However, he put an assumption which, from the point of view of applications, is an undesirable restriction. In fact, in order to prove the uniqueness of the correspondence between a generalized second order differential operator and its spectral function (cf. [1]), it is necessary to prove the ordering theorem for the spaces consisting of entire functions of minimal exponential type. The purpose of this note is to give a complete proof of this ordering theorem which we have used in [1].

1. Statement and proof of the theorem

Following our paper [1], we introduce definitions and notations which will be used later.

Definition 1.1. A Hilbert space of entire functions H satisfying the following properties will be called a K-B space.

- (H.1) If $f \in H$, then its conjugate also belongs to H and has the same norm.
- (H.2) Put $\mathscr{D}(A) = \{ \varphi \in H : \lambda \varphi(\lambda) \in H \}$ and $A\varphi(\lambda) = \lambda \varphi(\lambda)$ for $\varphi \in \mathscr{D}(A)$. Then A becomes a closed symmetric operator.

Shin'ichi Kotani

- (H.3) If $f \in H$ and f(z)=0 for some $z \in \mathbb{C}$, then $f(\lambda)/(\lambda-z) \in H$.
- (H.4) Put $\Delta(\lambda) = \sup \{|f(\lambda)|^2 : f \in H, (f, f) \leq 1\}$. Then Δ is locally bounded in C.

From the property (*H*.4), the Hilbert space *H* has a reproducing kernel $J_{\lambda}(\mu)$, i.e., $f(\lambda) = (f, J_{\lambda})$ for every $f \in H$. de Branges proved that there exist real entire functions (i.e., entire functions with real values on the real line.) *P*, *Q* such that

(1.1)
$$J_{\lambda}(\mu) = \frac{1}{\mu - \overline{\lambda}} \left\{ P(\mu)Q(\overline{\lambda}) - P(\overline{\lambda})Q(\mu) \right\}.$$

We note here that, for any two pairs $\{P_1, Q_1\}$ and $\{P_2, Q_2\}$ satisfying the relation (1.1), there exists a matrix S of $SL(2, \mathbf{R})$ such that

$$(P_1(\lambda), Q_1(\lambda)) = (P_2(\lambda), Q_2(\lambda))S.$$

By one of the pairs $\{P, Q\}$, we define the characteristic function E of H;

(1.2)
$$E(\lambda) = P(\lambda) + iQ(\lambda).$$

Then it is easy to see that for any $\lambda \in C_+$

$$|E(\lambda)| > |E(\bar{\lambda})|,$$

hence $E(\lambda)$ has no zeros in C_+ .

The ordering theorem of de Branges may be stated as follows.

Ordering theorem. (L. de Branges [2].) Let H_1 and H_2 be K-B spaces included isometrically in the same space $L^2(\sigma)$ for some Radon measure σ on \mathbb{R}^1 . Let E_1 and E_2 be the characteristic functions for H_1 and H_2 respectively. Suppose that $\log^+|E_1/E_2|$ is dominated by a harmonic function on C_+ . Then either H_1 contains H_2 or H_2 contains H_1 .

This note is devoted to prove the above theorem, without assuming that $\log^+ |E_1/E_2|$ is dominated by a harmonic function on C_+ but

under the condition that both E_1 and E_2 are entire functions of minimal exponential type, i.e., $\log |f(z)| = o(|z|)$ as $|z| \to \infty$. Fortunately, the key lemma of de Branges in proving the theorem is available for any minimal exponential type entire functions.

Lemma 1.2. (L. de Branges [2], Lemma 8, p. 107.) Let $f_1(z)$ and $f_2(z)$ be entire functions of minimal exponential type satisfying

$$\min\{|f_1(z)|, |f_2(z)|\} \leq \frac{1}{|\operatorname{Im} z|}$$

for all complex z. Then either f_1 or f_2 vanishes identically. To make use of this lemma, we have to prove several lemmas.

Lemma 1.3. Let σ_1 and σ_2 be complex Radon measures with finite total variations on \mathbf{R}^1 . Let f_1 and f_2 be entire functions such that

(1.3)
$$\log |f_k(z)| \leq a|z|, \quad k=1, 2,$$

for every sufficiently large |z|. Suppose that

$$f(z) = f_1(z) \int_{-\infty}^{\infty} \frac{\sigma_1(dt)}{t-z} + f_2(z) \int_{-\infty}^{\infty} \frac{\sigma_2(dt)}{t-z}$$

is an entire function. Then f(z) satisfies the estimate

 $\log |f(z)| \leq a|z|$

for every sufficiently large |z|.

Proof. This lemma is essentially due to M. G. Krein ([3], Lemma 4.2). Let σ denote one of σ_1 and σ_2 . Put

$$\varphi(z) = \int_{-\infty}^{\infty} \frac{\sigma(dt)}{t-z}.$$

If we change the variables as

$$\zeta = \frac{z-i}{z+i}, \ e^{i\theta} = \frac{t-i}{t+i},$$

then

$$\varphi(z) = \phi(\zeta) = \frac{1-\zeta}{2i} \int_{-\infty}^{\infty} \frac{i-e^{i\theta}}{e^{i\theta}-\zeta} \tau(d\theta) ,$$

where $\tau(d\theta) = \sigma(dt)$. Hence

$$|\phi(\zeta)| \leq \frac{4\operatorname{var}\sigma}{2(1-|\zeta|)} = \frac{2\operatorname{var}\sigma}{1-|\zeta|}$$

for $|\zeta| \leq 1$ and so

$$\log^+ |\phi(\zeta)| \leq c - \log(1 - |\zeta|),$$

where $c = \log^+ (2 \operatorname{var} \sigma)$. Thus we have

$$\int_0^1 \int_0^{2\pi} \log^+ |\phi(re^{i\theta})| r dr d\theta \leq (c+3/4)\pi.$$

The similar argument is possible also in C_{-} , hence we obtain

$$\int_{c} \frac{\log^+ |\varphi(z)|}{(|z|+1)^4} \, dx \, dy < \infty \, .$$

From the above estimate and the condition (1.3), it is easy to see that

$$K = \int_{C} \frac{\log^{+} |f(z)|}{(|z|+1)^{4}} \, dx \, dy < \infty \, .$$

Let B(a, r) denote the closed disk with its center at a and its radius r. Since $\log^+ |f(z)|$ is subharmonic, we have an inequality

$$\log^+|f(z)| \leq \frac{1}{\pi r^2} \int_{B(z,r)} \log^+|f(\zeta)| \, dx \, dy$$

Noting for any $\zeta \in B(z, r)$, $1 \leq \frac{(1+r+|z|)^4}{(1+|\zeta|)^4}$, we have for any z

$$\log^{+}|f(z)| \leq \frac{(1+r+|z|)^{4}}{\pi r^{2}} \int_{B(z,r)} \frac{\log^{+}|f(\zeta)|}{(1+|\zeta|)^{4}} dx dy$$
$$\leq \frac{(1+r+|z|)^{4}}{\pi r^{2}} \int_{C} \frac{\log^{+}|f(\zeta)|}{(1+|\zeta|)^{4}} dx dy$$

$$= \frac{(1+r+|z|)^4}{\pi r^2} K$$

Hence, putting r = |z|, we have for every sufficiently large |z|,

 $\log |f(z)| \leq c |z|^2.$

From the assumption (1.3) and the definition of f(z), we see that $\log^+ |f(z)|$ is dominated by a|z| for every sufficiently large |z| along any ray different from the real line. Since we have proved that f is an entire function of at most order 2, Lemma 1.3 results from the Phragmén-Lindelöf theorem immediately.

Lemma 1.4. Let f(z) be a nontrivial entire function of minimal exponential type. Then for any positive ε , there exists a divergent sequence $\{r_n\}$ such that $r_n/r_{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and $\log |f(z)| \ge -\varepsilon |z|$ for $|z| = r_n$.

As for the proof, refer to Theorem 3.7.1 of Boas, Jr. [4].

Lemma 1.5. Let H be a K-B space and σ bc a measure on \mathbb{R}^1 such that H is contained isometrically in $L^2(\sigma)$. Let h be an element of $L^2(\sigma)$ which is orthogonal to H and g be an entire function of $L^2(\sigma)$. Then there exists an entire function F(w) satisfying

(1.4)
$$f(w)F(w) = \int_{-\infty}^{\infty} \frac{f(t)g(w) - g(t)f(w)}{t - w} \overline{h(t)}\sigma(dt)$$

for every f of H.

Proof. Let $\phi(f)(w)$ denote the right hand side of (1.4). Taking any two elements f_1 and f_2 of H, we have

$$f_{1}(w) \{f_{2}(t)g(w) - g(t)f_{2}(w)\}/(t - w)$$

= $f_{2}(w) \{f_{1}(t)g(w) - f_{1}(w)g(t)\}/(t - w)$
+ $g(w) \{f_{1}(w)f_{2}(t) - f_{2}(w)f_{1}(t)\}/(t - w),$

where the last term belongs to H. Hence the identity

$$f_1(w)\phi(f_2)(w) = f_2(w)\phi(f_1)(w)$$

follows. Choosing f_1 and f_2 so that they may not vanish at w, we see that $F(w) = \phi(f)(w)/f(w)$ is an entire function independent of f of H. This completes the proof.

We remark here that the following three statements are equivalent. (1) Every element of H is of minimal exponential type.

- (2) The characteristic function E of H is of minimal exponential type.
- (3) $\Delta(\lambda)$, which was defined in (H.4), has the estimate $\log \Delta(\lambda) = o(|\lambda|)$ as $|\lambda| \to \infty$.

This comes from the formulas (1.1), (1.2) and the identity $\Delta(\lambda) = J_{\lambda}(\lambda)$.

Our proof of the theorem depends entirely on the methods used by de Branges [2]. It is, however, possible to simplify the proof by consulting with L. D. Pitt [5].

Theorem. Let H_1 and H_2 be K-B spaces whose all elements are of minimal exponential type. If H_1 and H_2 are contained isometrically in a space $L^2(\sigma)$, then either H_1 contains H_2 or H_2 contains H_1 .

Proof. Let $\Delta_k(\lambda)$ be the square of the norm of the linear functional $H_k \ni f \rightarrow f(\lambda)$ for k = 1, 2. Put $\rho(\lambda) = \max \{\Delta_1(\lambda), \Delta_2(\lambda)\}$ and choose a measure τ on \mathbf{R}^1 such that $\int_{-\infty}^{\infty} \rho(t)\tau(dt) = 1$. Then for any $f \in H_k$, we have

$$\int_{-\infty}^{\infty} |f(t)|^2 \sigma(dt) \leq \int_{-\infty}^{\infty} |f(t)|^2 \sigma(dt) + \int_{-\infty}^{\infty} |f(t)|^2 \tau(dt)$$
$$\leq 2 \int_{-\infty}^{\infty} |f(t)|^2 \sigma(dt),$$

for we have $|f(t)|^2 \leq \Delta_k(t) ||f||^2 \leq \rho(t) ||f||^2$. Thus the two measures σ and $\sigma + \tau$ define equivalent norms in both H_1 and H_2 . So we may assume that σ possesses the continuous part, and hence both H_1 and

 H_2 are not dense in $L^2(\sigma)$. For each $g \in H_2$ and $h_1 \in H_1^+$ with $||g|| \le 1$ and $||h_1|| \le 1$, we may define an entire function F(w) by Lemma 1.5 such that

$$f(w)F(w) = \int_{-\infty}^{\infty} \frac{f(t)g(w) - g(t)f(w)}{t - w} \overline{h_1(t)}\sigma(dt)$$

holds for every f of H_1 . Since g and f are of minimal exponential type, we see that, by Lemma 1.3, f(w)F(w) is also of minimal exponential type. On the other hand, by Lemma 1.4, there exists a divergent sequence $\{r_n\}$ such that $r_n/r_{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and $\log |f(z)| \ge -\varepsilon |z|$ for $|z| = r_n$. Hence we have

$$\log^+ |F(z)| \leq \varepsilon |z|$$

for $|z| = r_n$. Applying the maximum principle to F, we find that F is of minimal exponential type.

Similarly, for $f \in H_1$ and $h_2 \in H_2^{\perp}$ with $||f|| \le 1$ and $||h_2|| \le 1$, we may define G(w) such that

(1.5)
$$g(w)G(w) = \int_{-\infty}^{\infty} \frac{g(t)f(w) - g(w)f(t)}{t - w} \overline{h_2(t)}\sigma(dt)$$

holds for every g of H_2 . For the same reason as above, G is of minimal exponential type. By the Schwarz inequality in $L^2(\sigma)$, we have

$$|f(z)F(z)| \leq \frac{1}{|y|} \{|f(z)| + |g(z)|\}$$
$$|g(z)G(z)| \leq \frac{1}{|y|} \{|f(z)| + |g(z)|\},$$

where y = Im z. Hence we have

$$|y| \leq |F(z)|^{-1} + |G(z)|^{-1}$$
.

This implies that

$$\min\{|F(z)|, |G(z)|\} \leq 2|y|^{-1}.$$

Therefore it follows from Lemma 1.2 that either F or G vanishes

identically. Thus we may suppose that F(z)=0 for each $g \in H_2$ and $h_1 \in H_1^+$. Unless H_2 is contained in H_1 , there must exists a $g \in H_2$ with $g \in H_1$. Since F(z)=0, we have

(1.6)
$$\frac{f(w)}{g(w)} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t) \overline{h_1(t)} \sigma(dt) = \int_{-\infty}^{\infty} \frac{w}{w-t} f(t) \overline{h_1(t)} \sigma(dt) .$$

Because $g \in H_1$, we may choose h_1 with

$$0 \neq \int_{-\infty}^{\infty} g(t)\overline{h_1(t)}\sigma(dt) = \lim_{w \to \infty} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t)\overline{h_1(t)}\sigma(dt) ,$$

and

$$0 = \int_{-\infty}^{\infty} f(t)\overline{h_1(t)}\sigma(dt) = \lim_{w \to \infty} \int_{-\infty}^{\infty} \frac{w}{w-t} f(t)\overline{h_1(t)}\sigma(dt) ,$$

where lim should be taken along a ray not coinciding with the real line. By (1.6) we see that

(1.7)
$$\lim_{w \to \infty} \left| \frac{f(w)}{g(w)} \right| = 0.$$

On the other hand, by (1.5) we have

$$|G(w)| \leq \left|\frac{f(w)}{g(w)}\right| \left| \int_{-\infty}^{\infty} \frac{g(t)\overline{h_2(t)}}{t-w} \sigma(dt) \right| + \left| \int_{-\infty}^{\infty} \frac{f(t)\overline{h_2(t)}}{t-w} \sigma(dt) \right|.$$

Hence from (1.7) and the dominated convergence theorem it follows that

$$\lim_{w\to\infty}|G(w)|=0$$

for any f of H_1 . Since G is of minimal exponential type, G must vanish identically. Hence we have

$$\int_{-\infty}^{\infty} \frac{w}{w-t} f(t) \overline{h_2(t)} \sigma(dt) = \frac{f(w)}{g(w)} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t) \overline{h_2(t)} \sigma(dt) .$$

So, by (1.7) it is evident that

$$\int_{-\infty}^{\infty} f(t) \overline{h_2(t)} \sigma(dt) = 0$$

holds for every $h_2 \in H_2^{\perp}$ and $f \in H_1$. This implies that f coincides with some element of H_2 almost everywhere with respect to σ . Recalling we have assumed that σ has the continuous part, we may conclude that f itself belongs to H_2 . This completes the proof.

In conclusion, we remark a corollary of our theorem. We define a reflection operator R by

$$Rf(z)=f(-z)$$
.

Corollary. Let H_1 and H_2 be K-B spaces contained isometrically in a space $L^2(\sigma)$. Assume that every element of H_1 and H_2 satisfies a growth condition

(1.8)
$$\log |f(z)| = o(|z|^2)$$

as $|z| \rightarrow \infty$. If both H_1 and H_2 have nontrivial domains of R, then either $H_1 \subset H_2$ or $H_2 \subset H_1$.

Proof. Let \tilde{H}_k (k=1, 2) be a pre-Hilbert space which is equal as set to the domain of R in H_k and whose inner product is defined by

$$(f, f)_{\bar{H}_k} = (f, f)_{H_k} + (Rf, Rf)_{H_k}.$$

Since R is a closed operator, \tilde{H}_k becomes a Hilbert space. It is obvious that each \tilde{H}_k satisfies the axioms $(H.1) \sim (H.4)$. Hence \tilde{H}_k turns to a K-B space contained isometrically in $L^2(\tau)$, where $\tau(dt)$ $= \sigma(dt) + \sigma(-dt)$. In each space \tilde{H}_k , R works as a unitary operator. In this case, de Branges [2] proved that there exists a unique K-Bspace $(\tilde{H}_k)_+$ such that $f(z) \rightarrow f(z^2)$ is an isometric transformation from $(\tilde{H}_k)_+$ onto the even elements of \tilde{H}_k . (see Problem 182, p. 168.) We may assume that there exists a nontrivial even element of \tilde{H}_k for the following reason. Take any nontrivial element f of \tilde{H}_k . If f is odd, then f(0)=0. So we may take f(z)/z of \tilde{H}_k in place of f, which is an even function. Otherwise, we have only to put g=f+Rf. Since $(\tilde{H}_k)_+$ is contained isometrically in $L^2(v)$, where $v(dt)=\sigma(\sqrt{|dt|})$, and the elements are of minimal exponential type by the assumption (1.8), we may conclude from our theorem that either $(\tilde{H}_1)_+ \subset (\tilde{H}_2)_+$ or $(\tilde{H}_2)_+ \subset (\tilde{H}_1)_+$. Therefore there must exist a nontrivial function belonging to both H_1 and H_2 . Since, for any f of H_k , $\log^+ |f/E_k|$ is dominated by a harmonic function on C_+ (see de Branges [2], p. 50), so is $\log^+ |E_1/E_2|$. We have used here the fact that, for a holomorphic function f on C_+ , $\log^+ |f|$ has a harmonic majorant on C_+ if and only if it is the quotient of two bounded holomorphic functions on C_+ (see P. L. Duren [6]). Now the ordering theorem of de Branges gives our corollary.

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY.

References

- [1] S. Kotani, On a generalized Sturm-Liouville operator with a singular boundary, J. Math. Kyoto Univ., 15 (1975), 423-454.
- [2] L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs. N. T., (1968).
- [3] M. G. Krein, Fundamental aspects of the representation theory of hermitian operators with deficiency index (m, m), Amer. Math. Soc. Transl. (2) Vol. 97, (1970), 75-143. (transl. of Ukrain. Mat. Ž. 1 (1949), 3-66.)
- [4] R. P. Boas, Jr., Entire functions, Academic Press, New York, (1954).
- [5] L. D. Pitt, Weighted L^p closure theorems for spaces of entire functions, (pre-print).
- [6] P. L. Duren, Theory of H^p spaces, Academic Press, New York and London, (1970).