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0. Introduction

In [2], L. de Branges gave a remarkable theorem on the order
relation between Hilbert spaces of entire functions contained isometrical-
ly in some space L%(¢). However, he put an assumption which, from
the point of view of applications, is an undesirable restriction. In fact,
in order to prove the uniqueness of the correspondence between a
generalized second order differential operator and its spectral function
(cf. [1]), it is necessary to prove the ordering theorem for the spaces
consisting of entire functions of minimal exponential type. The purpose
of this note is to give a complete proof of this ordering theorem which
we have used in [1].

1. Statement and proof of the theorem

Following our paper [1], we introduce definitions and notations
which will be used later.

Definition 1.1. A Hilbert space of entire functions H satisfying
the following properties will be called a K—B space.
(H.1) If feH, then its conjugate also belongs to H and has the same
norm.
(H2) Put 92(A)={peH:Ap()eH} and Ap(A)=Ap(L) for ¢e 2(A).
Then A becomes a closed symmetric operator.



666 Shin’ichi Kotani

(H.3) If feH and f(2)=0 for some zeC, then f(A)(A—z)e H.
(H4) Put AA)=sup{lf(W|*:feH,(f,f)S1}. Then A4 is locally
bounded in C.

From the property (H.4), the Hilbert space H has a reproducing
kernel J,(p), i.e., f(A)=(f, J,) for every fe H. de Branges proved that
there exist real entire functions (i.e., entire functions with real values
on the real line.) P, Q such that

(1.1) L=y (P (D= DO}

We note here that, for any two pairs {P;, Q;} and {P,, Q,} satisfying
the relation (1.1), there exists a matrix S of SL(2, R) such that

(Py(D), 2,(A))=(P,(), @5(A)S.

By one of the pairs {P, Q}, we define the characteristic function E
of H;

(1.2) E(A)=P(A)+iQ(4).
Then it is easy to see that for any AeC,
|E()|>|E)I,

hence E(A) has no zeros in C,.

The ordering theorem of de Branges may be stated as follows.

Ordering theorem. (L. de Branges [2].) Let H, and H, be
K —B spaces included isometrically in the same space L2(c) for some
Radon measure ¢ on R'. Let E, and E, be the characteristic func-
tions for H, and H, respectively. Suppose that log*|E,[E,| is domi-
nated by a harmonic function on C.. Then either H,; contains H,
or H, contains H,.

This note is devoted to prove the above theorem, without assuming
that log*|E,/E,| is dominated by a harmonic function on €, but
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under the condition that both E, and E, are entire functions of mini-
mal exponential type, i.e., log|f(z)]=o0(|z]) as |z|—oco. Fortunately,
the key lemma of de Branges in proving the theorem is available for
any minimal exponential type entire functions.

Lemma 1.2. (L. de Branges [2], Lemma 8, p. 107.) Let f,(z) and
f2(2) be entire functions of minimal exponential type satisfying

min{|f,(2)], f2(2)]} S

= |Imz|

for all complex z. Then either f, or f, vanishes identically.
To make use of this lemma, we have to prove several lemmas.

Lemma 1.3. Let 6, and o, be complex Radon measures with finite
total variations on R'. Let f, and f, be entire functions such that

(1.3) log|fl2) =alzl,  k=1.2,

for every sufficiently large |z|. Suppose that

0,(dt)
t—2z

f@=£1)|" DD p, )

[+ o)

—0a0 -0

is an entire function. Then f(z) satisfies the estimate
log|f(z)|Salz|

for every sufficiently large |z|.

Proof. This lemma is essentially due to M. G. Krein ([3], Lemma
4.2). Let o denote one of o, and ¢,. Put

o(z)= Sm o(d)

-0 I—2Z

If we change the variables as
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then

o(2)= (O =15 " I5€0 <an),

—w e {

where 1(df)=0(dt). Hence

4varo 2varo
EXSIESS =

(I=1¢hH  1=1{]
for [{|<1 and so
log* [¢(Dl = c—log(1—[{]),

where ¢c=log*(2varg). Thus we have
2rn
S' S log* |(re!®)|rdrd0 < (c +3/4)r .
0Jo
The similar argument is possible also in €_, hence we obtain

log* | p(z)|
Sc——(m 2L dxay<eo.

From the above estimate and the condition (1.3), it is easy to see that

_( _log*|f(2)]
K——SC o8 LADL dxdy<oo.
Let B(a, r) denote the closed disk with its center at a and its radius
r. Since log*|f(z)| is subharmonic, we have an inequality

1

mr?

log*|f(2)| =

S log* |£({)| dxdy .
B(z,r)

4
(+r+121)* e have for any z

Noting for any (e B(z, r), 1< +[ID*

(I+r+]z])* log* | /({)]
log*|f(z)| s {LELELZDE] 0B LI yvay

IIA

(trtjsDt( T YO 4y,

nr? c (I+1CD*
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= U+r+z))*
nr?

K.

Hence, putting r=|z|, we have for every sufficiently large |z|,
log|f(2)|s¢lz|?.

From the assumption (1.3) and the definition of f(z), we see that
log* | f(z)] is dominated by alz| for every sufficiently large |z| along
any ray different from the real line. Since we have proved that f is an
entire function of at most order 2, Lemma 1.3 results from the Phragmén-
Lindelof theorem immediately.

Lemma 14. Let f(z) be a nontrivial entire function of minimal
exponential type. Then for any positive e, there exists a divergent
sequence {r,} such that r,r,. =1 as n—>o and log|f(z)|= —elz| for

|zl=rll‘
As for the proof, refer to Theorem 3.7.1 of Boas, Jr. [4].

Lemma 1.5. Let H be a K—B space and o be a measure on
R!' such that H is contained isometrically in L2?(c). Let h be an
element of L2(a) which is orthogonal to H and g be an entire function
of L%*(s). Then there exists an entire function F(w) satisfying

® SOgwW) =g (W) g an

- t—w

(1.4) sorFon =
for every f of H.

Proof. Let ¢(f)(w) denote the right hand side of (1.4). Taking
any two elements f, and f, of H, we have

Sim) {£2(Dg(w) — g (D) f(W)} [(1 = w)
=f,(w) {£1:(Ng(w) = fr(W)g()} /(1 —w)
+9W) { /i o) =W f1 (D} (1 —w),
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where the last term belongs to H. Hence the identity

Sim)d(f) W) =f(w)e(f,) (W)

follows. Choosing f, and f, so that they may not vanish at w, we
see that F(w)=¢@(f)(w)/f(w) is an entire function independent of f of
H. This completes the proof.

We remark here that the following three statements are equivalent.
(1) Every element of H is of minimal exponential type.
(2) The characteristic function E of H is of minimal exponential type.
(3) A4(2), which was defined in (H.4), has the estimate log4(4)=o(|A])
as |A|—- 0.
This comes from the formulas (1.1), (1.2) and the identity 4(1)=J,(1).

Our proof of the theorem depends entirely on the methods used
by de Branges [2]. It is, however, possible to simplify the proof by
consulting with L. D. Pitt [5].

Theorem. Let H, and H, be K—B spaces whose all elements
are of minimal exponential type. If H, and H, are contained iso-
metrically in a space L*(o), then either H, contains H, or H, con-
tains H,.

Proof. Let 4,(1) be the square of the norm of the linear function-
al H,3f-f(l) for k=1,2. Put p(A)=max{4,(A), 4,(4)} and choose
a measure T on R' such that Sm p(Dt(dt)y=1. Then for any feH,,
we have -

WO ROE IO CORHOELD

2" 1fwiaa,

for we have |f(DI2Z4D|f12Zp()|flI?. Thus the two measures
o and o+t define equivalent norms in both H; and H,. So we may
assume that o possesses the continuous part, and hence both H; and
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H, are not dense in L%(g). For each geH, and h, e H} with |g| <1
and [h;|£1, we may define an entire function F(w) by Lemma 1.5
such that

SwyFan)= " 1090 =900 504
holds for every f of H,. Since g and f are of minimal exponential
type, we see that, by Lemma 1.3, f(w)F(w) is also of minimal expo-
nential type. On the other hand, by Lemma 1.4, therc exists a diver-
gent sequence {r,} such that r/r,,,—1 as n—oo and log|f(z)|= —e¢|z|
for |z|=r,. Hence we have

log* [F(2)| élz]

for |z|=r, Applying the maximum principle to F, we find that F is
of minimal exponential type.

Similarly, for fe H, and h,e H} with ||| <1 and |[h,||<1, we may
define G(w) such that

(1.5) gw)G(w)= giooo g(t)f(ywt):‘g(w')f(t) /—I;U)O'(dt)

holds for every g of H,. For the same reason as above, G is of mini-
mal exponential type. By the Schwarz inequality in L2(g), we have

A(2)F(z)| éTJl’T (f(D) +19(2)1}

19(2)G(2)| gﬁ- {1AD +19(2)]},

where y=Imz. Hence we have
IYISIFGE)IT +1G(2)~t .
This implies that
min {|F(z)|, |G(z)[} <2]y|~" .

Therefore it follows from Lemma 1.2 that either F or G vanishes
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identically. Thus we may suppose that F(z)=0 for each geH, and
h,e H+. Unless H, is contained in H,, therc must exists a geH,
with g& H,. Since F(z)=0, we have

S—aow_

(1.6) S(w) Sw
Because g & H,, we may choose 1, with

g(w) )-w)

0% gw g (Do(dt)= lim Sw —

and

_ 2w
O—g_mf(t)hl(t)a(dt)— umg e

where lim should bc taken along a ray not coinciding with the real
line. By (1.6) we sce that

L fw) |
(1.7) ll_l:l; 90w) 0.

On the other hand, by (1.5) we have

IG(w)Ié'—'g((":)))HS 00 a(dz)\+\g°_°wﬂ§)@)_a(dz) :

Hence from (1.7) and the dominated convergence theorem it follows that

lim |G(w)|=0

for any f of H,. Since G is of minimal exponential type, G must
vanish identically. Hence we have

S:W% O @o(dn =L ((‘fv))g g0y (Do(dt) .

So, by (1.7) it is evident that

(" rwmmetn=o
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holds for every h,e H3 and feH,. This implies that f coincides with
some element of H, almost everywhere with respect to o. Recalling
we have assumed that ¢ has the continuous part, we may conclude that
f itself belongs to H,. This completes the proof.

In conclusion, we remark a corollary of our theorem. We define
a reflection operator R by

Rf(z)=f(—-2).

Corollary. Let H, and H, be K—B spaces contained isometrically
in a space L%(6). Assume that every element of H, and H, satisfies a
growth condition

(1.8) log|f(2)|=0(]z|?)

as |z|-oo. If both H, and H, have nontrivial domains of R, then
cither H cH, or HycH,.

Proof. Let M, (k=1,2) be a pre-Hilbert spacc which is equal as
set to the domain of R in H, and whose inner product is defined by

s D= Du +(Rf, Ry, -

Since R is a closed operator, A, bccomes a Hilbert space. It is
obvious that each H, satisfies the axioms (H.l)~(H.4). Hence H,
turns to a K—B space contained isometrically in L2(r), where t(dr)
=o(dt)+o(—dt). In each space H,, R works as a unitary operator.
In this case, de Branges [2] proved that there exists a unique K—B
space (H,), such that f(z)-f(z?) is an isometric transformation from
(A,), onto the even elements of H,. (see Problem 182, p.168.) We
may assume that there exists a nontrivial even element of H, for the
following reason. Take any nontrivial element f of H,. If f is odd,
then f(0)=0. So we may take f(z)/z of H, in place of f, which is
an even function. Otherwise, we have only to put g=f+Rf. Since
(A, is contained isometrically in L2(v), where v(dt)=0(,/[d1]), and
the elements are of minimal exponential type by the assumption (1.8),
we may conclude from our theorem that either (H,),=(H;), or
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(A,), =(H,),. Therefore there must exist a nontrivial function belong-
ing to both H, and H,. Since, for any f of H,, log*|f/E. is domi-
nated by a harmonic function on C, (see de Branges [2], p. 50),
so is log*|E,/E,|. We have used here the fact that, for a holomorphic
function f on C,, log*|f| has a harmonic majorant on €, if and
only if it is the quotient of two bounded holomorphic functions on C,
(see P. L. Duren [6]). Now the ordering theorem of de Branges gives
our corollary.

DEPARTMENT OF MATHEMATICS
KyoTo UNIVERSITY.
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