A remark to the ordering theorem of L. de Branges

By
Shin’ichi Kotani

(Received Jan. 26, 1976)

0. Introduction

In [2], L. de Branges gave a remarkable theorem on the order relation between Hilbert spaces of entire functions contained isometrically in some space $L^{2}(\sigma)$. However, he put an assumption which, from the point of view of applications, is an undesirable restriction. In fact, in order to prove the uniqueness of the correspondence between a generalized second order differential operator and its spectral function (cf. [1]), it is necessary to prove the ordering theorem for the spaces consisting of entire functions of minimal exponential type. The purpose of this note is to give a complete proof of this ordering theorem which we have used in [1].

1. Statement and proof of the theorem

Following our paper [1], we introduce definitions and notations which will be used later.

Definition 1.1. A Hilbert space of entire functions H satisfying the following properties will be called a $K-B$ space.
(H.1) If $f \in H$, then its conjugate also belongs to H and has the same norm.
(H.2) Put $\mathscr{D}(A)=\{\varphi \in H: \lambda \varphi(\lambda) \in H\}$ and $A \varphi(\lambda)=\lambda \varphi(\lambda)$ for $\varphi \in \mathscr{D}(A)$. Then A becomes a closed symmetric operator.
(H.3) If $f \in H$ and $f(z)=0$ for some $z \in \boldsymbol{C}$, then $f(\lambda) /(\lambda-z) \in H$.
(H.4) Put $\Delta(\lambda)=\sup \left\{|f(\lambda)|^{2}: f \in H,(f, f) \leqq 1\right\}$. Then Δ is locally bounded in \boldsymbol{C}.

From the property (H.4), the Hilbert space H has a reproducing kernel $J_{\lambda}(\mu)$, i.e., $f(\lambda)=\left(f, J_{\lambda}\right)$ for every $f \in H$. de Branges proved that there exist real entire functions (i.e., entire functions with real values on the real line.) P, Q such that

$$
\begin{equation*}
J_{\lambda}(\mu)=\frac{1}{\mu-\bar{\lambda}}\{P(\mu) Q(\bar{\lambda})-P(\bar{\lambda}) Q(\mu)\} \tag{1.1}
\end{equation*}
$$

We note here that, for any two pairs $\left\{P_{1}, Q_{1}\right\}$ and $\left\{P_{2}, Q_{2}\right\}$ satisfying the relation (1.1), there exists a matrix S of $\boldsymbol{S} \boldsymbol{L}(2, \boldsymbol{R})$ such that

$$
\left(P_{1}(\lambda), Q_{1}(\lambda)\right)=\left(P_{2}(\lambda), Q_{2}(\lambda)\right) S
$$

By one of the pairs $\{P, Q\}$, we define the characteristic function E of H;

$$
\begin{equation*}
E(\lambda)=P(\lambda)+i Q(\lambda) . \tag{1.2}
\end{equation*}
$$

Then it is easy to see that for any $\lambda \in \boldsymbol{C}_{+}$

$$
|E(\lambda)|>|E(\bar{\lambda})|,
$$

hence $E(\lambda)$ has no zeros in \boldsymbol{C}_{+}.
The ordering theorem of de Branges may be stated as follows.

Ordering theorem. (L. de Branges [2].) Let H_{1} and H_{2} be $K-B$ spaces included isometrically in the same space $L^{2}(\sigma)$ for some Radon measure σ on \boldsymbol{R}^{1}. Let E_{1} and E_{2} be the characteristic functions for H_{1} and H_{2} respectively. Suppose that $\log ^{+}\left|E_{1} / E_{2}\right|$ is dominated by a harmonic function on \boldsymbol{C}_{+}. Then either H_{1} contains H_{2} or H_{2} contains H_{1}.

This note is devoted to prove the above theorem, without assuming that $\log ^{+}\left|E_{1} / E_{2}\right|$ is dominated by a harmonic function on \boldsymbol{C}_{+}but
under the condition that both E_{1} and E_{2} are entire functions of minimal exponential type, i.e., $\log |f(z)|=o(|z|)$ as $|z| \rightarrow \infty$. Fortunately, the key lemma of de Branges in proving the theorem is available for any minimal exponential type entire functions.

Lemma 1.2. (L. de Branges [2], Lemma 8, p. 107.) Let $f_{1}(z)$ and $f_{2}(z)$ be entire functions of minimal exponential type satisfying

$$
\min \left\{\left|f_{1}(z)\right|,\left|f_{2}(z)\right|\right\} \leqq \frac{1}{|\operatorname{lm} z|}
$$

for all complex z. Then either f_{1} or f_{2} vanishes identically. To make use of this lemma, we have to prove several lemmas.

Lemma 1.3. Let σ_{1} and σ_{2} be complex Radon measures with finite total variations on \boldsymbol{R}^{1}. Let f_{1} and f_{2} be entire functions such that

$$
\begin{equation*}
\log \left|f_{k}(z)\right| \leqq a|z|, \quad k=1,2, \tag{1.3}
\end{equation*}
$$

for every sufficiently large |z|. Suppose that

$$
f(z)=f_{1}(z) \int_{-\infty}^{\infty} \frac{\sigma_{1}(d t)}{t-z}+f_{2}(z) \int_{-\infty}^{\infty} \frac{\sigma_{2}(d t)}{t-z}
$$

is an entire function. Then $f(z)$ satisfies the estimate

$$
\log |f(z)| \leqq a|z|
$$

for every sufficiently large $|z|$.
Proof. This lemma is essentially due to M. G. Krein ([3], Lemma 4.2). Let σ denote one of σ_{1} and σ_{2}. Put

$$
\varphi(z)=\int_{-\infty}^{\infty} \frac{\sigma(d t)}{t-z} .
$$

If we change the variables as

$$
\zeta=\frac{z-i}{z+i}, e^{i \theta}=\frac{t-i}{t+i}
$$

then

$$
\varphi(z)=\phi(\zeta)=\frac{1-\zeta}{2 i} \int_{-\infty}^{\infty} \frac{i-e^{i \theta}}{e^{i \theta}-\zeta} \tau(d \theta),
$$

where $\tau(d \theta)=\sigma(d t)$. Hence

$$
|\phi(\zeta)| \leqq \frac{4 \operatorname{var} \sigma}{2(1-|\zeta|)}=\frac{2 \operatorname{var} \sigma}{1-|\zeta|}
$$

for $|\zeta| \leqq 1$ and so

$$
\log ^{+}|\phi(\zeta)| \leqq c-\log (1-|\zeta|),
$$

where $c=\log ^{+}(2 \operatorname{var} \sigma)$. Thus we have

$$
\int_{0}^{1} \int_{0}^{2 \pi} \log ^{+}\left|\phi\left(r e^{i \theta}\right)\right| r d r d \theta \leqq(c+3 / 4) \pi .
$$

The similar argument is possible also in \boldsymbol{C}_{-}, hence we obtain

$$
\int_{c} \frac{\log ^{+}|\varphi(z)|}{(|z|+1)^{4}} d x d y<\infty .
$$

From the above estimate and the condition (1.3), it is easy to see that

$$
K=\int_{\boldsymbol{C}} \frac{\log ^{+}|f(z)|}{(|z|+1)^{4}} d x d y<\infty
$$

Let $B(a, r)$ denote the closed disk with its center at a and its radius r. Since $\log ^{+}|f(z)|$ is subharmonic, we have an inequality

$$
\log ^{+}|f(z)| \leqq \frac{1}{\pi r^{2}} \int_{B(z, r)} \log ^{+}|f(\zeta)| d x d y .
$$

Noting for any $\zeta \in B(z, r), 1 \leqq \frac{(1+r+|z|)^{4}}{(1+|\zeta|)^{4}}$, we have for any z

$$
\begin{aligned}
\log ^{+}|f(z)| & \leqq \frac{(1+r+|z|)^{4}}{\pi r^{2}} \int_{B(z, r)} \frac{\log ^{+}|f(\zeta)|}{(1+|\zeta|)^{4}} d x d y \\
& \leqq \frac{(1+r+|z|)^{4}}{\pi r^{2}} \int_{C} \frac{\log ^{+}|f(\zeta)|}{(1+|\zeta|)^{4}} d x d y
\end{aligned}
$$

$$
=\frac{(1+r+|z|)^{4}}{\pi r^{2}} K .
$$

Hence, putting $r=|z|$, we have for every sufficiently large $|z|$,

$$
\log |f(z)| \leqq c|z|^{2}
$$

From the assumption (1.3) and the definition of $f(z)$, we see that $\log ^{+}|f(z)|$ is dominated by $a|z|$ for every sufficiently large $|z|$ along any ray different from the real line. Since we have proved that f is an entire function of at most order 2, Lemma 1.3 results from the PhragménLindelöf theorem immediately.

Lemma 1.4. Let $f(z)$ be a nontrivial entire function of minimal exponential type. Then for any positive ε, there exists a divergent sequence $\left\{r_{n}\right\}$ such that $r_{n} / r_{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and $\log |f(z)| \geqq-\varepsilon|z|$ for $|z|=r_{n}$.

As for the proof, refer to Theorem 3.7.1 of Boas, Jr. [4].

Lemma 1.5. Let H be $a K-B$ space and σ be a measure on \boldsymbol{R}^{1} such that H is contained isometrically in $L^{2}(\sigma)$. Let h be an element of $L^{2}(\sigma)$ which is orthogonal to H and g be an entire function of $L^{2}(\sigma)$. Then there exists an entire function $F(w)$ satisfying

$$
\begin{equation*}
f(w) F(w)=\int_{-\infty}^{\infty} \frac{f(t) g(w)-g(t) f(w)}{t-w} \overline{h(t)} \sigma(d t) \tag{1.4}
\end{equation*}
$$

for every f of H.

Proof. Let $\phi(f)(w)$ denote the right hand side of (1.4). Taking any two elements f_{1} and f_{2} of H, we have

$$
\begin{aligned}
& f_{1}(w)\left\{f_{2}(t) g(w)-g(t) f_{2}(w)\right\} /(t-w) \\
& =f_{2}(w)\left\{f_{1}(t) g(w)-f_{1}(w) g(t)\right\} /(t-w) \\
& \\
& \quad+g(w)\left\{f_{1}(w) f_{2}(t)-f_{2}(w) f_{1}(t)\right\} /(t-w),
\end{aligned}
$$

where the last term belongs to H. Hence the identity

$$
f_{1}(w) \phi\left(f_{2}\right)(w)=f_{2}(w) \phi\left(f_{1}\right)(w)
$$

follows. Choosing f_{1} and f_{2} so that they may not vanish at w, we see that $F(w)=\phi(f)(w) / f(w)$ is an entire function independent of f of H. This completes the proof.

We remark here that the following three statements are equivalent.
(1) Every element of H is of minimal exponential type.
(2) The characteristic function E of H is of minimal exponential type.
(3) $\Delta(\lambda)$, which was defined in (H.4), has the estimate $\log \Delta(\lambda)=o(|\lambda|)$ as $|\lambda| \rightarrow \infty$.
This comes from the formulas (1.1), (1.2) and the identity $\Delta(\lambda)=J_{\lambda}(\lambda)$.
Our proof of the theorem depends entirely on the methods used by de Branges [2]. It is, however, possible to simplify the proof by consulting with L. D. Pitt [5].

Theorem. Let H_{1} and H_{2} be $K-B$ spaces whose all elements are of minimal exponential type. If H_{1} and H_{2} are contained isometrically in a space $L^{2}(\sigma)$, then either H_{1} contains H_{2} or H_{2} contains H_{1}.

Proof. Let $\Delta_{k}(\lambda)$ be the square of the norm of the linear functional $H_{k} \ni f \rightarrow f(\lambda)$ for $k=1,2$. Put $\rho(\lambda)=\max \left\{\Delta_{1}(\lambda), \Delta_{2}(\lambda)\right\}$ and choose a measure τ on \boldsymbol{R}^{1} such that $\int_{-\infty}^{\infty} \rho(t) \tau(d t)=1$. Then for any $f \in H_{k}$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty}|f(t)|^{2} \sigma(d t) & \leqq \int_{-\infty}^{\infty}|f(t)|^{2} \sigma(d t)+\int_{-\infty}^{\infty}|f(t)|^{2} \tau(d t) \\
& \leqq 2 \int_{-\infty}^{\infty}|f(t)|^{2} \sigma(d t),
\end{aligned}
$$

for we have $|f(t)|^{2} \leqq \Delta_{k}(t)\|f\|^{2} \leqq \rho(t)\|f\|^{2}$. Thus the two measures σ and $\sigma+\tau$ define equivalent norms in both H_{1} and H_{2}. So we may assume that σ possesses the continuous part, and hence both H_{1} and
H_{2} are not dense in $L^{2}(\sigma)$. For each $g \in H_{2}$ and $h_{1} \in H_{1}^{1}$ with $\|g\| \leqq 1$ and $\left\|h_{1}\right\| \leqq 1$, we may define an entire function $F(w)$ by Lemma 1.5 such that

$$
f(w) F(w)=\int_{-\infty}^{\infty} \frac{f(t) g(w)-g(t) f(w)}{t-w} \overline{h_{1}(t)} \sigma(d t)
$$

holds for every f of H_{1}. Since g and f are of minimal exponential type, we see that, by Lemma $1.3, f(w) F(w)$ is also of minimal exponential type. On the other hand, by Lemma 1.4, there exists a divergent sequence $\left\{r_{n}\right\}$ such that $r_{n} / r_{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and $\log |f(z)| \geqq-\varepsilon|z|$ for $|z|=r_{n}$. Hence we have

$$
\log ^{+}|F(z)| \leqq \varepsilon|z|
$$

for $|z|=r_{n}$. Applying the maximum principle to F, we find that F is of minimal exponential type.

Similarly, for $f \in H_{1}$ and $h_{2} \in H_{2} \frac{1}{2}$ with $\|f\| \leqq 1$ and $\left\|h_{2}\right\| \leqq 1$, we may define $G(w)$ such that

$$
\begin{equation*}
g(w) G(w)=\int_{-\infty}^{\infty} \frac{g(t) f(w)-g(w) f(t)}{t-w} \overline{h_{2}(t)} \sigma(d t) \tag{1.5}
\end{equation*}
$$

holds for every g of H_{2}. For the same reason as above, G is of minimal exponential type. By the Schwarz inequality in $L^{2}(\sigma)$, we have

$$
\begin{aligned}
& |f(z) F(z)| \leqq \frac{1}{|y|}\{|f(z)|+|g(z)|\} \\
& |g(z) G(z)| \leqq \frac{1}{|y|}\{|f(z)|+|g(z)|\}
\end{aligned}
$$

where $y=\operatorname{Im} z$. Hence we have

$$
|y| \leqq|F(z)|^{-1}+|G(z)|^{-1} .
$$

This implies that

$$
\min \{|F(z)|,|G(z)|\} \leqq 2|y|^{-1} .
$$

Therefore it follows from Lemma 1.2 that either F or G vanishes
identically. Thus we may suppose that $F(z)=0$ for each $g \in H_{2}$ and $h_{1} \in H_{1}^{1}$. Unless H_{2} is contained in H_{1}, there must exists a $g \in H_{2}$ with $g \otimes_{i} H_{1}$. Since $F(z)=0$, we have

$$
\begin{equation*}
\frac{f(w)}{g(w)} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t) \overline{h_{1}(t)} \sigma(d t)=\int_{-\infty}^{\infty} \frac{w}{w-t} f(t) \overline{h_{1}(t)} \sigma(d t) . \tag{1.6}
\end{equation*}
$$

Because $g \notin H_{1}$, we may choose h_{1} with

$$
0 \neq \int_{-\infty}^{\infty} g(t) \overline{h_{1}(t)} \sigma(d t)=\lim _{w \rightarrow \infty} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t) \overline{h_{1}(t)} \sigma(d t)
$$

and

$$
0=\int_{-\infty}^{\infty} f(t) \overline{h_{1}(t)} \sigma(d t)=\lim _{w \rightarrow \infty} \int_{-\infty}^{\infty} \frac{w}{w-t} f(t) \overline{h_{1}(t)} \sigma(d t),
$$

where lim should be taken along a ray not coinciding with the real line. By (1.6) we see that

$$
\begin{equation*}
\lim _{w \rightarrow \infty}\left|\frac{f(w)}{g(w)}\right|=0 . \tag{1.7}
\end{equation*}
$$

On the other hand, by (1.5) we have

$$
|G(w)| \leqq\left|\frac{f(w)}{g(w)}\right|\left|\int_{-\infty}^{\infty} \frac{g(t) \overline{h_{2}(t)}}{t-w} \sigma(d t)\right|+\left|\int_{-\infty}^{\infty} \frac{f(t) \overline{h_{2}(t)}}{t-w} \sigma(d t)\right| .
$$

Hence from (1.7) and the dominated convergence theorem it follows that

$$
\lim _{w \rightarrow \infty}|G(w)|=0
$$

for any f of H_{1}. Since G is of minimal exponential type, G must vanish identically. Hence we have

$$
\left.\int_{-\infty}^{\infty} \frac{w}{w-t} f(t) \overline{h_{2}(t)} \sigma(d t)=\frac{f(w)}{g(w)} \int_{-\infty}^{\infty} \frac{w}{w-t} g(t) \overline{h_{2}(t}\right) \sigma(d t) .
$$

So, by (1.7) it is evident that

$$
\int_{-\infty}^{\infty} f(t) \overline{h_{2}(t)} \sigma(d t)=0
$$

holds for every $h_{2} \in H \frac{1}{2}$ and $f \in H_{1}$. This implies that f coincides with some element of H_{2} almost everywhere with respect to σ. Recalling we have assumed that σ has the continuous part, we may conclude that f itself belongs to H_{2}. This completes the proof.

In conclusion, we remark a corollary of our theorem. We define a reflection operator R by

$$
R f(z)=f(-z)
$$

Corollary. Let H_{1} and H_{2} be $K-B$ spaces contained isometrically in a space $L^{2}(\sigma)$. Assume that every element of H_{1} and H_{2} satisfies a growth condition

$$
\begin{equation*}
\log |f(z)|=o\left(|z|^{2}\right) \tag{1.8}
\end{equation*}
$$

as $|z| \rightarrow \infty$. If both H_{1} and H_{2} have nontrivial domains of R, then either $H_{1} \subset H_{2}$ or $H_{2} \subset H_{1}$.

Proof. Let $\tilde{H}_{k}(k=1,2)$ be a pre-Hilbert space which is equal as set to the domain of R in H_{k} and whose inner product is defined by

$$
(f, f)_{{A_{k}}}=(f, f)_{H_{k}}+(R f, R f)_{H_{k}} .
$$

Since R is a closed operator, \tilde{H}_{k} becomes a Hilbert space. It is obvious that each \tilde{H}_{k} satisfies the axioms (H.1) $\sim(H .4)$. Hence \tilde{H}_{k} turns to a $K-B$ space contained isometrically in $L^{2}(\tau)$, where $\tau(d t)$ $=\sigma(d t)+\sigma(-d t)$. In each space \tilde{H}_{k}, R works as a unitary operator. In this case, de Branges [2] proved that there exists a unique $K-B$ space $\left(\tilde{H}_{k}\right)_{+}$such that $f(z) \rightarrow f\left(z^{2}\right)$ is an isometric transformation from $\left(\tilde{H}_{k}\right)_{+}$onto the even elements of \tilde{H}_{k}. (see Problem 182, p. 168.) We may assume that there exists a nontrivial even element of \tilde{H}_{k} for the following reason. Take any nontrivial element f of \tilde{H}_{k}. If f is odd, then $f(0)=0$. So we may take $f(z) / z$ of \tilde{H}_{k} in place of f, which is an even function. Otherwise, we have only to put $g=f+R f$. Since $\left(\tilde{H}_{k}\right)_{+}$is contained isometrically in $L^{2}(v)$, where $v(d t)=\sigma(\sqrt{|d t|})$, and the elements are of minimal exponential type by the assumption (1.8), we may conclude from our theorem that either $\left(\tilde{H}_{1}\right)_{+} \subset\left(\tilde{H}_{2}\right)_{+}$or
$\left(\tilde{H}_{2}\right)_{+} \subset\left(\tilde{H}_{1}\right)_{+}$. Therefore there must exist a nontrivial function belonging to both H_{1} and H_{2}. Since, for any f of $H_{k}, \log ^{+}|f| E_{k} \mid$ is dominated by a harmonic function on \boldsymbol{C}_{+}(see de Branges [2], p. 50), so is $\log ^{+}\left|E_{1}\right| E_{2} \mid$. We have used here the fact that, for a holomorphic function f on $\boldsymbol{C}_{+}, \log ^{+}|f|$ has a harmonic majorant on \boldsymbol{C}_{+}if and only if it is the quotient of two bounded holomorphic functions on \boldsymbol{C}_{+} (see P. L. Duren [6]). Now the ordering theorem of de Branges gives our corollary.

Department of Mathematics Kyoto University.

References

[1] S. Kotani, On a generalized Sturm-Liouville operator with a singular boundary, J. Math. Kyoto Univ., 15 (1975), 423-454.
[2] L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs. N. T., (1968).
[3] M. G. Krein, Fundamental aspects of the representation theory of hermitian operators with deficiency index (m, m), Amer. Math. Soc. Transl. (2) Vol. 97, (1970), 75-143. (transl. of Ukrain. Mat. Ž. 1 (1949), 3-66.)
[4] R. P. Boas, Jr., Entire functions, Academic Press, New York, (1954).
[5] L. D. Pitt, Weighted L^{n} closure theorems for spaces of entire functions, (pre-print).
[6] P. L. Duren, Theory of H^{p} spaces, Academic Press, New York and London, (1970).

