§ 1. Introduction

In this paper we shall consider the family of meromorphic quadratic differentials with only simple poles on a compact Riemann surface. The quadratic differentials with closed trajectories are in a sense exceptional and have several extremal properties in above family (cf. [4], [8], [9]). Strebel ([10]) stated under a certain assumption that they are dense in the family. It is the first purpose of this paper to get rid of that assumption and show a new complete proof. The proof will be shown in §3. Relating to this fact we show in §4 that a holomorphic abelian differential whose square has closed trajectories is not always proportional to a holomorphic reproducing differential.

Strebel also considered the relation between the Teichmüller theory and the contractions of holomorphic quadratic differentials with closed trajectories. In the case of the unit disk with a finite set of preassigned points he gave successful results ([8]). As an application of our Theorem 1, the similar close relations between them are shown (§5) in the case of compact Riemann surfaces.

The author wishes to express his gratitude to Professor Y. Kusunoki for his valuable advice and encouragement.
§ 2. Preliminaries

(1) Notations and terminologies. Let R be a compact Riemann surface of genus $g(>0)$. We write

$\mathcal{A} = \mathcal{A}_1(R) = \{\theta: \theta$ is a holomorphic abelian differential on $R\}.$

$\mathcal{A}_2 = \mathcal{A}_2(R) = \{\phi: \phi$ is a holomorphic quadratic differential on $R\}.$

$A'_2 D = A'_2 D(R) = \{\theta^2: \theta \in \mathcal{A}_1\}$

$A_2 D = A_2 D(R) = \{\phi: \phi$ is a meromorphic quadratic differential on R such that $\|\phi\| = \int_R |\phi| < +\infty.\}$

We note that $\phi \in A_2 D$ may have only simple poles. Now let ϕ be such a meromorphic quadratic differential on R. The maximal regular curve α on R along which $\phi > 0$ (or < 0) is called a trajectory (or orthogonal trajectory) of ϕ. If α tends to a finite critical point (i.e., zero point or simple pole) of ϕ in at least one of its direction, then α is called a critical trajectory. Otherwise it is called a regular trajectory. If a regular trajectory is not a closed curve it is called to be divergent.

A quadratic differential ϕ is said to have the closed trajectories if all of its regular trajectories are closed. Here we define several subfamilies of $A_2 D$ and \mathcal{A}_1.

$CA_2 D = CA_2 D(R) = \{\phi \in A_2 D: \phi$ has closed trajectories.$\}$

$CA'_2 D = CA'_2 D(R) = A'_2 D \cap CA_2 D$

$C\mathcal{A}_1 = C\mathcal{A}_1(R) = \{\theta \in \mathcal{A}_1: \theta^2 \in CA_2 D\}$

$C\mathcal{A}_2 = CA_2 \cap \mathcal{A}_2$

A simply connected domain D on R is called a trajectory rectangle of ϕ if the following conditions are satisfied:

(i) ϕ is holomorphic and non-zero on D
Quadratic differentials

(ii) $\zeta = \sqrt[4]{\phi}$ is univalent on D and maps D onto a rectangle with horizontal and vertical sides in the ζ-plane.

and a trajectory rectangle D is called regular if ϕ is holomorphic and non-zero on \bar{D} (the closure is taken in \mathbb{R}.)

Next the line element $|\phi|^\frac{1}{2}$ defines a metric on \mathbb{R}. In particular the length of a rectifiable curve γ measured by this metric is called ϕ-length of γ, and is denoted by $|\gamma|_{\phi}$ or simply $|\gamma|$.

Finally let Γ_h be the space of real harmonic differentials on \mathbb{R}. It is well known that for a fixed 1-cycle γ, there exists a unique $\sigma_{\gamma} \in \Gamma_h$ such that

$$\int_{\gamma} \omega = (\omega, \sigma_{\gamma}) \quad \text{for every } \omega \in \Gamma_h.$$

This σ_{γ} is called the reproducing differential for γ. And the holomorphic differential $\theta_{\gamma} = \sigma_{\gamma} + i*\sigma_{\gamma}$ is called the holomorphic reproducing differential for γ.

(II) Strebel's main results. The element of CA_2D has several extremal properties, some of which were proved by Strebel ([8], [9]). To state them explicitly we need some more definitions.

Definitions. Let $\phi \in CA_2D$ and $\{P_j\}_{j=1}^n$ be a finite set of points on \mathbb{R} including the poles of ϕ. If we cut \mathbb{R} along all critical trajectories of ϕ and closed regular trajectories of ϕ through P_j, then we get a system $\mathbb{R}(\phi)$ of ring domains (i.e. doubly connected domains) on \mathbb{R}, which is called the characteristic ring domains of ϕ on $\tilde{\mathbb{R}} = \mathbb{R} - \{P_j\}_{j=1}^n$.

A system of non intersecting Jordan closed curves $\{\gamma_i\}_{i=1}^n$ on $\tilde{\mathbb{R}} = \mathbb{R} - \{P_j\}_{j=1}^n$ is called admissible if no two of them are freely homotopic on $\tilde{\mathbb{R}}$ and none is freely homotopic to zero or to a Jordan closed curve surrounding only one point of $\{P_j\}_{j=1}^n$ on $\tilde{\mathbb{R}}$.

We say that a system of non overlapping ring domains $\{R_k\}$ on $\tilde{\mathbb{R}}$ belongs to an admissible curve system $\{\gamma_i\}_{i=1}^n$ if for every R_k a Jordan closed curve $\gamma'_k \subset R_k$ separating its boundary components is freely homotopic to a γ_i of $\{\gamma_i\}_{i=1}^n$ and $\gamma'_n \sim \gamma'_m$ for $n \sim m$, where \sim
means that α is freely homotopic to β on \hat{R}.

Theorem A. Given an admissible curve system $\{\gamma_i\}_{i=1}^p$ on $\hat{R}=R-\{P_j\}_{j=1}^f$ and a set of numbers $\{m_i\}_{i=1}^p$ such that every m_i is nonnegative and not all of them equal to zero, then there exists a $\phi_{\tilde{m}} \in CA_2D$ which is holomorphic on \hat{R} and whose characteristic ring domains $\{R_i\}_{i=1}^p$ on \hat{R} (for R_i corresponds to γ_i, and may be an empty set.) belongs to the system $\{\gamma_i\}_{i=1}^p$, such that the moduli M_i of R_i satisfy the condition

$$M_1: M_2: M_3: \cdots: M_p = m_1: m_2: m_3: \cdots: m_p$$

(Here $M_i=0$ for the empty R_i). This solution $\phi_{\tilde{m}}$ is uniquely determined up to a positive constant factor.

Now give an admissible curve system $\{\gamma_i\}_{i=1}^p$ on $\hat{R}=R-\{P_j\}_{j=1}^f$ and let

$$E^p = \{\tilde{m} = (m_1, m_2, \ldots, m_p) = (m_i) : m_i \geq 0, \sum_{i=1}^p m_i^2 = 1\}.$$

Then for every $\tilde{m} \in E^p$ there exists a $\phi_{\tilde{m}} (\in CA_2D)$ as in Theorem A, and the vector $\tilde{M} = (M_i) = |M| \cdot \tilde{m}$ is uniquely determined, which is called the moduli vector of $\phi_{\tilde{m}}$. As \tilde{m} varies, \tilde{M} describes a surface in R^p, which is denoted by $\mathcal{A}\{\gamma_i\}$ and called the moduli surface of $\{\gamma_i\}$ (cf. [9], [11]).

Theorem B. The vector \tilde{M} depends continuously on its direction \tilde{m}. And let \tilde{M} be an interior point of $\mathcal{A} = \mathcal{A}\{\gamma_i\}$ and let

$$\Pi = \{\tilde{X} \in R^p, such that the scalar product (\tilde{X} - \tilde{M}, \tilde{a}) = 0\}$$

where $\tilde{a} = (a_i^2), a_i = |\gamma_i|$. Then Π is the tangent plane and every point $\tilde{M}' \in \mathcal{A}$ lies on the same side of Π as the origin. Π has exactly the point \tilde{M} in common with \mathcal{A}, and varies continuously with \tilde{M}.

§ 3. **On Strebel's conjecture**

We start with several lemmas.
Lemma 1. Let $\theta \in \overline{A}_1$. If there exists a real constant C such that for every 1-cycle γ on R, $\text{Im} \left(\frac{1}{C} \int_{\gamma} \theta \right)$ is an integer, then $\theta \in CA_1$.

Proof. If $\phi = \theta^2 \notin CA_2D$, then there exists a divergent trajectory α, so we may assume that for a point $P \in \alpha$ the trajectory ray $\alpha^+(t)$ ($0 \leq t < +\infty$) starting from P is divergent. Now the cluster set of $\alpha^+(t)$;

$$A^+ = \bigcap_{\alpha} \{ \alpha^+(t) : t \geq a \}$$

is a non empty closed set on R. Let $P_0 \in A^+$ be a regular point of ϕ, D be a regular trajectory rectangle such that P_0 is mapped to the center of the rectangle which is the image of D on the ζ-plane, and β be the orthogonal trajectory in D through P_0. Then there exists a sequence $\{P_n\} \subset \alpha^+ \cap \beta$ such that P_n converges to P_0 and $P_n \approx P_m$ for $n \approx m$. (cf. [5], [10])

Now we define

$$C_{n,m} = [P_n \rightarrow P_m, \alpha^+] \cup [P_m \rightarrow P_n, \beta],$$

where $[P \rightarrow Q, \gamma]$ denote the curve from P to Q along γ, then $C_{n,m}$ is a closed curve on R. Hence

$$\int_{[P_n \rightarrow P_m, \beta]} |\theta| = |\text{Im} \int_{[P_n \rightarrow P_m, \beta]} \theta|$$

$$= |\text{Im} \int_{C_{n,m}} \theta| \geq C > 0.$$

While, the integral gives the distance between P_n and P_m in the ζ-plane, so must converges to zero, which is a contradiction. Thus $\phi \in CA_2D$. q.e.d.

Corollary 1. (cf. [1]) Let γ be an arbitrary 1-cycle on R. Then the holomorphic reproducing differential θ_γ for γ belongs to CA_1.

Proof. It suffices to recall that for an arbitrary 1-cycle δ
\[\text{Im} \int_\delta \theta' = \gamma \times \delta \]

is an integer. (cf. [7]) q.e.d.

Remark. Every \(\theta \in \tilde{A}_1 \) satisfying the condition in Lemma 1 is proportional to a holomorphic reproducing differential for a suitable \(\gamma \) (i.e. \(\theta = C \theta_\gamma, C: \text{real} \)). So Lemma 1 and Corollary 1 state the same thing.

Example. We consider the case of genus one. Given \(\theta_0 \in \tilde{A}_1 \), then a branch of the inverse of \(\zeta = \int \theta_0 \) can be considered a projection mapping from the \(\zeta \)-plane to \(R \). Let \(\{A_1, B_1\} \) be a canonical homology base, \(\omega_1 = \int_{A_1} \theta_0 \), and \(\omega_2 = \int_{B_1} \theta_0 \), then we can take the parallelogram with vertices \(0, \omega_1, \omega_2, \) and \(\omega_1 + \omega_2 \) as a fundamental region of \(R \).

For an arbitrary \(\theta(\equiv 0) \in \tilde{A}_1 \), there exists a complex constant \(C \) such that \(\theta = C \theta_0 \), so any trajectory of \(\theta^2 \) must be lifted to a line which is parallel to the line

\[\{ \zeta: \text{arg } \zeta \equiv -\text{arg } C \pmod{\pi} \} \]

on the \(\zeta \)-plane. Hence \(\theta \in C \tilde{A}_1 \) if and only if there exist integers \(n, m \) such that

\[\text{arg } C \equiv -\text{arg } (m \omega_1 + n \omega_2) \pmod{\pi}. \]

And it can be shown that this is the case if and only if \(\theta = k \theta_{mA_1 + nB_1} \) for a suitable real constant \(k \). Thus we conclude that \(C \tilde{A}_1 \) consists of essentially only holomorphic reproducing differentials.

Lemma 2. The set \(C \tilde{A}_1 \) is dense in \(\tilde{A}_1 \) with respect to the Dirichlet norm.

Proof. Let \(\{A_i, B_i\}_{i=1}^q \) be a canonical homology base on \(R \), then \(\{\theta_{A_i}, \theta_{B_i}\}_{i=1}^q \) is a base of the real vector space \(\tilde{A}_1 \), for if \(\int_{A_i} \theta \) and \(\int_{B_i} \theta (\theta \in \tilde{A}_1) \) are real for every \(i \), then \(\theta \) is identically zero. Hence for every \(\theta \in \tilde{A}_1 \)
Quadratic differentials

\[\theta = \sum_{i=1}^{g} \{ c_i \theta_A + d_i \theta_B \}, \]

where \(c_i = \text{Im} \int_{B_i} \theta, \quad d_i = -\text{Im} \int_{A_i} \theta. \) For every \(i, \) take two sequences of rational numbers \(\{ c_{i,n} \}_{n=1}^{\infty}, \{ d_{i,n} \}_{n=1}^{\infty} \) such that

\[\lim_{n \to \infty} c_{i,n} = c_i, \quad \lim_{n \to \infty} d_{i,n} = d_i, \]

and define

\[\theta_n = \sum_{i=1}^{g} \{ c_{i,n} \theta_A + d_{i,n} \theta_B \}, \]

then \(\theta_n \in \bar{A}_1 \) (by Lemma 1) and

\[\| \theta - \theta_n \| \leq \sum_{i=1}^{g} \{ |c_{i,n} - c_i| \cdot \| \theta_A \| + |d_{i,n} - d_i| \cdot \| \theta_B \| \} \]

\[\longrightarrow 0 \quad \text{as} \quad n \to \infty, \]

which implies the assertion.

Lemma 3. Let \(\{ \theta_n \} \subset \bar{A}_1 \) be a sequence converging to \(\theta \in \bar{A}_1 \) with respect to the Dirichlet norm. Then

\[\lim_{n \to \infty} \| \theta_n^2 - \theta^2 \| = 0. \]

Proof.

\[\| \theta_n^2 - \theta^2 \| = \int_R |\theta_n^2 - \theta^2| \]

\[\leq \left\{ \int_R |\theta_n - \theta|^2 \cdot \int_R |\theta_n + \theta|^2 \right\}^{\frac{1}{2}} \]

\[\leq 2\| \theta_n - \theta \| \cdot \{ \| \theta_n \|^2 + \| \theta \|^2 \}^{\frac{1}{2}}. \]

Here \(\| \theta_n \| \) is bounded, so \(\lim_{n \to \infty} \| \theta_n^2 - \theta^2 \| = 0. \)

Corollary 2. The set \(CA_2 \) is dense in \(A_2 D \) with respect to the \(\| \| \)-norm.
Lemma 4. Let ϕ_n, ϕ belong to \tilde{A}_2. Then $\lim_{n \to \infty} \| \phi_n - \phi \| = 0$ if and only if ϕ_n converges locally uniformly to ϕ; i.e. for every $P \in \mathbb{R}$ and every local parameter z ($|z| < 1, z(P) = 0$), ϕ_n converges uniformly to ϕ on $\{|z| \leq r\}$ for every positive $r < 1$.

In particular zero points of ϕ_n converge to zero points of ϕ including multiplicity.

Proof. ([8], [11]) Let $f(z)$ be a regular function on $\{|z| \leq 1\}$ and $|\xi| \leq r$, then

$$|f(\xi)| \leq \frac{1}{\pi(1-r)^2} \int_{|z| \leq 1} |f| \, dx \, dy \quad (z = x + iy),$$

which implies the sufficiency.

To show the converse for every $P \in \mathbb{R}$ we choose a local parameter z_p on $\{|z_p| \leq 1\}$ such that $z_p(P) = 0$, then there exists a finite set of points $\{P_i\}$ such that $\cup \{|z_p| < r\}$ already covers \mathbb{R} for any given r ($0 < r < 1$). Hence for any $\varepsilon > 0$ there exists an integer $n(\varepsilon)$ such that for all $n \geq n(\varepsilon)$ and all i

$$|\phi_n - \phi| < \varepsilon \quad \text{on} \quad \{|z_p| < r\}.$$

Thus we conclude that

$$\lim_{n \to \infty} \| \phi_n - \phi \| \geq \lim_{n \to \infty} \sum_i \int_{|z_p| \leq r} |\phi_n - \phi| = 0. \quad \text{q.e.d.}$$

Now we will prove the following

Theorem 1. The set CA_2D is dense in A_2D with respect to the $\| \cdot \|$-norm. Moreover if $\phi \in A_2D$ has poles at $\{P_i\}_{i=1}^r$ then ϕ can be approximated by the elements of CA_2D with poles at $\{P_i\}_{i=1}^r$.

Proof. Let ϕ be any element of A_2D, then we will show that ϕ can be approximated by the elements of CA_2D. Now let $\left\{P_i\right\}_{i=1}^r$ be the set of poles and zeros of ϕ of odd order. This number r is even since $\deg \phi = 4g - 4$ by Riemann-Roch's theorem.

1) Suppose $r > 0$. Then we can construct a two sheeted covering
surface \bar{R} satisfying following conditions;

1. \bar{R} has branch points over $\{P_i\}_{i=1}^g$.
2. There exist the sheet interchange $J: \bar{R} \rightarrow \bar{R}$ and the projection mapping $\Pi: \bar{R} \rightarrow R$ such that $\Pi \circ J = \Pi$.
3. There exists canonical homology bases $\{A_i, B_i\}_{i=1}^g$ and $\{\tilde{A}_i, \tilde{B}_i\}_{i=1}^{2g+\frac{g^2-g+1}{2}}$ on R and \bar{R} respectively such that

\[
\begin{align*}
\Pi(\tilde{A}_i) &= A_i, & \Pi(\tilde{B}_i) &= B_i \\
J(\tilde{A}_i) &= \tilde{A}_{g+i}, & J(\tilde{B}_i) &= \tilde{B}_{g+i} \\
J(\tilde{A}_{2g+i}) &= -\tilde{A}_{2g+j}, & J(\tilde{B}_{2g+j}) &= -\tilde{B}_{2g+j} & 1 \leq j \leq \frac{r}{2} - 1.
\end{align*}
\]

x) First let the square root of ϕ can be lifted to an abelian differential ϑ on \bar{R}. In this case $\vartheta \circ J = -\vartheta$ and we can take local parameters z_i and \tilde{z}_i at P_i and $\tilde{P}_i = \Pi^{-1}(P_i)$ on R and \bar{R} respectively such that $z_i = \pi(\tilde{z}_i) = \tilde{z}_i^2$, then if ϕ has the expansion

\[(c_{2m+1}z_i^{2m+1} + c_{2m+2}z_i^{2m+2} + \cdots)dz_i^2 \quad \text{at} \quad P_i \]

then ϑ has the expansion

\[(\tilde{c}_{2m+2}z_i^{2m+2} + \tilde{c}_{2m+3}z_i^{2m+3} + \cdots) \tilde{d}z_i \quad \text{at} \quad \tilde{P}_i, \]

Here $2m+2 \geq 0$, for ϕ may have only simple poles (i.e. $m \geq -1$). Thus $\vartheta \in \tilde{A}_1(\bar{R})$.

It is well known that the real vector space $\tilde{A}_1(\bar{R})$ has the orthogonal decomposition with respect to the Dirichlet norm such that

\[\tilde{A}_1(\bar{R}) = \tilde{A}_0 + \tilde{A}_e\]

where $\tilde{A}_0 = \{\theta \in \tilde{A}_1(\bar{R}): \theta \circ J = -\theta\}$ and $\tilde{A}_e = \{\theta \in \tilde{A}_1(\bar{R}): \theta \circ J = \theta\}$.

In this case we can take

\[
\begin{align*}
\theta_{\tilde{A}_{g+i}}, & \quad \theta_{\tilde{B}_{g+i}} & 1 \leq i \leq g \\
\theta_{\tilde{A}_{2g+j}}, & \quad \theta_{\tilde{B}_{2g+j}} & 1 \leq j \leq \frac{r}{2} - 1
\end{align*}
\]
as a base of \(\tilde{A}_0 \), and \(\tilde{\theta} \) can be approximated by the elements of \(\tilde{A}_0 \cap C\tilde{A}_1(\tilde{R}) \) as in the proof of Lemma 2. Now we show that for any \(\tilde{\omega} \in \tilde{A}_0 \cap C\tilde{A}_1(\tilde{R}) \) \(\tilde{\omega}^2 \cdot \pi^{-1} \) belongs to \(CA_2D(R) \), which shows the assertion. First of all

\[
\| \tilde{\omega}^2 \cdot \pi^{-1} \|_R = \frac{1}{2} \| \tilde{\omega}^2 \|_R + \frac{1}{2} \| \tilde{\omega} \|_R^2 < +\infty
\]

Hence \(\tilde{\omega}^2 \cdot \pi^{-1} \in A_2D(R) \) and if \(\lim_{n \to \infty} \| \omega_n - \omega \|_R = 0 \), then

\[
\lim_{n \to \infty} \| \tilde{\omega}_n^2 \cdot \pi^{-1} - \tilde{\omega}^2 \cdot \pi^{-1} \|_R = 0.
\]

Next for any point \(P \in R \) such that the trajectory \(\gamma \) of \(\tilde{\omega}^2 \cdot \pi^{-1} \) through \(P \) is regular, the trajectory \(\tilde{\gamma} \) of \(\tilde{\omega}^2 \) through \(\tilde{P} \in \pi^{-1}(P) \) is also regular and hence closed. This implies that \(\gamma \) is closed, so \(\tilde{\omega}^2 \cdot \pi^{-1} \in CA_2D(R) \).

Now if \(\phi \) has poles \(\{ P_i \} \), then \(\tilde{\theta} \) is non-zero at \(\tilde{P}_i \) as shown above, so by Lemma 4 the approximating sequence \(\{ \tilde{\theta}_n \} \) can be taken to be also non-zero at \(\tilde{P}_i \) for every \(n \). This implies that every \(\tilde{\theta}_n^2 \cdot \pi^{-1} \) has poles \(\{ P_i \} \).

\(\beta) \) Next suppose that the square root of \(\phi \) can not be lifted to any abelian differential on \(\tilde{R} \). (Of course it is a Prym differential on \(\tilde{R} \).) In this case we take a two sheeted covering surface \(\tilde{R} \) over \(R \) on which the square root of \(\phi \) can be lifted to an abelian differential \(\tilde{\theta} \). Then there exist the sheet interchange \(J \) and the lift \(\tilde{J} \) of \(J \) such that \(\tilde{\theta} \cdot \tilde{J} = -\tilde{\theta} \).

(i.e. \(\tilde{J} : (P, \sqrt{\phi}) \longrightarrow (P, -\sqrt{\phi}) \) \(P \in \tilde{R} \)

\(\tilde{J} : (P, \sqrt{\phi}) \longrightarrow (J(P), \sqrt{\phi}) \) or \((J(P), -\sqrt{\phi}) \) \(P \in \tilde{R} \)

so that \(\tilde{\theta} \cdot \tilde{J} = -\tilde{\theta} \).)

Now let \(\{ \tilde{A}_i, \tilde{B}_i \}_{i=1}^{g+r-3} \) be a homology base on \(\tilde{R} \), and

\(\tilde{A}_0 = \{ \tilde{\omega} \in \tilde{A}_1(\tilde{R}) : \tilde{\omega} \cdot \tilde{J} = -\tilde{\omega}, \tilde{\omega} \cdot \tilde{J} = -\tilde{\omega} \} \).

Then \(\tilde{\theta} \in \tilde{A}_0 \), and the system of holomorphic reproducing differentials \(\{ \theta_{\mu}, \theta_{\nu} \}_{i=1}^{g+r-3} \) with
Quadratic differentials

\[\gamma_i = \{ \hat{A}_i - \hat{J}(\hat{A}_i) \} - \hat{J}(\hat{A}_i - \hat{J}(\hat{A}_i)) \]

\[\delta_i = \{ \hat{B}_i - \hat{J}(\hat{B}_i) \} - \hat{J}(\hat{B}_i - \hat{J}(\hat{B}_i)) \]

spans the real vector space \(\hat{A}_0 \), so \(\hat{\theta} \) can be approximated by the elements of \(\hat{A}_0 \cap C\hat{A}_1(\mathcal{R}) \). By the similar argument as in I)–\(\alpha \), we can thus prove the assertion for this case.

II) Finally suppose \(r=0 \). In this case \(\phi \in \hat{A}_2(\mathcal{R}) \). If the square root of \(\phi \) is an abelian differential on \(\mathcal{R} \), then \(\phi \in A_2'(R) \), so \(\phi \) can be approximated by the elements of \(CA_2'(R) \). (cf. Corollary 2) Otherwise, taking the two sheeted covering surface of \(\mathcal{R} \) on which the square root of \(\phi \) can be lifted to an abelian differential, the assertion can be shown as in I).

Thus Theorem is completely proved. q.e.d.

§ 4. The structure of \(C\hat{A}_1 \)

In § 3 we have seen that \(C\hat{A}_1 \) consists of holomorphic reproducing differentials multiplied by a real constant in the case of genus one. But this is not true if \(g \geq 2 \). Theorem 2 in the sequel includes this assertion.

Lemma 5. Let \(\theta \in \hat{A}_1 \) and \(\phi=0^2 \). Suppose \(\phi \) has a closed trajectory \(\gamma \), then there exists an \(\varepsilon > 0 \) such that for every \(\tilde{\theta} \in \hat{A}_1 \) satisfying

\[\| \theta - \tilde{\theta} \| < \varepsilon, \int_{\gamma} \tilde{\theta}; \text{real}, \]

\(\tilde{\theta}^2 \) has a closed trajectory \(\tilde{\gamma} \), which is freely homotopic to \(\gamma \) on \(\mathcal{R} \).

Proof. The set of all closed trajectories \(\gamma' \) of \(\phi \) such that \(\gamma' \sim \gamma \) makes a ring domain on \(\mathcal{R} \). Cutting it by an orthogonal trajectory \(\beta \), we have a trajectory rectangle \(D \). Let \(P_0 \) be an intersecting point of \(\gamma \) and \(\beta \). \(D \) is mapped by \(\zeta = \int_{P_0} \theta \) onto \(\{(x, y): 0 < x < a, b_2 < y < b_1\} \) \((\zeta = x + iy) \). Let \(\delta \) be a positive constant such that

\[0 < 2\delta < \min \{ b_1, -b_2 \} \]
and D' be the trajectory rectangle corresponding to the rectangle

$$\{(x, y): 0 < x < a, b_2 + \delta < y < b_1 - \delta\}$$

on the ζ-plane. Then by Lemmas 3 and 4 there exists an $\varepsilon > 0$ such that for every $\bar{\theta}$ satisfying $\|\theta - \bar{\theta}\| < \varepsilon$, there holds

1. $\bar{\theta} \neq 0$ on D', and
2. $|\zeta(P) - \tilde{\zeta}(P)| \leq \frac{1}{2} \min\{b_1 - 2\delta, -(b_2 + 2\delta)\}$ on D', where $\tilde{\zeta}(P) = \frac{1}{\bar{\theta}}$.

Now let $F_1 = \{P \in D': \text{Im} \zeta(P) = b_1 - 2\delta\}$, then

$$\inf_{P \in F_1} \{\text{Im} \tilde{\zeta}(P)\} \geq (b_1 - 2\delta) - \inf_{P \in F_1} |\zeta(P) - \tilde{\zeta}(P)| \geq \frac{1}{2} (b_1 - 2\delta) > 0.$$

Similarly let $F_2 = \{P \in D': \text{Im} \zeta(P) = b_2 + 2\delta\}$, then

$$\sup_{P \in F_2} \{\text{Im} \tilde{\zeta}(P)\} \leq -\frac{1}{2} (b_2 + 2\delta) < 0.$$

Moreover ξ maps D' locally conformally into the ζ-plane and a pair of points on the boundary of D' which are the same point on R and mapped to a pair of points on the ζ-plane which have the same imaginary part, for $\bar{\theta}$ is real. Images $\xi(F_1)$ and $\xi(F_2)$ do not intersect with the real axis of the ζ-plane, so lifting the map $\xi = \int_{P_0}^{P} \bar{\theta}$ to the universal covering surface U of $\text{Int.} D'$, the inverse of it can be continued analytically from P_0 along the real axis of the ζ-plane. But here $\{P \in D': \text{Im} \tilde{\zeta}(P) = 0\}$ is a closed trajectory of $\bar{\theta}^2$, which is obviously freely homotopic to γ on R. q.e.d.

Lemma 6. ([8], [11]) Given $\{\gamma_i\}$, let $\phi_n \in CA_2D$, the moduli vector of which belongs to the moduli surface $\mathcal{M}\{\gamma_i\}$ for every n, and $\|\phi_n\| = 1$. If $\lim_{n \to \infty} \phi_n$ exists and is equal to ϕ, then $\phi \in CA_2D$, $\|\phi\| = 1$, and the moduli vector of ϕ belongs to $\mathcal{M}\{\gamma_i\}$.

Here we recall that the maximal number \(N \) of elements in an admissible curve system on \(\hat{R} = R - \{ P_j \}_{j=1}^r \) is \(N = 3(g - 1) + r \) except for \(g = 1, r = 0 \) (then \(N = 1 \)) and \(g = 0, r \leq 3 \) (then \(N = 0 \)).

Lemma 7. Let \(\{ \gamma_i \} \) be an admissible curve system. If \(\{ \tilde{\gamma}_j \}_{j=1}^k \) is a mutually homologically independent subsystem of \(\{ \gamma_i \} \), then \(k \leq g \). Moreover, the set

\[
D\{ \gamma_i \} = \{ \theta \in C\bar{A}_1 : \text{the moduli vector of } \theta^2 \text{ belongs to } \mathcal{M}\{ \gamma_i \} \}
\]

is contained in a real \(g \)-dimensional manifold.

Proof. Suppose \(k \geq g \). We cut \(R \) along \(\tilde{\gamma}_j \) \((j = 1, \ldots, g)\), then we have a planer domain whose boundary components are \(\{ \tilde{\gamma}_j, -\tilde{\gamma}_j \}_{j=1}^g \). Hence every \(\gamma_i \) is homologous to \(\sum_{j=1}^g m_{i,j} \tilde{\gamma}_j \) with suitable integers \(m_{i,j} \). Thus we have proved that \(k \leq g \).

Next we note that for the moduli vector of the element of \(D\{ \gamma_i \} \), the normal vector \((a_i) \) (cf. Theorem B) is uniquely determined by the periods associated with \(\tilde{\gamma}_j \) \((j = 1, \ldots, k)\). Thus the assertion follows from above fact. (cf. [11] Theorem 15.5.) q.e.d.

While, \(D\{ \gamma_i \} \) is not so small. Actually we have the following

Theorem 2. There exists an admissible curve system \(\{ \gamma_i \} \) such that \(D\{ \gamma_i \} \) contains a real \(g \)-dimensional manifold \(M \), which is contained in

\[
P\{ A_i \} = \{ \theta \in C\bar{A}_1 : \theta = \sum_{i=1}^g c_i A_i, \text{ for real } c_i \}
\]

for a suitable canonical homology base \(\{ A_i, B_i \}_{i=1}^g \) on \(R \).

Proof. Let \(\theta_0 \in C\bar{A}_1 \) be fixed, \(\phi = \theta_0^2 \), and suppose the moduli vector of \(\phi \) is an interior point of \(\mathcal{M}\{ \gamma_i \} \). We take such a subsystem \(\{ \tilde{\gamma}_j \}_{j=1}^k \) of \(\{ \gamma_i \}_{i=1}^r \) as in Lemma 7, and define

\[
M(\theta_0) = \{ \theta \in C\bar{A}_1 : \int_{\tilde{\gamma}_j} \theta \text{ is real for every } j (1 \leq j \leq k) \}
\]
Then $M(0_0)$ is a real $(2g - k)$-dimensional manifold.

By Lemma 5 there exists a neighbourhood $U(0_0)$ of 0_0 in $M(0_0)$ such that for every $0 \in U(0_0)$ \{\theta'\}^2$ has closed trajectories $\{\gamma_i\}_{i=1}^n$ such that $\gamma'_i \sim \gamma_i$ for every i.

Case (1): $k = g$. We make a canonical homology base $\{A_i, B_i\}_{i=1}^g$ such that $A_i = \tilde{\gamma}_i$ for every i.

(α) Suppose $U(0_0) \cap C\tilde{A}_1$ is contained in $D\{\gamma_i\}$. In this case $M(0_0) = P\{A_i\}$ so by Lemma 2 and 6 we obtain $U(0_0) \subset C\tilde{A}_1$. Thus $M = U(0_0)$ has required properties.

(β) Suppose there exists a $\tilde{\gamma}_1 \in U(0_0) \cap C\tilde{A}_1$ such that $\tilde{\gamma}_1 \notin D\{\gamma_i\}$. Then $\tilde{\gamma}_1$ has a closed trajectory γ such that $\gamma \sim \gamma_i$ for every i. In this case, $\int_\gamma \theta'$ is real for every $\theta' \in U(0_0)$. So by Lemma 5 there exists a neighbourhood $U(\tilde{\gamma}_1)$ of $\tilde{\gamma}_1$ in $M(0_0)$ (which is contained in $U(0_0)$) such that for every $\theta'' \in U(\tilde{\gamma}_1)$ \{\theta''\}^2$ has a closed trajectory γ' such that $\gamma' \sim \gamma$.

If every $\theta' \in U(\tilde{\gamma}_1) \cap C\tilde{A}_1$ belongs to $D\{\gamma, \gamma_i\}$ then we can reduce the proof to Case (1)–(α), and if not, we start from Case (1)–(β) with $U(\tilde{\gamma}_1)$ instead of $U(0_0)$ and repeat this process. Such procedure ends in finite steps, because the number of elements of an admissible curve system on R is bounded by $3(g-1)$ (or 1 if $g = 1$). And finally the proof is reduce to Case (1)–(α).

Case (2): $k < g$. First suppose that every trajectory γ of the square of every element of $U(0_0) \cap C\tilde{A}_1$ is homologous to $\sum_{j=1}^\infty m_j \tilde{\gamma}_j$ with suitable integers m_j (which of course depends on γ). Then by the same argument as in Case (1)–(β) we find a non-empty open set U in $M(0_0)$ such that $U \subset C\tilde{A}_1$ and for a suitable curve system $\{\gamma_i\}$ U is contained in $D\{\gamma_i\}$ which is contained in a real g-dimensional manifold by Lemma 7. But $M(0_0)$ is $(2g - k)$-dimensional, so is U, which is a contradiction, because $k < g$.

Hence there exists a $\theta'_0 \in U(0_0) \cap C\tilde{A}_1$ such that $\{\theta'_0\}^2$ has a closed trajectory γ which is homologously independent of $\{\tilde{\gamma}_j\}_{j=1}^k$. Thus if we take this θ'_0 instead of θ_0 from the beginning, the number k increases by at least 1. Repeating this argument until we have $k = g$, then we reduce the proof to Case (1). Hence Theorem is completely
Quadratic differentials

proved. q.e.d.

Remark. \(\theta = \sum_{i=1}^{g} c_i \theta A_i (\in P(A_i)) \) is proportional to a holomorphic reproducing differential if and only if there exist a real constant \(c \) and integers \(q_i (i=1, \ldots, g) \) such that \(c_i = c q_i \) for every \(i \). Hence if \(g \geq 2 \), \(C \bar{A}_1 \) contains a differential which is not proportional to any holomorphic reproducing differential, and the condition of Lemma 1 is not necessary.

§ 5. Theorems on contractions

Let \(T_g \) be a Teichmüller space of compact Riemann surfaces of genus \(g (>1) \), \(d(\cdot, \cdot) \) be the Teichmüller distance on \(T_g \). It is well-known that the metric space \(T_g \) is homeomorphic to the unit ball \(B = \{ (x_j): \sum_{j=1}^{g} x_j^2 < 1 \} \), where the metric on \(B \) is the usual Euclidean metric. (cf. [2], [3])

We recall about the homeomorphism from \(B \) to \(T_g \). Let \(R_0 \in T_g \) be fixed and \(\{ \varphi_j \}_{j=1}^{g} \) be a base of the real vector space \(\bar{A}_2(R_0) \). (We will use \(R_0, R \), etc. both as a Riemann surface and as a point of \(T_g \).) Then to each point \((x_j) \in B \) we assign the point of \(T_g \) associated with the Beltrami coefficient \(\mu(z) = \left\{ \sum x_j^2 \right\}^{1/2} \frac{\sum x_j \bar{\varphi}_j}{|\sum x_j \varphi_j|} \) (with the base point \(R_0 \)).

Now we define

\[U(R_0) = \{ \Sigma x_j \varphi_j; (x_j) \in B \}(\subset \bar{A}_2(R_0)) \]

and for \(\varphi = \Sigma x_j \varphi_j \in U(R_0) \), let \(R_\varphi \) be the point of \(T_g \) associated with the Beltrami coefficient

\[\mu(z) = \left\{ \sum x_j^2 \right\}^{1/2} \frac{\sum x_j \bar{\varphi}_j}{|\sum x_j \varphi_j|}. \]

Here we remark that on account of the homeomorphism from \(B \) to \(T_g \), “\(\varphi_n \) converges to \(\varphi \) with respect to the \(\| \| -\text{norm} \)” is equivalent to “\(R_{\varphi_n} \) converges to \(R_\varphi \) in \(T_g \)”.

For an arbitrary \(R \in T_g \), the Teichmüller mapping from \(R_0 \) to \(R \)
is uniquely determined, hence we denote its Beltrami coefficient and the maximal dilatation by $B_{R_0}(R)$ and $D_{R_0}(R)$ respectively. Then the following theorem is well-known. (cf. [2], [3], [12])

Theorem I. There exists a $\varphi \in U(R_0)$ and k $(1 > k \geq 0)$ such that

$$B_{R_0}(R) = k \frac{\overline{\varphi}}{|\varphi|}, \quad D_{R_0}(R) = K \frac{1+k}{1-k} \geq 1$$

and $d(R_0, R) = \log D_{R_0}(R)$.

Here $\varphi = \Sigma x_j \varphi_j$ is uniquely determined by the condition $\{\Sigma x_j^2\}^{1/2} = k$, and is denoted by $Q_{R_0}(R)$.

Definition (cf. [11]). Let $\varphi \in C\overline{A}_2(R_0), \{R_i\}$ be the characteristic ring domains $R(\varphi)$ of $\varphi, \{\gamma_i\}$ be the admissible curve system induced by $R(\varphi)$, and \tilde{M} be the moduli vector of φ. If $\{\gamma'_i\}$ is an admissible curve system on R corresponding to $\{\gamma_i\}$ by the homeomorphism $F: R_0 \rightarrow R$ in T^{φ}, there exists a $\varphi' \in C\overline{A}_2(R)$ whose characteristic ring domains $R(\varphi')$ belongs to $\{\gamma'_i\}$, and whose moduli vector \tilde{M}' satisfies the equation $\tilde{M}' = C\tilde{M}$ for a suitable $C > 0$. (cf. Theorem A.)

We call this constant the *contraction of φ from R_0 to R* and denote it by $C_R(\varphi)$. And φ' is uniquely determined up to a positive constant factor, and is denoted by $I_R(\varphi)$.

Theorem II. ([8]) If $D_{R_0}(R) = K$, then for every $\varphi \in C\overline{A}_2(R_0)$

$$\frac{1}{K} \leq C_R(\varphi) \leq K, \quad \text{and}$$

$$C_R(\varphi) = \frac{1}{K} \quad \text{if and only if} \quad B_{R_0}(R) = k \frac{\overline{\varphi}}{|\varphi|}$$

$$C_R(\varphi) = K \quad \text{if and only if} \quad B_{R_0}(R) = k \frac{-\overline{\varphi}}{|\varphi|}$$

Now as an application of Theorem 1, we have the following

Theorem 3. If $D_{R_0}(R) = K$, then
Quadratic differentials

\[K = \sup_{\varphi \in \mathcal{A}_2(R_0)} C_R(\varphi) \quad \frac{1}{K} = \inf_{\varphi \in \mathcal{A}_2(R_0)} C_R(\varphi) \]

Proof. Let \(Q_{R_0}(R) = \varphi_0 \in U(R_0) \) and \(k = \frac{K-1}{K+1} \). Note that for an arbitrary \(\varphi \in \mathcal{A}_2(R_0) \) there exists a suitable positive constant \(C \) such that \(C\varphi = \sum \varphi_j \varphi_j \in U(R_0) \) and \(\{\sum \varphi_j^2\}^{\frac{1}{2}} = k \). Hence in the sequel we consider only elements satisfying these conditions.

First let \(\varphi \in \mathcal{A}_2(R_0) \) and \(\tilde{\varphi} = I_R(\varphi) \), then

\[C_{R,\varphi}(\varphi) = C_R(\varphi) \cdot C_{R,\varphi}(\tilde{\varphi}) \]

and by Theorem II, \(C_{R,\varphi}(\varphi) = \frac{1}{K} \). Now we take a sequence \(\{\varphi_n\} \subset \mathcal{A}_2(R_0) \) such that \(\varphi_n \) converges to \(\varphi_0 \) with respect to the \(\| \| \) norm. Then \(R_{\varphi_n} \) converges to \(R_{\varphi_0} = R \) in \(T_\varphi \). Let \(\tilde{\varphi}_n = I_R(\varphi_n) \), then

\[C_{R,\varphi_n}(\varphi_n) = \frac{1}{K} = C_R(\varphi_n) \cdot C_{R,\varphi_n}(\tilde{\varphi}_n) \]

and \(\lim_{n \to \infty} C_{R,\varphi_n}(\tilde{\varphi}_n) = 1 \), because \(\lim_{n \to \infty} D_{R_0}(R_{\varphi_n}) = 1 \) (cf. Theorem II). Hence

\[\lim_{n \to \infty} C_R(\varphi_n) = \frac{1}{K} \]. By Theorem II, we have

\[\inf_{\varphi \in \mathcal{A}_2(R_0)} C_R(\varphi) = \frac{1}{K} \].

Similarly if we consider a sequence \(\{\psi_n\} \subset \mathcal{A}_2(R_0) \) which converges to \(-\varphi_0 \), then we can prove that

\[\sup_{\varphi \in \mathcal{A}_2(R_0)} C_R(\varphi) = K \].

Corollary 3. If \(C_R(\varphi) \geq 1 \) for every \(\varphi \in \mathcal{A}_2(R_0) \), then \(R \) is conformally equivalent to \(R_0 \).

Proof. Since \(1 \geq \inf C_R(\varphi) = \frac{1}{D_{R_0}(R)} \geq 1 \), we have

\[D_{R_0}(R) = 1 \], i.e. \(R_0 = R \) in \(T_\varphi \). q.e.d.

Remark. From the proof of Theorem 3 for every \(\varepsilon > 0 \) there
exist neighbourhoods U_ε and V_ε of φ_0 and $-\varphi_0$ respectively in $\tilde{A}_2(R_0)$ such that
\[
C_R(\varphi') \leq \frac{1}{K} + \varepsilon \quad \text{for every } \varphi' \in U_\varepsilon \cap C\tilde{A}_2(R_0).
\]
\[
C_R(\psi') \geq K - \varepsilon \quad \text{for every } \psi' \in V_\varepsilon \cap C\tilde{A}_2(R_0).
\]

Lemma 8. (cf. [6]). Let R_0, R, R' be points of T_θ and
\[
B_{R_0}(R) = k \frac{\bar{\varphi}}{\varphi}, \quad B_{R_0}(R') = k \frac{\bar{\psi}}{\psi}
\]
with $\varphi = Q_{R_0}(R)$, and $\psi = Q_{R_0}(R')$. If $d(R, R') = 2d(R_0, R)$, then
\[
\psi = -\varphi.
\]

Proof. Let f, g be the Teichmüller mappings from R_0 to R and to R' respectively. Let $\mu = B_{R_0}(R)$, $\tau = B_{R_0}(R')$, then the quasiconformal mapping $h = g \circ f^{-1}$ from R to R' has the Beltrami coefficient
\[
\rho = \left\{ \frac{\tau - \mu}{1 - \tau \bar{\mu}} \cdot \frac{f_z}{(f_z)} \right\} \circ f^{-1},
\]
which can be shown by elementary calculation. And from $|\tau| = |\mu| = k$ we have $|\rho| = \rho |\tau| |f| = \left| \frac{\tau - \mu}{1 - \tau \bar{\mu}} \right| \leq \frac{2k}{1 + k^2}$, where the equality can hold only the points on R_0 where $\tau = -\mu$ holds. Hence
\[
d(R', R) \leq \sup \log \frac{1 + |\rho|}{1 - |\rho|} \leq 2 \log \frac{1 + k}{1 - k} = 2d(R_0, R).
\]
From our assumption we have therefore $|\rho| = \frac{2k}{1 + k^2}$, i.e. $\tau = -\mu$. Thus we can conclude that $\varphi = -\psi$. q.e.d.

Theorem 4. Let $B_{R_0}(R) = k \frac{\varphi_0}{|\varphi_0|}$ with $\varphi_0 = Q_{R_0}(R)$. If a sequence $\{\varphi_n\}$ in $C\tilde{A}_2(R_0)$ satisfies the condition that
\[
\lim_{n \to \infty} C_R(\varphi_n) = \frac{1}{K},
\]
then \(\varphi_n \) converges to \(\varphi_0 \) with respect to \(\| \| \)-norm. (Note that \(\varphi_n \) are normalized as in the proof of Theorem 3.)

Proof. By taking a subsequence, we may assume that \(\varphi_n \) converges. Let \(\varphi' = \lim_{n \to \infty} \varphi_n \). Note that for \(\varphi \in C\mathcal{A}_2(R_0) \) and \(\tilde{\varphi} = I_R(\varphi) \)

\[
C_R(\varphi) \cdot C_{R_0}(\tilde{\varphi}) = 1.
\]

Let \(\phi_n = I_{R_0}(\varphi_n) \), then

\[
C_R(\phi_n) = C_{R_0}(\phi_n) \cdot C_R(\varphi_n)
\]

By the previous remark for every \(\varepsilon > 0 \) there exists an \(n(\varepsilon) \) such that

\[
C_{R_0}(\phi_n) \geq K - \varepsilon \quad \text{and} \quad C_R(\varphi_n) \leq \frac{1}{K} + \varepsilon \quad \text{for every } n \geq n(\varepsilon).
\]

Thus we have \(\lim_{n \to \infty} C_R(\phi_n) \leq \frac{1}{K^2} \). But

\[
d(R, R \varphi) \leq d(R, R_0) + d(R_0, R \varphi') = 2 \log K.
\]

Hence by Theorem 3 we have \(d(R, R \varphi) = 2 \log K \). Then \(R = R \varphi \), by Lemma 8, thus \(\lim_{n \to \infty} \varphi_n = \varphi_0 \). q.e.d.

Example. For given \(\gamma \) the moduli vector of \(\theta_1^2 \) is not always an interior point of the moduli surface \(\mathcal{M}(\gamma_i) \) of the same admissible curve system \(\gamma_i \) when \(R \) varies in \(T_\gamma \). For example we consider a point of \(T_2 \), which is represented by \(w^2 = (z^2 - 4) \prod_{i=1}^{4} (z - z_i) \) where each \(z_i \) is a complex number. It can be considered as a two sheeted covering surface of the \(z \)-plane branched at \(\{ -2, 2, z_i \ (1 \leq i \leq 4) \} \). Cutting it by closed curve lying over non-intersecting homotopically fixed arcs \(\{ L_i \}_{i=1}^{4} \) on the \(z \)-plane such that \(L_1 = (-\infty, 2), L_3 = (2, +\infty) \) on the real axis and \(L_2, L_4 \) are the arcs joining \(z_1 \) and \(z_2, z_3 \) and \(z_4 \).
respectively, we have then two regions D^+, D^- which are called the upper sheet and the lower sheet respectively. Now we choose a closed Jordan curve on D^+ separating $\{L_4^+, L_4^-\}$ from $\{L_4^u, L_4^\nu\}$ as γ.

First take $z_1 = -1$, $z_2 = -\frac{1}{2}$, $z_3 = \frac{1}{2}$, $z_4 = 1$, then

$$\theta^2 = \left(\frac{zd\z}{w} \right)^2 = \frac{z^2 dz^2}{(z^2 - \frac{1}{4})(z^2 - 1)(z^2 - 4)}$$

belongs to CA_2^uD, and it can be shown that θ is proportional to θ_γ. In this case the characteristic ring domains $R(\theta^2)$ consists of three elements. See the figure 1, where the curves γ' denotes the projection onto the z-plane of the critical trajectories of θ^2.

Next take $z_1 = 1$, $z_2 = -1$, $z_3 = -i$, $z_4 = i$, then

$$\theta^2 = \left(\frac{zd\z}{w} \right)^2 = \frac{z^2 dz^2}{(z^4 - 1)(z^2 - 4)}$$

belongs to CA_2^uD and $R(\theta^2)$ consists of a single element, so it is obvious that θ is proportional to θ_γ. See the figure 2.
Quadratic differentials

References

Added in proof. (Nov., 1, 1976) The author found that A. Douady and J. Hubbard had proved that \(C \bar{A}^2 \) is dense in \(\bar{A}^2 \) (Invent. Math. 30
175–179, 1975). This is exactly the holomorphic case of our Theorem 1, so it is contained in our result. The proofs are quite different and our proof is rather constructive.